

Overview

Programming Model

Addressing Modes and Instruction Set Summary

Floating-Point Implementation

Graphics Unit Implementation

Instruction and Data Caches

Exceptions

Memory Management Units

Instruction Timing and Code
Scheduling Considerations

Instruction Set

System Hardware Design

Appendix A

Index

••
•..
•
•
•
•
•
•
1m
..
•

..

..
••
•
•
•
•..
..
a
•
•

Overview

Programming Model

Addressing Modes and Instruction Set Summary

Floating-Point Implementation

Graphics Unit Implementation

Instruction and Data Caches

Exceptions

Memory Management Units

Instruction Timing and Code
Scheduling Considerations

Instruction Set

System Hardware Design

Appendix A

Index

®MOTOROLA

MC88110
Second Generation

RiSe Microprocessor
User's Manual

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design.
Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use.
as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any
other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and
the ® are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© MOTOROLA INC., 1991

Paragraph
Number

TABLE OF CONTENTS

Title
Page

Number

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1.3.8.1
1.3.8.1.1
1.3.8.1.2
1.3.8.1.3
1.3.8.1.4
1.3.8.2
1.3.9
1.3.10
1.3.11
1.3.12
1.3.13
1.3.14
1.3.15
1.3.16
1.4
1.4.1
1.4.2

MOTOROLA

Section 1
Overview

Feature List 1-2
88000 Family Overview 1-3

Register-to-Register Architecture 1-3
Simplified Addressing Modes 1-4
Instruction Formats 1-4
Levels of Privi lege 1-4
Special Function Units 1-4
Optimizing Software 1-6

MC88110 Processor Overview 1-6
Internal Buses 1-8
General Register File 1-8
Extended Register File 1-8
Integer Execution Units 1-9
Multiply and Divide Execution Units 1-9
Floating-Point Function Unit 1-9
Graphics Processing Function Unit 1-10
Instruction Unit/Sequencer 1-10

Instruction Unit 1-10
Program Flow 1-1 0
Exception Processing 1-11
Register Scoreboard 1-11
General Control Registers 1-11

Sequencer 1-11
Instruction Cache 1-12
Target Instruction Cache 1-13
Instruction MMU 1-13
Data Unit 1-14
Data Cache 1-14
Data MMU 1-15
External Bus Overview 1-16
System Debugging Features 1-17

Execution Model 1-17
Register Set 1-17
General Timing Considerations 1-18

MC88110 USER'S MANUAL iii

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

1.4.2.1
1.4.2.2
1.4.2.3
1.5

2.1
2.1.1
2.1.2
2.1.3
2.1.3.1
2.1.3.2
2.1.3.3
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.4.1
2.2.4.1.1
2.2.4.1.2
2.2.4.1.3
2.2.4.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.4.1
2.3.4.2

3.1
3.1.1
3.1.1.1
3.1.1.1.1
3.1.1.1.2
3.1.1.1.3
3.1.1.2
3.1.1.2.1

Source and Destination Data Considerations 1-19
Execution Unit Considerations 1-20
History Buffer 1-21

Instruction Set Summary 1-22

Section 2
Programming Model

Processor States 2-1
Reset State 2-1
Exception State 2-1
Normal Instruction Execution State 2-2

Supervisor Level of PriVilege 2-2
User Level of Privilege 2-3
Changing Levels of Privilege 2-3

Register Description 2-3
Supervisor/User Programming Model 2-3
General Register File 2-5
Extended Register File 2-5
Control Registers 2-6

General Control Registers 2-6
Processor Identification Register 2-8
Processor Status Register. 2-9
Supervisor Storage Registers 2-11

Floating-Point Control Registers 2-11
Operand Conventions 2-12

Operand Types 2-12
Data Organization in General Registers 2-12
Data Organization in Extended Registers 2-14
Data Organization in Memory and Data Transfers 2-15

Misaligned Access 2-16
Byte Ordering 2-16

Section 3
Addressing Modes and Instruction Set Summary

Addressing Modes 3-3
Computational Addressing Modes 3-3

Triadic Register Addressing 3-3
ALU Instructions 3-3
Floating-Point Instructions 3-4
Graphics Instructions 3-6

Immediate Addressing 3-7
Register with 6-Bit Immediate Addressing 3-7

iv MC88110 USER'S MANUAL MOTOROLA

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

3.1.1.2.2
3.1.1.2.3
3.1.1.2.4
3.1.1.3
3.1.2
3.1.2.1
3.1.2.2
3.1.2.3
3.1.3
3.1.3.1
3.1.3.1.1
3.1.3.1.2
3.1.3.2
3.1.3.3
3.1.3.3.1
3.1.3.3.2
3.1.3.4
3.1.3.5

3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.3

MOTOROLA

Register with 10-Bit Immediate Addressing 3-8
Register with 16-Bit Signed Immediate Addressing 3-9
Register with 16-BitUnsigned Immediate Addressing 3-1 0

Control Register Addressing 3-11
Load/Store/Exchange Addressing Modes 3-12

Register Indirect with Immediate Index Addressing 3-12
Register Indirect with Index Addressing 3-13
Register Indirect with Scaled Index Addressing 3-14

Flow Control Addressing Modes 3-16
Triadic Register Addressing 3-16

Jump Instructions (jmp, jsr) 3-16
Trap-Generating Bounds-Check Instruction (tbnd) 3-16

Register with 9-Bit Vector Table Index Addressing 3-18
Register with 16-Bit Displacement/Immediate Addressing 3-19

Bit-Test and Conditional Branch Instructions 3-19
Trap-Generating Bounds-Check Instruction (tbnd) 3-21

26-Bit Branch Displacement Addressing 3-21
Return from Exception (rte) and Illegal Operation (illop)

Instruction Addressing 3-22
Instruction Set Summary 3-23

Logical Instructions 3-26
Integer Arithmetic Instructions 3-27
Bit-Field Instructions 3-28
Floating-Point Instructions 3-28
Graphics· Instructions 3-30
Load/Store/Exchange Instructions 3-31
Flow Control Instructions 3-31

Section 4
Floating-Point Implementation

Floating-Point Numeric Representation 4-2
Floating-Point Numeric Formats 4-2
Normalized Floating-Point Numbers 4-4
Denormalized Numbers 4-5
Unnormalized Double-Extended-Precision Numbers 4-6
Not-a-Numbers (NaNs) 4-7

Rounding 4-7
Round-to-Nearest 4-9
Round-toward-Zero 4-9
Round-toward-Positive-Infinity 4-9
Round-toward-Negative-Infinity 4-9

Floating-Point Exceptions 4-9

MC88110 USER'S MANUAL v

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

4.3.1
4.3.1.1
4.3.1.2
4.3.1.3
4.3.2
4.3.2.1
4.3.2.2
4.3.2.3
4.3.2.4
4.3.2.5
4.3.2.6
4.3.2.7
4.3.2.8
4.3.3
4.3.3.1
4.3.3.2
4.3.3.3
4.3.3.4
4.3.3.5
4.3.3.6
4.3.3.7
4.3.3.8

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.3.1
5.2.3.2
5.3
5.3.1
5.3.1.1
5.3.1.2
5.3.2
5.3.3
5.4
5.4.1
5.4.1.1
5.4.1.2

Floating-Point Control Registers 4-12
Floating-Point Exception Cause Register (FPECR) 4-12
Floating-Point Control Register (FPCR) 4-14
Floating-Point Status Register (FPSR) 4-16

IEEE Exceptions Conformance 4-18
Floating-Point Unimplemented Instruction 4-18
Floating-Point Privilege Violation 4-19
Floating-Point to Integer Conversion Overflow 4-19
Floating-Point Reserved Operand 4-20
Floating-Point Overflow 4-20
Floating-Point Underflow 4-22
Floating-Point Divide-by-Zero 4-24
Floating-Point Inexact 4-24

Time-Critical Floating-Point (TCFP) Mode 4-25
Floating-Point Unimplemented Instruction in TCFP Mode 4-25
Floating-Point Privilege Violation in TCFPMode 4-26
Floating-Point to Integer Conversion Overflow in TCFP Mode 4-26
Floating-Point Reserved Operand in TCFP Mode 4-26
Floating-Point Overflow in TCFP Mode 4-27
Floating-Point Underflow in TCFP Mode 4-27
Floating-Point Divide-by-Zero in TCFP Mode 4-27
Floating-Point Inexact in TCFP Mode 4-27

Section 5
Gra'phics Unit Implementation

GPU Overview 5-1
Graphics Data Types 5-3

General Data Types 5-3
Fixed-Point Data Type Definition 5-4
Other Common Data Types 5-5

Pixel Types 5-6
Number Types 5-7

Graphics Instructions 5-7
Pixel Add/Subtract Operations 5-7

Types of Saturation 5-8
User-Defined Saturation Limits 5-10

Pixel Pack/Unpack Operations 5-10 .
Pixel Multiply Operation 5-12

Primitive Operations 5-13
Arithmetic Operations 5-13

Interpolation 5-13
Intensity Summing 5-13

vi MC88110 USER'S MANUAL MOTOROLA

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

5.4.2
5.4.2.1
5.4.2.2
5.4.3
5.4.4
5.5
5.5.1
5.5.2
5.5.3
5.5.4

6.1
6.1.1
6.1.2
6.1.3
6.2
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.4.3
6.5
6.6
6.6.1
6.6.2
6.7
6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.9
6.9.1
6.9.1.1
6.9.1.2
6.9.1.3
6.9.1.4

MOTOROLA

Format Conversion 5-13
Packing Pixels 5-14
Unpacking Pixels 5-16

Intensity Scaling 5-18
Coordinate Comparison 5-19

Accelerated Functions 5-20
Gouraud Shading 5-20
Hidden-Surface Removal. 5-22
Pixel Block Transfer (PixBlt) 5-23
Compositing 5-23

Section 6
Instruction and Data Caches

Cache Organization 6-1
Data Cache 6-2
Instruction Cache 6-3
Target Instruction Cache (TIC) 6-4

Cache Coherency 6-4
Address Translation Overview 6-5

BATC Descriptors 6-7
PATC Descriptors 6-8

Memory Update Policy 6-10
Write-Back Mode 6-1 0
Write-Through Mode 6-11
Cache Inhibit 6-12

Cache Lookup Operation 6-12
Instruction Cache Accesses 6-15

Instruction Cache Hit 6-16
Instruction Cache Miss 6-16

Data Cache Decoupling 6-17
Data Cache Accesses 6-1 8

Data Cache Read Hit 6-21
Data Cache Read Miss 6-21
Data Cache Write Hit 6-24
Data Cache Write Miss 6-26
Data Cache xmem Accesses 6-31

Cache Control and Maintenance 6-31
User-Mode Cache Control Features 6-31

Store-Throug h 6-33
Touch Load 6-33
Flush load 6-34
Allocate load 6-34

MC88110 USER'S MANUAL vii

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

6.9.2
6.9.2.1
6.9.2.2
6.9.2.3
6.9.2.4
6.9.2.5
6.9.2.6
6.9.3
6.9.4
6.9.5

7.1
7.2
7.2.1
7.2.2
7.3

7.3.1
7.3.1.1
7.3.1.2
7.3.1.3
7.3.2
7.3.3
7.3.4
7.4
7.4.1
7.4.2
7.5
7.5.1
7.5.1.1
7.5.1.2
7.5.2
7.5.2.1
7.5.2.2
7.5.2.3
7.5.2.4
7.5.2.5
7.5.3
7.5.3.1
7.5.3.2

Cache Control Registers 6-35
Instruction MMU/CacheITIC Command Register (ICMD) 6-35
Instruction MMU/Cache Control Register (ICTl) 6-36
Instruction System Address Register (ISAR) 6-38
Data MMU/Cache Command Register (DCMD) 6-39
Data MMU/Cache Control Register (DCTl) 6-40
Data System Address Register (DSAR) 6-42

The Invalidate Command 6-43
The Flush Command 6-43
Cache Freezing 6-44

Section 7
Exceptions

Exception Overview 7-1
The Exception Model 7-2

The History Buffer 7-2
Exception Vectors and Vector Base Register (VBR) 7-3

Exception Recognition, Processing, Handling and
Return from Exceptions 7-5

Exception Recognition 7-5
Internal or Bus Generated Exceptions 7-5
Externally Generated Interrupts 7-6
Priorities 7-7

Exception Processing 7-7
Exception Handling 7-9
Return from Exceptions 7-1 0

Exception Timing 7-11
latency for Internal or Bus Generated Exceptions 7-11
latency for Externally Generated Interrupts 7-13

Types of Exceptions 7-13
Interrupts ~ 7-13

Maskable Interrupt (INT) 7-13
Non-Maskable Interrupt (NMI) 7-13

Instruction Unit Exceptions 7-14
Misaligned Access Exception (Vector Offset $20) 7-14
Unimplemented Opcode Exception (Vector Offset $28) 7-14
Privilege Violation Exception (Vector Offset $30) 7-15
Trap Instruction Exceptions (Vector Offset $400-$7F8) 7-15
Integer Overflow Exception (Vector Offset $48) 7-15

Memory Access Exceptions 7-15
Instruction Access Exception (Vector Offset $10) 7-15
Data Access Exception (Vector Offset $18) 7-17

viii MC88110 USER'S MANUAL MOTOROLA

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

7.5.4
7.5.4.1
7.5.4.2
7.5.4.3
7.5.4.4
7.5.4.5
7.5.4.6
7.5.4.7
7.5.4.8
7.5.5
7.5.5.1
7.5.5.2
7.5.6
7.5.7
7.5.8

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.5.1
8.3.5.2
8.3.5.3
8.3.5.4

MOTOROLA

Floating-Point Unit Exceptions 7-19
Floating-Point Unimplemented 7-21
Floating-Point Privilege Violation 7-21
Floating-Point to Integer Conversion Overflow 7-21
Floating-Point Reserved Operand 7-21
Floating-Point Overflow 7-21
Floating-Point Underflow 7-21
Floating-Point Divide-by-Zero 7-21
Floating-Point Inexact 7-22

Graphics Unit Exceptions (Vector Offset $3AO) 7-22
SFU2 Disabled 7-22
SFU2 Unimplemented 7-22

Error Exception 7-22
Reset 7-22
Address Translation Cache (ATC) Miss Exception 7-23

Section 8
Memory Management Units

MMU Overview 8-1
MMU Organization 8-2
Block and Page Translation Capability 8-4
ATC Descriptor Concept. 8-4
Table Search Options 8-5
Address Translation Modes 8-6
General Flow of MMU Address Translation 8-7
MMU Exceptions and Faults Summary 8-8
MMU Control Register Summary 8-10

Selection of Address Translation Mode 8-12
Identity Translation 8-13
Block-Exclusive Translation 8-13
Page-Exclusive Translation 8-13
Combined Block/Page Translation 8-13

Block Address Translation 8-13
BATC Organization 8-13
Block Address Translation Flow 8-15
BATC Descriptor Format 8-15
Sharing Blocks Between Programs 8-18
Block Descriptor Maintenance 8-19

Selecting the Block Size 8-19
Loading BATC Entries 8-20
Reading BATC Entries 8-20
Invalidating BATC Entries 8-20

MC88110 USER'S MANUAL ix

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.4.1
8.4.4.2
8.4.4.3
8.4.4.4
8.5
8.5.1
8.5.2
8.5.2.1
8.5.2.2
8.5.2.3
8.5.2.4
8.5.3
8.5.3.1
8.5.3.1.1
8.5.3.1.2
8.5.3.1.3
8.5.3.1.4
8.5.3.1.5
8.5.3.2
8.5.3.3
8.5.4
8.5.4.1
8.5.4.2
8.5.4.3
8.5.4.4
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.7
8.7.1
8.7.2
8.7.3
8.8
8.8.1

Page Address Translation 8-20
PATC Organization 8-21
Page Address Translation Flow 8-21
PATC Descriptor Format. 8-23
Software Maintenance of PATC Entries 8-25

Software Table Search Operations 8-25
Loading PATe Entries 8-26
Reading PATC Entries 8-26
Invalidating PATC Entries 8-27

Page Descriptor Tables 8-27
Page Translation Table Structure 8-27
Translation Table Descriptor Formats 8-31

Area Descriptor Format. 8-31
Segment Descriptor Format. 8-32
Page Descriptor Format. 8-34
Indirection Descriptor Format 8-37

Hardware Table Search Algorithm 8-38
Table Search Faults 8-38

Table Search Bus Error 8-38
Segment Descriptor Invalid 8-39
Page Descriptor Invalid 8-39
Supervisor Protection Violation 8-39
Write Protect Violation 8-39

Detailed Flow of Hardware Table Search Operation 8-39
Hardware Table Search Operation Timing 8-44

Page Descriptor Table Gonsiderations 8-44
Maintaining Used Status 8-44
Maintaining Modified Status 8-45
Sharing Pages 8-45
Paging Sets of Page Descriptors 8-47

Data Breakpoints 8-47
Data Breakpoint Descriptors 8-49
Enabling Data Breakpoints 8-50
Loading Data Breakpoint Registers 8-50
Reading Data Breakpoint Registers 8-51
Data Breakpoint Fault 8-51

MMU/Cache Faults 8-52
Copyback Error 8-53
Write-Allocate Error 8-53
Bus Error 8-53

ATC Probe Capability 8-53
ATC Probe Commands 8-54

x MC88110 USER'S MANUAL MOTOROLA

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

8.8.2
8.9
8.9.1
8.9.1.1
8.9.1.2
8.9.1.3
8.9.1.4
8.9.1.5
8.9.1.6
8.9.1.7
8.9.1.8
8.9.1.9
8.9.1.10
8.9.1.11
8.9.1.12
8.9.2
8.9.2.1
8.9.2.2
8.9.2.3
8.9.2.4
8.9.2.5
8.9.2.6
8.9.2.7
8.9.2.8
8.9.2.9
8.9.2.10
8.9.2.11
8.9.2.12
8.10

9.1
9.2
9.2.1
9.2.1.1
9.2.1.1.1
9.2.1.1.2
9.2.1.2
9.2.1.2.1
9.2.1.2.2
9.2.1.3

MOTOROLA

ATC Probe Results 8-55
MMU/Cache Control Registers 8-56

Instruction MMU/Cache Registers 8-56
Instruction MMU/CacherriC Command Register (ICMD) 8-56
Instruction MMU/Cache Control Register (ICTL) 8-57
Instruction System Address Register (ISAR) 8-59
IMMU Supervisor Area Pointer Register (ISAP) 8-60
IMMU User Area Pointer Register (IUAP) 8-60
IMMU ATC Index Register (IIR) 8-60
IMMU BATC RJW Port Register (IBP) 8-61
IMMU PATC RIW Port Upper Register (IPPU) 8-61
IMMU PATC RIW Port Lower Register (IPPL) 8-61
Instruction Access Status Register (ISR) 8-62
Instruction Access Logical Address Register (ILAR) 8-63
Instruction Access Physical Address Register (IPAR) 8-63

Data MMU/Cache Registers ' 8-64
Data MMU/Cache Command Register (DCMD) 8-64
Data MMU/Cache Control Register (DCTL) 8-65
Data System Address Register (DSAR) 8-68
DMMU Supervisor Area Pointer Register (DSAP) 8-68
DMMU User Area Pointer Register (DUAP) 8-68
DMMU ATC Index Register (DIR) 8-69
DMMU BATC RJW Port Register (DBP) 8-69
DMMU PATC RIW Port Upper Register (DPPU) 8-70
DMMU PATC RIW Port Lower Register (DPPL) 8-70
Data Access Status Register (DSR) 8-70
Data Access Logical Address Register (DLAR) 8-73
Data Access Physical Address Register (DPAR) 8-73

MC88110 and MC88200 MMU Differences 8-74

Section 9
Instruction Timing and Code Scheduling Considerations

Instruction Timing Overview 9-1
General Timing Considerations 9-5

Instruction Issue Timing 9-6
Instruction Cache Timing 9-7

Instruction Cache Hit 9-8
Instruction Cache Miss 9-9

Source Data Considerations 9-12
Scoreboard Checks 9-12
Feed Forwarding 9-13

Destination Register Considerations 9-14

MC88110 USER'S MANUAL xi

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

9.2.1.3.1
9.2.1.3.2
9.2:1.4
9.2.1.5
9.2.2
9.2.2.1
9.2.2.2
9.3
9.3.1
9.3.2
9.3.2.1
9.3.2.2
9.3.2.2.1
9.3.2.2.2
9.3.2.2.3
9.3.2.2.4
9.3.2.3
9.3.2.3.1
9.3.2.3.2
9.3.2.3.3
9.3.2.3.4
9.3.2.3.5
9.3.2.3.6
9.3.2.3.7
9.3.2.3.8
9.3.2.3.9
9.3.2.3.10
9.3.3
9.3.3.1
9.3.3.2
9.3.4
9.3.4.1
9.3.4.2
9.3.4.2.1
9.3.4.2.2
9.3.4.3
9.3.4.4
9.3.4.4.1
9.3.4.4.2
9.3.4.4.3
9.3.4.4.4
9.3.4.4.5

Scoreboard Checks 9-14
Write-Back Priorities 9-14

Execution Unit Considerations ~ 9-15
History Buffer Induced Stalls 9-17

Load Buffer and Store Reservation Station Model. 9-18
Load Buffer and Store Reservation Station Example 9-21
Load/Store Reordering Example 9-23

Execution Unit Timings 9-24
Integer/Bit-Field Unit Execution Timing 9-24
Data Unit Execution Timing 9-26

Decoupled Cache Accesses 9-27
User Mode Cache Control Features 9-27

Store-Throug h 9-28
Touch Load 9-29
Flush Load 9-29
Allocate Load 9-30

Data Unit Execution Timing Examples 9-31
Load Timing with Cache Hit Example 9-31
Load Timing with Cache Miss Example 9-32
Load Miss with Dirty Line Copyback Example 9-34
Load Miss with Instruction Overlap Example 9-34
Load Miss with Data Streaming Example 9-35
Store Example 9-36
Write-Back Arbitration Example 9-37
Load/Store with Extended Operands Example 9-38
I/O Serialization Example 9-39
Touch Load Operation Timing Example 9-40

Multi-Cycle Execution Unit Timing 9-41
Floating-Point Add and Multiply Timing Example 9-42
Divide Timing Example 9-43

Instruction Unit (Flow Control) Execution Timing 9-44
Delayed Branching 9-46
Target Instruction Cache 9-47

Delayed Branching Example 9-48
Nondelayed Branching Example 9-49

Static Branch Prediction 9-50
Unpredicted Branch Timing Examples 9-53

Unpredicted Branch Not Taken Example 9-53
Unpredicted Branch Taken with TIC Miss Example 9-54
Unpredicted Delayed Branch Taken with TIC Miss Example 9-55
Unpredicted Branch Taken with TIC Hit Example 9-56
Unpredicted Delayed Branch Taken with TIC Hit Example 9-57

xii MC88110 USER'S MANUAL MOTOROLA

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

9.3.4.5
9.3.4.5.1
9.3.4.5.2
9.2.4.5.3
9.3.4.5.4
9.3.5
9.3.6
9.4
9.4.1
9.4.2
9.4.3
9.5
9.5.1
9.5.2

9.5.2.1
9.5.2.2
9.5.2.3
9.5.3

10.1
10.2
10.2.1
10.2.2
10.2.3
10.2.3.1
10.2.3.2
10.2.4
10.2.5
10.2.6
10.2.7

11.1
11.1.1
11.1.2
11.1.3
11.2
11.2.1

Predicted Branch Timing Examples 9-58
Predicted Branch Example 9-58
Predicted Branch Taken with TIC Hit Example 9-60
Predicted Branch Not Taken with TIC Hit Example 9-61
Long Latency with Misprediction Example 9-62

Graphics Unit Execution Timing 9-63
Instruction Execution Example 9-65

Memory Performance Considerations 9-66
Write-Back Mode 9-67
Write-Through Mode 9-67
Cache Inhibit 9-68

Superscalar Optimization Techniques 9-68
The Impact of Superscalar Processing on Schedulers 9-68
Upgrading from an MC88100 Scheduler to an

MC88110 Scheduler 9-70
Overlapping Latencies with Useful Work 9-70
No Grouping vs. Grouping of Like Instructions 9-71
Register Usage 9-73

Code Optimization Example 9-75

Section 10
Instruction Set

Instruction Set Details 10-1
Opcode Summary 10-93

Logical Instructions 10-93
Integer Arithmetic Instructions 10-94
Special Function Unit (SFU) Instructions 10-95

Floating-Point Instructions 10-96
Graphics Instructions 10-97

Bit-Field Instructions 10-98
Load/Store/Exchange Instructions 10-99
Flow Control Instructions 10-100
Instruction Encoding in Numeric Order. 10-1 01

Section 11
System Hardware Design

System Hardware Design Overview 11-1
Cache Operation Overview 11-2
Bus Arbitration Overview 11-3
Data Transfer Overview 11-4

Signal Description 11-6
Data Transfer Signals 11-8

MOTOROLA MC88110 USER'S MANUAL xiii

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

11.2.1.1
11.2.1 .2
11.2.1.3
11.2.2
11.2.2.1
11.2.2.2
11.2.2.3
11.2.2.4
11.2.2.5
11.2.2.6
11.2.2.7
11.2.2.8
11.2.2.9
11.2.2.10
11.2.2.11
11.2.2.12
11.2.3
11.2.3.1
11.2.3.2
11.2.3.3
11.2.3.4
11.2.3.5
11.2.3.6
11.2.4
11.2.4.1
11.2.4.2
11.2.4.3
11.2.4.4
11.2.5
11.2.5.1
11.2.5.2
11.2.5.3
11.2.5.4
11.2.5.5
11.2.6
11.2.7
11.2.7.1
11.2.7.2
11.2.7.3
11.2.7.4
11.2.8
11.2.9

Data Bus (063-00) 11-8
Address Bus (A31-AO) 11-9
Byte Parity Bus (BP7-BPO) 11-9

Transfer Attribute Signals 11-9
ReadlWrite (RIW) 11-1 0
Lock (LK) 11-10
Cache Inhibit (C~ 11-1 0
Write-Through (WT) 11 -1 0
User Page Attributes (UPA1-UPAO) 11-10
Transfer Burst (TBST) 11-10
Transfer Size (TSIZ1-TSIZO) 11-10
Transfer Code (TC3-TCO) 11 -11
Invalidate (INV) 11-11
Memory Cycle (MC) 11-11
Global (GBl) 11-12
Cache Line (CliNE) 11-12

Transfer Control §.!gnals 11-12
Transfer Start (TS) 11-12
Transfer Acknowledge (TAb 11 -12
Pretransfer Acknowledge (PTA) 11 -12
Transfer Error Acknowledge (TEA) 11-12
Transfer Retry (TRTRY) 11-13
Address Acknowledge (AACK) 11 -13

Snoop Control Signals 11-13
Snoop Request (SR) 11 -13
Address Retry (ARTRY) 11 -13
Shared (SHD) 11-13
Snoop Status (SSTAT1-SSTATO) 11-13

Bus Arbitration ~nals 11 -14
Bus Reque~BR) 11 -14
Bus Grant (BG) :.:..:.:::.:..: 11-14
Address Bus Bus~BB) 11-14
Data Bus Grant (DBG) 11-14
Data Bus Busy (DBB) 11-14

Processor Status Signals 11-15
Interrupt Signals 11 -15

Nonmaskable Interrupt (NMI) 11-15
Interrupt (INT) 11-15
Reset (RST) 11 -16
Byte Parity Error (BPE) 11-16

Clock (ClK) 11-17
Test Signals 11-17

xiv MC88110 USER'S MANUAL MOTOROLA

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

11.2.9.1
11.2.9.2
11.2.9.3
11.2.9.4
11.2.9.5
11.2.9.6
11.2.9.7
11.3
11.3.1
11.3.2
11.3.2.1
11.3.2.2
11.3.2.3
11.3.3
11.3.3.1
11.3.3.2
11.3.3.3
11.3.4
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.5
11.5.1
11.5.2
11.5.3
11.5.3.1
11.5.3.2
11.5.3.3
11.5.3.4
11.5.3.5
11.5.3.6
11.5~3.7

11.5.3.8
11.5.3.9
11.5.4
11.5.4.1
11.5.4.2
11.5.4.3
11.5.4.3.1

Debug (DBUG) 11-17
Resistor (RES2-RES1) 11-1 7
JTAG Test Reset (TRST) 11-17
JTAG Test Mode Select (TMS) 11-17
JTAG Test Clock (TCK) 11-17
JTAG Test Data Input (TDI) 11-17
JTAG Test Data Output (TDO) 11-17

Data Cache Operation 11-18
Data Cache States 11 -1 8
Memory Update Policy 11-19

Write-Back Mode 11-20
Write-Through Mode 11-20
Cache Inhibited Mode 11-20

Data Cache Coherency 11-21
Bus Snooping Flow for Transaction without Intent-to-Modify 11-23
Bus Snooping Flow for Transaction with Intent-to-Modify 11-23
Example Flow for Snooping Protocol 11-24

Data Cache State Transitions 11-29
Bus Arbitration 11 -33

Address Bus Arbitration 11-33
Data Bus Arbitration 11-34
Bus Arbitration Timing Examples 11-34
Bus Parking 11-36
Arbitration for Split Bus Transactions 11-39

Data Transfer Mechanism 11-42
Data Transfer Mechanism Signal Overview 11-42
Data Byte Lanes and Multiplexing 11-43
Single-Beat Transactions 11-46

Single-Beat Transaction Timing Example 11-46
Single-Beat Transaction Types 11-48
Single-Beat Read Transaction 11-49
Single-Beat Write Transaction 11-50
Invalidate Transaction 11-52
xmem Transaction 11-53
Table Search Transactions 11-57
Store-Through Transaction 11-57
Allocate Load Transaction 11-57

Burst Transactions 11-58
Burst Transaction Timing Examples 11-59
Burst Transaction Types 11-62
Burst Read Transactions 11-63

Cache Line Fill Operation-Read Miss 11-64

MOTOROLA MC88110 USER'S MANUAL xv

Paragraph
Number

TABLE OF CONTENTS (Concluded)

Title
Page

Number

11.5.4.3.2
11.5.4.3.3
11.5.4.4
11.5.4.4.1
11.5.4.4.2
11.5.4.4.3
11.5.4.4.4
11.5.5
11.6
11.6.1
11.6.2
11.6.3
11.6.4
11.7
11.7.1
11.7.2
11.7.3
11.7.4
11.7.5
11.7.6
11.7.7
11.7.8
11.7.9
11.8
11.8.1
11.8.2
11.8.3
11.8.4
11.9
11.10
11.10.1
11.10.2
11.10.2.1
11.10.2.2
11.10.2.3
11.10.2.4
11.10.2.5
11.10.2.6
11.10.3
11.10.4

Touch Load Burst Read Transaction 11-65
Read-with-Intent-to-Modify Burst Transaction 11-65

Burst Write Transactions 11 -66
Replacement Copyback Transaction 11-67
Snoop Copyback Transaction 11-67
Flush Copyback Transaction 11-68
Flush Load Transaction 11 -68

Back-to-Back Transfer Timing 11-68
Termination of Bus Transactions 11-69

Normal Transaction Termination with TA 11-70
Decoupled Cache Accesses and PTA 11 -72
Transfer Retry Termination 11-75
Transfer Error Termination 11-78

Data Cache Coherency Timing Considerations 11-80
Snoop Control Signal Overview 11-81
SSTAT1-SSTATO Timing 11 -82
Address Retry Transaction Termination 11-83
Snoop Miss Timing Example 11-85
Snoop Hit Timing-No Split Bus Example 11-85
Snoop Hit Timing-Split Bus (One-Level) Example 11-86
Snoop Hit Timing-Split Bus (Full) Example 11-87
Split-Bus Snoop Collisions 11-87
Snoop Copyback Details 11-96

MMU Transactions 11-96
Hardware Table Search Operation 11-97
Hardware Table Search Operation with Indirection 11-98
Hardware Table Search Operation with TRTRY 11-99
Hardware Table Search with Snoop Copyback 11-99

Reset Operation 11-104
IEEE 1149.1 Test Access Port 11-106

JTAG Overview 11-107
Three-Bit Instruction Register 11-108

EXTEST (000) 11-109
BYPASS (111) 11-112
Sample/Preload (1 00) 11-112
CLAMP (100) 11-113
HI-Z (001) 11-113
EXTEST_PULLUP (01 0) 11-113

MC8811 0 Restrictions 11-113
Non-IEEE 1149.1 Operation 11-114

Appendix A
Bit Scan Bit Definition

xvi MC88110 USER'S MANUAL MOTOROLA

Figure
Number

LIST OF ILLUSTRATIONS

Title
Page

Number

1-1 SFU Conceptual Diagram 1-5
1-2 SFU Hardware Use 1-6
1-3 MC88110 Block Diagram 1-7
1-4 Instruction Cache Organization 1-12
1-5 Data Cache Organization 1-15
1-6 MC88110 External Bus Interface 1-16
1-7 Symmetric Superscalar Instruction Issue 1-1 9
1-8 Simultaneous Instruction Issue Restrictions 1-21
1-9 MC88110 Instruction Set. 1-23

2-1 Programming Model. 2-4
2-2 General Register File 2-5
2-3 Extended Register File 2-6
2-4 Processor Identification Register 2-8
2-5 Processor Status Register 2-9
2-6 Data Organization in General Registers 2-14
2-7 Operands in Extended Register File 2-15
2-8 Floating-Point Memory Storage Alignment. 2-15
2-9 Memory Accesses with Misaligned Access Exceptions Disabled 2-16
2-10 Byte-Ordering Configuration in Memory 2-17
2-11 Example Byte-Ordering Environment Using

Big-Endian Memory and 64-Bit Bus 2-18
2-12 Example Byte-Ordering Environment Using

Little-Endian Memory and 32-Bit Bus 2-20

3-1 MC88110 Instruction Set. 3-2

4-1 Floating-Point Data Formats 4-3
4-2 Single-Precision Floating-Point Representation of 1.0 4-5
4-3 Single-Precision Floating-Point Representation of 1/8 (.125) 4-5
4-4 Example of a Denormalize,d Number 4-6
4-5 The Guard, Round, and Sticky Bits 4-8
4-6 Mapping of Floating-Point Exceptions to IEEE Exception Conditions 4-1 0
4-7 Floating-Point Exception Cause Register 4-13
4-8 Floating-Point Control Register 4-15
4-9 Floating-Point Status Register 4-1 6
4-10 Default Floating-Point Overflow Algorithm for Software Envelope 4-21

MOTOROLA MC88110 USER'S MANUAL xvii

Figure
Number

LIST OF ILLUSTRATIONS (Continued)

Title
Page

Number

4-11 Default Floating-Point Underflow Algorithm for Software Envelope 4-23

5-1 Packed Data Organization in General Registers 5-4
5-2 Example 32-Bit Fixed-Point Number (8.24) 5-4
5-3 Common Graphics Data Types 5-6
5-4 User-Defined Saturation Limits 5-10
5-5 ppack.16 rD,rS1 ,rS2 5-11
5-6 punpk.b rD,rS1 5-11
5-7 prot rD,rS1 ,<16> 5-12
5-8 pmul rD,rS1 ,rS2 5-12
5-9 ppack.32.h r2,r2,r1 5-14
5-1 0 ppack.8 5-15,
5-11 ppack.16 5-15
5-12 ppack.16.h 5-1'5
5-13 ppack.32 5-16
5-14 ppack.32.b 5-16
5-15 punpk.n 5-17
5-1 6 punpk.b 5-1 7
5-17 punpk.h 5-1 7
5-18 punpk.b followed by prot by 8 5-18
5-1 9 Intensity Scaling Example 5-1 9
5-20 Interpolating and Building Pixels 5-21
5-21 Example Z-Buffer Algorithm 5-22
5-22 Example Polygon ex Value Assignment. 5-24
5-23 Compositing Operation Example ' 5-25

6-1 MC88110 Cache Terminology 6-2
6-2 Data Cache Organization 6-2
6-3 Double Word Alignment 6-3
6-4 Instruction Cache Organization 6-4
6-5 Target Instruction Cache (TIC) 6-4
6-6 Physical Address Generation Using ATCs (ATC Hit) 6-6
6-7 BATC Descriptor Format. 6-7
6-8 PATC Descriptor Format 6-8
6-9 Cache Lookup Operation 6-13
6-10 Logical Address Fields 6-14
6-11 Instruction Cache Read Flowchart 6-15
6-12 Instruction Cache Hit Timing 6-1 6
6-13 Instruction Cache Miss Timing 6-17
6-14 Data Cache Read Flowchart 6-20
6-15 Data Cache Read Hit Timing 6-21
6-16 Data Cache Read Miss-No Copyback Timing 6-22

xviii MC88110 USER'S MANUAL MOTOROLA

Figure
Number

LIST OF ILLUSTRATIONS (Continued)

Title
Page

Number

6-17 Data Cache Read Miss with Copyback Timing 6-23
6-18 Data Cache Write Hit Flowchart 6-24
6-19 Data Cache Write Hit in Write-Back Mode Timing 6-25
6-20 Write Hit in Write-Through or Cache Inhibited Mode Timing 6-26
6-21 Data Cache Write Miss Flowchart 6-27
6-22 Write Miss with Copyback Timing 6-29
6-23 Write Miss-No Copyback Timing 6-30
6-24 xlTlem Flowchart 6-32
6-25 Instruction MMU/Cache Command Register 6-35
6-26 Instruction MMU/Cache Control Register 6-36
6-27 Instruction System Address Register 6-38
6-28 Data MMU/Cache Command Register 6-39
6-29 Data MMU/Cache Control Register 6-40
6-30 Data System Address Register 6-42

7-1 History Buffer Example 7-3
7-2 Exception Vector Address Formation 7-3
7-3 Exception Recognition in the History Buffer 7-6
7-4 Exception Processing Flow Chart 7-8
7-5 Exception-Time Executing Instruction Pointer (EXIP) 7-8
7-6 Exception Time Next Instruction Pointer (ENIP) 7-9
7-7 Return from Exceptions Flow Chart 7-11
7-8 Exception Latency Time Line 7-12
7-9 NMI Signal Timing 7-14
7-10 Instruction Access Status Register (ISR) 7-16
7-11 Data Access Status Register (DSR) 7-18

8-1 MC88110 MMU Block Diagram 8-3
8-2 Address Translation with Page Address Descriptors in PATC 8-5
8-3 MMU Address Translation Flow 8-7
8-4 Address Translation Mode Selection 8-12
8-5 BATC Organization ' 8-14
8-6 Block Address Translation Flow 8-15
8-7 BATC Descriptor Format. 8-16
8-8 PATC Organization 8-21
8-9 Page Address Translation Flow 8-22
8-1 0 PATC Descriptor Format. 8-23
8-11 Page Translation Table Structure 8-28
8-12 Page Table Lookup 8-30
8-13 Area Descriptor Format. 8-31
8-14 Segment Descriptor Format. 8-33
8-15 Page Descriptor Format. 8-35

MOTOROLA MC88110 USER'S MANUAL xix

Figure
Number

LIST OF ILLUSTRATIONS (Continued)

Title
Page

Number

8-16 Indirection Descriptor Format 8-37
8-17 Hardware Table Search Flow 8-40
8-18 Shared Pages with Indirection Descriptors 8-46
8-19 Data Breakpoint Algorithm 8-48
8-20 Data Breakpoint Descriptor Format 8-49
8-21 ATC Probe Algorithm 8-55
8-22 ICMD Format 8-56
8-23 ICTL Format 8-57
8-24 ISAR Format 8-59
8-25 ISAP Format 8-60
8-26 IUAP Format 8-60
8-27 IIR Format 8-60
8-28 IBP Format 8-61
8-29 IPPU Format 8-61
8-30 IPPL Format 8-61
8-31 ISR Format 8-62
8-32 ILAR Format 8-63
8-33 IPAR Format 8-63
8-34 DCMD Format 8-64
8-35 DCTL Format 8-65
8-36 DSAR Format 8-68
8-37 DSAP Format 8-68
8-38 DUAP Format 8-68
8-39 DIR Format 8-69
8-40 DBP Format 8-69
8-41 DPPU Format 8-70
8-42 DPPL Format 8-70
8-43 DSR Format 8-71
8-44 DLAR Format 8-73
8-45 DPAR Format 8-73

9-1 Instruction Latency 9-2
9-2 Pipelined Execution Unit 9-3
9-3 Instruction Prefetch and Execute Timing 9-4
9-4 Symmetric Superscalar Instruction Issue 9-5
9-5 Instruction Execution Order 9-7
9-6 Instruction Cache Hit Timing Example 9-8
9-7 Instruction Cache Miss Timing-First Instruction in Pair Missed 9-9
9-8 Instruction Cache Miss Timing-Second Instruction in Pair Missed 9-1 0
9-9 Missing the Stride of Arriving Information 9-11
9-10 Feed Forwarding 9-13
9-11 Simultaneous Instruction Issue Restrictions 9-16

xx MC88110 USER'S MANUAL MOTOROLA

Figure
Number

LIST OF ILLUSTRATIONS (Continued)

Title
Page

Number

9-12 History Buffer 9-17
9-13 Load/Store FIFO Queue Model 9-18
9-14 Clock Cycle One-Load/Store Example 9-21
9-15 Clock Cycle Two-Load/Store Example 9-21
9-16 Clock Cycle Three-Load/Store Example 9-22
9-17 Clock Cycle Four-Load/Store Example 9-23
9-18 Load/Store Reordering Timing 9-23
9-19 Integer and Bit-Field Instruction Sequence Timing 9-26
9-20 Load Hit Timing 9-32
9-21 Load Miss Timing ; 9-33
9-22 Load Miss with Copyback Timing 9-34
9-23 Load Miss with Instruction Overlap Timing 9-35
9-24 Load Miss with Data Streaming Timing 9-36
9-25 Store Timing 9-37
9-26 Write-Back Arbitration Timing 9-38
9-27 Load/Store with Extended Operands Timing 9-39
9-28 I/O Serialization Timing 9-40
9-29 Touch Load Operation Timing 9-41
9-30 Floating-Point Add and Multiply Timing 9-43
9-31 Divide Timing 9-44
9-32 Branch Delay Slot 9-46
9-33 The Target Instruction Cache (TIC) 9-47
9-34 Effect of the TIC When Delayed Branching Is Used 9-49
9-35 Effect of the TIC When Nondelayed Branching Is Used 9-50
9-36 Unpredicted Branch Not Taken Timing 9-54
9-37 Unpredicted Branch Taken with TIC Miss Timing 9-55
9-38 Unpredicted Delayed Branch Taken with TIC Miss Timing 9-56
9-39 Unpredicted Branch Taken with TIC Hit Timing 9-57
9-40 Unpredicted Delayed Branches Taken with TIC Hit Timing 9-58
9-41 Branch Prediction Effect Timing 9-60
9-42 Predicted Branch Taken Timing 9-61
9-43 Predicted Branch Not Taken Timing 9-62
9-44 Long Latency with Misprediction Timing 9-63
9-45 Example Graphics Pipelines 9-64
9-46 Example Matrix Multiplication Code Sequence 9-66
9-47 Instruction Stall Due to Write-Back Arbitration 9-70
9-48 Example of the MC88100 Technique of Overlapping

Latencies with Useful Work 9-70
9-49 Example of the MC88100 Technique of Grouping Like Instructions 9-72
9-50 Interdependency Resolution Hardware Rules 9-74
9-51 Example Source Code Which Has Been Converted

into Assembly Language 9-75

MOTOROLA MC88110 USER'S MANUAL xxi

Figure
Number

LIST OF ILLUSTRATIONS (Continued)

Title
Page

Number

9-52 First Pass Loop Unrolling 9-77
9-53 Unrolled Loop with Scheduling 9-78

10-1. Instruction Description Format 10-1

11-1 MC8811 0 Pinout 11-6
11-2 Memory Update Policy Selection 11-19
11-3 Cache Snoop Operation Flow 11-22
11-4 Initial State of System 11-26
11-5 CPU2 Load, Data Cache Miss 11-26
11-6 CPU 1 Load, Data Cache Miss 11-27
11-7 CPU2 Store, Data Cache Hit 11-27
11-8 CPU1 Load, Cache Miss, Line Read Retried 11-28
11-9 CPU2 Line Copyback 11-28
11-1 0 Completion of CPU1 Load, Cache Miss 11-29
11-11 Data Cache in Write-Back Mode State Diagram (Four 8tate) 11-31
11-12 Data Cache in Write-Through Mode State Diagram (Four State) 11-31
11-13 State Diagram for Data Cache in the Three-State Model. 11-32
11-14 Bus Arbitration Example Timing 11-35
11-15 Data Bus Arbitration Example Timing 11-37
11-1 6 Bus Parking 11 -38
11-1 7 Address Bus Contention 11 -39
11-18 Split Bus Transactions Using AACK (One-Level) 11-40
11-19 Split Bus (Full) Transactions 11-41
11-20 Byte Strobe Generation 11-45
11-21 Data Multiplexing 11-46
11-22 Single-Beat Transaction Timing Example 11-47
11-23 Single-Beat Read Transaction Flow 11-49
11-24 Single-Beat Read Transaction Timing 11-50
11-25 Single-Beat Write Transaction Flow 11-51
11-26 Single-Beat Write Transaction Timing 11-52
11-27 Single-Beat Read, Single-Beat Write,

and Invalidate Transactions Timing 11-53
11-28 xmem Transaction Timing-Unparked Case 11-55
11-29 xmem Transaction Timing-Parked Case 11-56
11-30 Critical-Word-First Operation Example 11-58
11-31 General Burst Transaction Timing 11-59
11-32 Burst Transaction with Wait Cycles 11-61
11-33 Burst Read (Cache Line Fill) Transaction Flow 11-64
11-34 Burst Write Transaction Flow 11-66
11-35 Normal Transaction Terminations with TA 11-71
11-36 Normal Termination of a Single-Beat Transaction with PTA and TA 11-73

xxii MC88110 USER'S' MANUAL MOTOROLA

Figure
Number

LIST OF ILLUSTRATIONS (C·oncluded)

Title
Page

Number

11-37 Normal Termination of a Burst Transaction with PTA and TA 11-74
11-38 Single-Beat Transfer Retry Termination 11-76
11-39 Transfer Retry Termination during Beat 0 of a Burst Transaction 11-77
11-40 Transfer Retry Termination after Beat 0 of a Burst Transaction 11-78
11-41 Transfer Error Termination 11-79
11-42 Transfer Error Termination during Beat 1 of Burst Transaction 11-80
11-43 Snoop Hit/Miss Indication (SSTAT1-SSTATO) 11-82
11-44 Snoop Status Negation Timing 11-83
11-45 ARTRY Qualification with AACK 11-84
11-46 BR Blocking Protocol. 11-84
11-47 Snoop Miss Transactions 11-86
11-48 Snoop Hit Using ARTRY-No Split Bus 11-88
11-49 Split Bus (One-Level) Snoop Hit with ARTRY 11-90
11-50 Split Bus (Full) Snoop Hit with ARTRY 11-92
11-51 Snoop Collision Detection 11-94
11-52 Hardware Table Search Operation Timing 11-97
11-53 Hardware Table Search with Indirection 11-98
11-54 Hardware Table Search with TRTRY 11-1 00
11-55 Hardware Table Search with Snoop Copyback 11-102
11-56 Initial Power-On Reset Timing 11-104
11-57 Normal Reset Timing 11-1 05
11-58 IEEE 1149.1 Test Logic Block Diagram 11-107
11-59 Instruction Register Implementation 11-108
11-60 Input Signal Cell (I.Pin) 11-11 a
11-61 Active High Output Control Cell (IO.CtI1) 11-11 a
11-62 Bi-Directional Data Cell (IO.Cell) 11-111
11-63 Bi-Directional Cell Arrangement 11-111
11-64 Bypass Register 11-112

MOTOROLA MC88110 USER'S MANUAL xxiii

Table
Number

LIST OF TABLES

Title
Page

Number

2-1 General Control Registers 2-6
2-2 Floating-Point Control Registers 2-11

3-1 Instruction Description Notations 3-23
3-2 Logical Instructions 3-26
3-3 Integer Arithmetic Instructions 3-27
3-4 Bit-Field Instructions 3-28
3-5 Floating-Point Instructions 3-29
3-6 Graphics Instructions 3-30
3-7 Load/Store/Exchange Instructions 3-31
3-8 Flow Control Instructions 3-32

4-1 Biased Exponent Value Summary 4-3
4-2 Recognized Floating-Point Number Summary - 4-3
4-3 Summary of Results Generated by MC88110 4-4
4-4 Rounding Modes 4-8
4-5 Exceptions Caused by Floating-Point Instructions 4-11
4-6 Results for Reserved Operand Exception in TCFP Mode 4-27

5-1 Graphics Instructions 5-2
5-2 8-Bit Saturation Examples 5-9
5-3 pcmp Result String 5-20

6-1 ICMD Command Codes 6-36
6-2 Instruction MMU BATC Block Size Selection Settings 6-37
6-3 DCMD Command Codes 6-39
6-4 Data MMU BATC Block Size Selection Settings 6-40
6-5 Clock Cycles for Data Cache Flush/Invalidate Commands 6-44

7-1 Exception Vectors 7-4
7-2 Exceptions Caused by Floating-Point Instructions 7-20

8-1 MMU Exceptions Summary 8-8
8-2 MMU/Cache Fault/Exception Mapping 8-9
8-3 Instruction MMU/Cache Control Register Summary 8-1 0
8-4 Data MMU/Cache Control Register Summary 8-11
8-5 Address Mappings for Address Translation Modes 8-12

xxiv MC88110 USER'S MANUAL MOTOROLA

Table
Number

LIST OF TABLES (Continued)

Title
Page

Number

8-6 BATC LBA Bit Definition 8-16
8-7 BATC PBA Bit Definition 8-17
8-8 Block Size Mask Bits in ICTL and DCTL 8-19
8-9 Table Search Fault Saved State Summary 8-38
8-10 Hardware Table Search Operation Timing 8-44
8-11 UsedNalid Bit Interpretations 8-44
8-12 ModifiedlWrite Protect Bit Interpretations 8-45
8-13 Example Address Mask Bits and Corresponding LBA Bits 8-50
8-14 Saved State for All MMU/Cache Faults 8-52
8-15 ATC Probe Command Codes 8-54
8-16 ICMD Command Codes 8-57
8-17 IMMU BATC Block Size Selection Settings 8-58
8-18 IPAR Contents for MMU/Cache Faults 8-64
8-19 DCMD Command Codes 8-65
8-20 DMMU BATe Block Size Selection Settings 8-66
8-21 DPAR Contents for MMU/Cache Faults 8-73
8-22 MC88110 MMU and MC88200 MMU Differences 8-74

9-1 Integer, Logical, and Bit-Field Execution Timings in Clock Cycles 9-25
9-2 Data Unit Execution Timings in Clock Cycles 9-27
9-3 Store-Through Format for 5t Instructions 9-28
9-4 Floating-Point Execution Timings in Clock Cycles 9-42
9-5 Flow Control Instruction Execution Penalties 9-45
9-6 Penalties Incurred by Branch Instructions When the Branch Is Taken 9-50
9-7 Branch Predictions for Conditional Branch Instructions 9-51
9-8 Graphics Instruction Execution Timings in Clock Cycles 9-64

10-1 Logical Instructions 10-93
10-2 Integer Arithmetic Instructions 10-94
10-3 Floating-Point Instructions 10-96
10-4 Graphics Instructions 10-97
10-5 Bit-Field Instructions 10-98
10-6 Load/Store/Exchange Instructions 10-99
10-7 Flow Control Instructions 10-100
10-8 Instruction Numeric Listing 10-101

11-1 Single-Beat Transaction Overview 11-4
11-2 Burst Transaction Overview 11-5
11-3 MC88110 Signal Summary 11-7
11-4 Data Bus Byte Lanes 11 -9
11-5 Data Byte Parity Signals , 11-9
11-6 Transfer Size Sig nal Encodings 11-11

MOTOROLA MC88110 USER'S MANUAL xxv

Table
Number

LIST OF TABLES (Concluded)

Title
Page

Number

11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23

A-1

Transfer Code Signal Encodings 11-11
Cache Line Signal 11 -1 2
Snoop Status Signals ~ 11-14
PSTAT2-PSTATO Functionality 11-16
Bus Arbitration Signals 11-33
Transfer Attribute Signal Summary 11-42
Memory Transfer Size and Type 11-43
Data Bus Requirements for Read and Write Cycles 11-44
Single-Beat Transaction Transfer Attribute Signal States 11-48
Burst Transaction Types and First Double Word Transferred 11-62
Burst Transaction Transfer Attribute Signal States 11-63
Back-to-Back Transfer Timing 11-69
Transaction Termination Encodings 11-69
Snoop Control Signal Summary 11-81
MC88110 Actions for Snoop Hits 11-81
Transfer Attribute Signals during Table Search 11-96
Instruction Register Encodings 11-1 09

Bit Scan Bit Definition A-1

xxvi MC88110 USER'S MANUAL MOTOROLA

SECTION 1
OVERVIEW

The MC8811 a is the second implementation of the 88000 family of reduced instruction
set computer (RISC) microprocessors. The MC88110 is a Symmetric Superscalar™
machine capable of issuing and retiring two instructions per clock without any special
alignment, ordering, or type restrictions on the instruction stream. Instructions are issued
to multiple execution units, execute in parallel, and can complete out of order, with the
machine automatically keeping results in the correct program sequence. This symmetric
superscalar design allows sustained performance to approach the peak performance
capability.

The MC8811 a uses dual instruction issue and simple instructions with extremely rapid
execution times to yield maximum efficiency and throughput for 88000 systems.
Instructions either execute in one clock cycle, or effective one clock cycle execution is
achieved through internal pipelining. Ten independent execution units communicate
with a general register file and an extended register file through multiple 80-bit internal
buses. Each of the register files has sufficient bandwidth to supply four operands and
receive two results per clock cycle. Each of the pipelined execution units, including those
that execute floating-point and data movement instructions, can accept a new instruction
and retire a previous instruction on every clock cycle.

In a single chip implementation, the MC88110 integrates the central processing unit
(CPU), floating-point unit (FPU), graphics processing unit (GPU), virtual memory address
translation, instruction cache, and data cache.

The CPU contains two arithmetic logic units (ALUs) that allow two integer instructions to
issue and execute in each clock cycle. The multiply and floating-point add execution
units are fully pipelined and provide the same high performance for single-, double-, and
double-extended-precision floating-point operations.

The graphics processing unit provides dedicated hardware to allow direct manipulation
of pixel-oriented data types. This ability, combined with exceptional floating-point
performance and high data throughput, allows the MC88110 to provide high
performance three-dimensional (3D) graphics capability, including shading, Z-buffering,
and compositing.

Symmetric Superscalar is a trademark of Motorola, Inc.

II

MOTOROLA MC88110 USER'S MANUAL 1-1

•
The MC88110 also includes two on-chip 8K-byte caches and two on-chip memory
management units (MMUs): one cache and MMU for instructions and one cache and
MMU for data. Additionally, on-chip logic maintains data cache coherency in
multiprocessor applications.

The MC8811 0 maintains compatibility with MC88100 user application software. Also, a
full line of highly optimizing compilers, operating systems, application programs, and
development tools has been developed for the 88000 family.

This section provides an overview of the MC88110, including a feature list and an
overview of the 88000 family. In addition, there is a block diagram of the MC8811 0, a
description of each execution unit, the MC8811 0 execution model, and a brief summary
of the instruction set. Instruction mnemonics used in this section are defined in detail in
Section 10 Instruction Set.

1.1 FEATURE LIST
The major features of the MC8811 0 are as follows:

• Symmetric Superscalar Design Which Issues Two Instructions Per Clock

• Ten Independent Execution Units and Two Eight Ported Register Files:

-Superscalar Instruction Unit

-80-Bit Integer, Floating-Point, and Graphics Multiply Execution Unit

-80-Bit Integer and Floating-Point Divide Execution Unit

-80-Bit Extended-Precision Floating-Point Add Execution Unit

-Two 64-Bit 3D Graphics Execution Units

-Two 32-Bit Integer Arithmetic Logic Execution Units

-32-Bit Bit-Field Execution Unit

-Data Unit with Load Buffer and Store Reservation Station

-Thirty-Two 32-Bit General Registers for Operand Storage

-Thirty-Two 80-Bit Extended Registers for Additional Floating-Point Operand
Storage

• High Performance Instruction Execution

-Single-Clock Integer, Logical, Bit-Field, and Graphics Operations

-Single-, Double-, and Double-Extended-Precision IEEE 754 Floating-Point
Compatibility (Up to Two Operations Executed per Clock Cycle)

-Pipelined Load and Store Operations

1-2 MC88110 USER'S MANUAL MOTOROLA

• High Performance Instruction and Data Throughput

-Internal Harvard Architecture II
-Separate 8K-byte Instruction and Data Caches: 2-Way Set-Associative, Physically

Addressed

-80-Bit Internal Data Paths

-32-Entry Branch Target Instruction Cache for Branch Acceleration

-Run-Time Reordering of Loads and Stores

-Speculative Instruction Execution

-Register Scoreboard Managing Data Dependencies in Hardware

-Decoupled Data Cache Accesses

-Data Cache Write-Through and Write-Back Operation

• Extensible Architecture Facility Through Special Function Units

• Facilities for Enhanced System Performance

-64-Bit Split-Transaction External Data Bus with Burst Transfers

-Hardware Enforced Data Cache Coherency (Bus Snooping) for Multiprocessor
Applications

-Critical-Word-First Burst Cache Line Fills with Instruction and Data Streaming

-Instruction and Data Address Translation Caches with Page and Block Entries

-High-Speed Interrupt Processing with Minimal Interrupt Latency

• System Software Flexibility

-Hardware or Software Address Translation Cache Refill

-Data Address Breakpoints for Software Debugging

-Selectable Big-Endian or Little-Endian Byte Ordering

• JTAG Boundary Scan for In-System Testability

1.2 88000 FAMILY OVERVIEW

The following paragraphs give an overview of the features which are common to all
members of the 88000 family, including the register-ta-register architecture, the
simplified addressing modes, the instruction formats, the special function units (SFUs),
and the optimizing software.

1.2.1 Register-te-Register Architecture

The 88000. family defines register-to-register operations for all computational
instructions. Source operands for these instructions are accessed from the on-chip
registers or are provided as immediate values embedded in the instruction opcode. The
computational instruction results are stored in separate on-chip registers, allowing
source operand registers to be reused in subsequent instructions. Data is transferred'
between memory and registers with load and store instructions only.

MOTOROLA MC88110 USER'S MANUAL 1-3

•
1.2.2 Simplified Addressing Modes

The 88000 family has simplified addressing modes for memory and register accesses.
Address calculations are simple, efficient, and execute quickly. All computational
instructions are implemented as register-to-register or register-plus-immediate-value
instructions which eliminates memory access delays in these instructions.

1.2.3 Instruction Formats
All 88000 instructions are implemented as single-word (32-bit) opcodes. Formats are
consistent across all instruction types, allowing for efficient decoding in parallel with
operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.2.4 Levels of Privilege

The 88000 family has two instruction execution modes: supervisor mode and user mode.
The supervisor mode is the higher privilege level. In supervisor mode, memory and
control register access is unrestricted. The supervisor mode is typically used by
operating systems and other system-level resources. The user mode is the lower
privilege level. In user mode, resource access is limited to the user memory space,
general registers, extended registers, and some floating-point control registers.
Application software is typically executed in user mode.

1.2.5 Special Function Units

The 88000 family provides the flexibility for extensions, as technology and applications
evolve, through the definition of special function units (SFUs) within the overall
instruction mapping. An SFU is defined as a set of instructions, with a common opcode
field, which provides additional functionality to the base architecture. The architecture
defines a base instruction set and seven reserved sets of opcodes to support up to
seven SFUs. These SFUs mayor may not be included in an implementation of the
architecture. Any SFU can be added to, or removed from, a given implementation of the
88000 family with no impact on the base architecture.

In addition to the base instruction set, the MC8811 0 implements two SFUs: the floating
point unit, which is SFU1, and the graphics processing unit, which is SFU2. Figure 1-1
illustrates how the concept of SFUs is integrated with the MC8811 0 hardware. In this
diagram, each of the boxes represent hardware on the MC88110. The top box,
representing the instruction fetch apd decode circuitry, is part of the instruction unit. The
three ovals are a conceptual representation of the base instruction set and the two SFU
instruction sets. When an SFU is enabled, the instructions in that SFU's instruction set
can be issued.

1-4 MC88110 USER'S MANUAL MOTOROLA

INSTRUCTION FETCH
AND DECODE

EXECUTION UNITS

•

GENERAL
REGISTER

FILE

EXTENDED
REGISTER

FILE

Figure 1-1. SFU Conceptual Diagram

The instruction unit fetches, decodes, and issues each instruction to the appropriate
execution unit. The instructions fall into one of three categories: those in the base
instruction set, SFU1, or SFU2. The execution units receive source data from the register
files or from the instruction opcode and perform the specified operation. When the results
are ready, they are written to the appropriate register file.

Figure 1-2 shows whi·ch execution units are used by each of the instruction sets. The
base instruction set uses the instruction, data, integer, bit-field, divide, and multiply
execution units. The SFU1 (floating-point) instruction set uses the divide, multiply, and
floating-point add execution units. The SFU2 (graphics) instruction set uses the multiply,
pixel add, and pixel pack execution units. Note that the general register file can provide
data for and receive data from all ten of the execution units and all three of the instruction
sets. The extended register file can only be accessed by the SFU1 instruction set and
those instructions in the base instruction set that transfer data to and from memory.

MOTOROLA MC88110 USER'S MANUAL 1-5

..

Figure 1-2. SFU Hardw'are Use

1.2.6 Optimizing Software

Optimizing compilers, linkers, and operating systems, which have been designed in
conjunction with the design of the MC88110, are essential contributors to its
performance. This software performs optimizations based on the multiple, independent
execution units of the MC8811 0; instructions are scheduled to maximize parallelism and
instruction throughput. This software also makes efficient use of the MC8811 0 instruction
set and register model.

A register usage convention has been established that supports the cross-linking of
procedures from various compilers and languages. With this convention, compilers and
linkers allocate the general registers in a manner that minimizes data movement to and
from memory, even during procedure calls.

1.3 MC88110 PROCESSOR OVERVIEW

The MC88110 contains ten execution units (see Figure 1-3) which operate
independently and concurrently. The integer, floating-point, graphics, multiply, and
divide execution units perform computational operations. The data unit performs the data
memory accesses, while the instruction unit performs instruction fetches and many of the
control functions for the MC8811 O.

The integer execution units include two identical ALUs, which perform 32-bit arithmetic
and logic operations, and one bit-field execution unit, which performs all bit-field
operations. The multiply execution unit handles all integer, floating-point, and graphics
multiply instructions. The divide execution unit handles integer and floating-point divide
instructions. The floating-point add execution unit handles the remaining floating-point
arithmetic instructions. The graphics execution units include a pixel adder, which
performs the remaining graphics arithmetic instructions, and the pixel packer, which
performs pixel pack and unpack functions.

In addition to the execution units, the MC8811 0 contains a general register file and an
extended register file. The MC8811 0 also has six 80-bit internal buses that are used for
passing operands between the register files and the different execution units: four of the

1-6 MC88110 USER'S MANUAL MOTOROLA

buses provide the execution units with source data from the register files or the
instruction encoding, and two buses return the results from the execution units to the
register files.

To speed up memory accesses and instruction fetching, the MC8811 0 has one cache
and MMU for data accesses, and one cache and MMU for instruction fetches. The data
cache contains duplicate address tags to facilitate snooping in multiprocessor
environments. There is also a target instruction cache (TIC), which contains the target
instructions for recently taken branches.

The bus interface unit arbitrates between external instruction and data accesses and
controls the external bus.

INTEGER INTEGER BIT-FIELD MULTIPLY DIVIDE FLOATING PIXEL ADD PIXEL PACK
EXECUTION EXECUTION EXECUTION EXECUTION EXECUTION POINT EXECUTION EXECUTION

UNIT UNIT UNIT UNIT UNIT ADD UNIT UNIT UNIT

t t I t I t I t I t I t I t I• , ,. ,. • , , • 'f

~ I ~ I t t
DATA

GENERAL EXTENDED TARGET SUPERSCALAR

UNIT
REGISTER REGISTER INSTRUCTION~ INSTRUCTION

FILE FILE CACHE UNIT

~ ~ t ,~

TAGS
8KB 8KB

MMU - - - - TAGS MMU
SNOOP DATA CACHE INSTRUCTION CACHE
TAGS

I t J')~ I
I ~l '{

I
BUS INTERFACE UNIT

I
I EXTERNALBUS~TERFACE I

W

~

64-BIT PIPELINED, BURST-MODE, SPLIT-TRANSACTION BUS

Figure 1-3. MC88110 Block Diag.ram

•

MOTOROLA MC88110 USER'S MANUAL 1-7

•
1.3.1 Internal Buses

The MCaa11 0 has two source 1 buses, two source 2 buses and two destination buses.
These aD-bit buses perform all internal data transfers between the register files and the
execution units. The source 1 and source 2 buses transfer source operands to the
execution units. All source data originates from the register files or from 16-bit immediate
values embedded in instructions. The destination buses transfer data from the execution
units to the register files.

Arbitration for the internal buses is performed by the sequencer, which is a part of the
instruction unit. The contents of the source registers for an instruction are gated onto the
source buses under control of the sequencer. When an execution unit completes an
instruction, it requests a slot on a destination bus. Since there are only two destination
buses and more than two instructions can complete at any time, the sequencer
prioritizes the data transfers on the destination buses.

1.3.2 General Register File

The general register file (GRF) consists of thirty-two 32-bit registers which are
designated as rO through r31. The rO register always contains the constant zero and
can be used by instructions requiring the constant zero as an operand. The GRF can
provide operands for all computational instructions, can serve as the data source or
destination for load and store instructions, and can provide addresses for branch and
memory-access instructions.

The GRF has six output ports and two input ports. Four of the six output ports allow
source operands to be simultaneously placed on the two source 1 and two source 2
buses so that two instructions can be executed per clock. The last two output ports are
used to write the contents of the destination registers for the current instructions into the
history buffer. (For more information on the history buffer, see Section 7 Exceptions.)
The input ports are used to move the results from completed instructions from the two
destination buses into destination registers.

1.3.3 Extended Register File

The extended register file (XRF) consists of thirty-two aD-bit extended registers which are
designated as xO through x31. The xO register always contains the constant zero and
can be used by instructions requiring the constant zero as an operand. The remaining
registers in the XRF can contain data objects of any of the three defined floating-point
data formats: single-, double-, or double-extended-precision. The extended registers can
provide operands for all floating-point instructions and can serve as the data source or
destination for load and store instructions.

The XRF has six output ports and two input ports. Four of the six output ports allow
source operands to be simultaneously placed on the two source 1 and two source 2
buses so that two instructions can be executed per clock. The last two output ports are
used to write the contents of the destination registers for the current instructions into the
history buffer. (For more information on the history buffer, see Section 7 Exceptions.)

1-8 MC88110 USER'S MANUAL MOTOROLA

The input ports are used to move the results from completed instructions from the two
destination buses into destination registers.

1.3.4 Integer Execution Units

There are three integer execution units: two identical ALUs and one bit-field unit. Each of
the integer execution units completes instruction execution in one clock cycle. Since
there are two identical ALUs, two ALU instructions can be issued simultaneo,usly;
therefore, arithmetic and logical instructions are never stalled due to the execution units
being unavailable. Integer multiply and divide are multi-cycle instructions and are
executed by the multiply and divide execution units, not by the ALUs.

1.3.5 Multiply and Divide Execution Units

The multiply unit executes all integer, floating-point, and graphics multiplies; the divide
unit executes all integer and floating-point divides. The multiply unit is implemented as a
three-stage pipeline; therefore, since all multiplies are three-cycle instructions, one
multiply can be issued in each clock cycle. The divide unit is an iterative multi-cycle
execution unit, so only one divide instruction can be executing at any time.

1.3.6 Floating-Point Function Unit

The FPU, implemented as SFU1, provides high performance mixed-mode operations for
single-, double-, and double-extended-precision floating-point data. The FPU operations
are executed in either the multiply, divide, or floating-point add execution units. Floating
point operands can be stored in either the general register file or the extended register
file. The MC8811 0 also implements three control registers to support the FPU.

The floating-point add execution unit performs the integer/floating-point conversion
instructions and all floating-point arithmetic instructions except the multiply and divide.
The floating-point add unit is implemented as a three-stage pipeline; therefore, since
floating-point adds are three-cycle instructions, one floating-point add can be issued in
each clock cycle. The floating-point multiply and divide instructions are executed by the
multiply and divide execution units.

The three control registers associated with the FPU are the floating-point exception
cause register (FPECR), the floating-point status register (FPSR), and the floating-point
control register (FPCR). Information about the cause of floating-point exceptions is
recorded in the FPECR. This register is privileged and can only be accessed by
supervisor code. The FPSR and FPCR contain information on IEEE exception conditions
(divide by zero, overflow, etc.) and control the floating-point rounding mode. The FPSR
and FPCR are not privileged and can be accessed by either user or supervisor code.
The FPU control registers are described in detail in Section 4 Floating-Point
Implementation.

•

MOTOROLA MC88110 USER'S MANUAL 1-9

•
1.3.7 Graphics Processing Function Unit

The process of rendering realistic animated 3D images in real time is computationally
intensive. The process has five major steps: 1) viewpoint transformation, 2) lighting, 3)
raster conversion, 4) image processing, and 5) display. Because of its exceptional
floating-point performance, the MC88110 is capable of rapidly performing viewpoint
transformation and lighting calculations on complex images. The flexible computational
instructions and high data throughput of the MC88110 allow efficient coding of the bit
block transfer algorithm (bitblt) and other algorithms necessary to achieve good display
system performance. To achieve good interactive performance, raster conversion, and
image processing phases requires hardware support beyond that found in most
conventional microprocessors. The graphics processing function unit (GPU),
implemented as SFU2, is targeted at improving the performance of these phases of the
rendering process.

The MC8811 0 includes two independent execution units to support the GPU: the pixel
add execution unit and the pixel pack execution unit. Graphics operands are made up of
multiple pixels of varying length, which are packed into 64-bit fields and stored in
register pairs in the general register file. The graphics instructions process the individual
fields within the 64-bit fields in parallel, avoiding the need to separate them and operate
on them individually. The graphics multiply instruction is executed by the multiply
execution unit.

1.3.8 Instruction Unit/Sequencer

The MC8811 0 contains an instruction unit/sequencer which provides centralized control
of data flow among the execution units and the register files. The instruction
unit/sequencer enforces data interlocks, directs data from the register files onto and off of
the buses, maintains a state history of the processor's actions, and performs the flow
control instructions. The following paragraphs describe the instruction unit and the
sequencer.

1.3.8.1 INSTRUCTION UNIT. The instruction unit fetches instruction pairs from the
instruction cache, performs the first steps of instruction decode, and provides instructions
to the appropriate execution units via encoded internal control signals. The instruction
unit also executes flow control instructions and performs other related tasks such as
exception processing. In addition, the register scoreboard and the general control
registers are contained in the instruction unit.

1.3.8.1.1 Program Flow. The instruction unit fetches instructions from the cache as
dictated by program flow. Program flow includes sequential accesses, jump and branch
instructions, and exception vectoring.

The instruction unit executes all flow control instructions. It calculates the return pointer
for jump to subroutine (jsr) and branch to subroutine (bsr) instructions and saves the
return pointer in register one (r1) of the general register file. The return pointer is either
the address of the first instruction after the jsr or bsr instruction, or the address of the
second instruction after the jsr.n or bsr.n instruction (.n indicates delayed branching).

1-10 MC88110 USER'S MANUAL MOTOROLA

1.3.8.1.2 Exception Processing. The instruction unit includes two features which
are used for exception processing: the vector base register (VBR) and the history buffer.
The VBR points to a memory page containing all of the exception vectors. When an
exception occurs, the exception target address is computed using the value in the VBR.

The history buffer is a first-in-first-out (FIFO) queue which records relevant machine state
information at the time each instruction is issued. Each instruction remains in the history
buffer until it completes execution and all instructions which were issued before it
complete execution. When an exception occurs, the effects of any instructions which
completed out of order before the faulting instruction are eliminated using the
information from the history buffer. Any instructions issued before the faulting instruction
are allowed to complete execution before exception processing begins.

1.3.8.1.3 Register Scoreboard. Instructions in a code sequence begin execution
sequentially but can complete out of order. To avoid register conflicts between
instructions which are executed out of order, the instruction unit contains a register
scoreboard for the general register file and the extended register file. The register
scoreboard keeps track of which registers are unavailable and which are ready for use.

Every register except registers rO and xO has a dedicated bit in the register scoreboard.
When an instruction is issued that takes longer than one clock cycle to execute, the
scoreboard bit corresponding to the destination register is set. When the instruction
finishes execution, the register becomes available, and the scoreboard bit is cleared.

When an instruction requires the contents of a register and/or needs to use a register as
a destination, the appropriate scoreboard bit or bits are checked to determine if the
register(s) are available. If the required registers for an instruction are flagged as in use
in the register scoreboard (Le., one of the required registers is the destination register for
a previous instruction which is still executing), execution of the instruction is delayed
until the required registers become available. In this case, the appropriate scoreboard
bits are checked by the instruction unit on each clock cycle until all the registers are
available. If the second instruction of an issue pair requires a register which is specified
as the destination for the first instruction of that issue pair, then execution of the second
instruction is delayed until the first instruction completes execution.

1.3.8.1.4 General Control Registers. The instruction unit also contains the general
control registers which include supervisor-only storage registers, a processor
identification register (PIO), and a processor status register (PSR). The function of the
storage registers is programmer defined. The general control registers also include
several exception-time registers and registers for the control of the data and instruction
caches and MMUs.

1.3.8.2 SEQUENCER. The sequencer performs register write-back arbitration and
exception arbitration, and generates control signals for the instruction unit and the
internal buses.

When an execution unit has a result to write to a register, the execution unit requests the.
write-back arbiter to grant a slot on the destination bus. If an interrupt is pending, the

•

MOTOROLA MC88110 USER'S MANUAL 1-11

•
write-back arbiter prohibits register write-back grants except for memory-access results.
If no interrupt is pending, the write-back arbiter generates a control signal that gates the
data onto a destination bus and into the selected register. If three or more execution
units request a slot, the write-back arbiter grants the two available write-back slots
according to a defined priority scheme. In this scheme, one-cycle instructions have
priority over instructions from multi-stage pipeline execution units.

If data on the destination bus is needed immediately by another instruction, the
sequencer sends a control signal which causes the data to be forwarded directly from
the destination bus onto the selected source bus in addition to being written into the
appropriate register. This feature is called feed-forwarding.

The exception arbiter controls exception recognition and resolves recognition of mUltiple
exceptions according to the priority of the exceptions. Interrupts have priority over
internally generated exceptions (except for data access exceptions); however, there is
no priority associated with internally generated exceptions, so they are handled in order.
Exceptions are described fully in Section 7 Exceptions.

1.3.9 Instruction Cache
The MC8811 0 has an 8K-byte, 2-way set associative, physically addressed instruction
cache. The instruction cache is 2-way set associative to maximize the hit rate, and uses
physical address tags so the cache does not need to be flushed on a context switch.
Instruction cache coherency is maintained by software and supported by a fast hardware
invalidation capability.

The instruction cache is configured as 128 sets which contain two lines each. Each line
contains eight 32-bit words, an address tag, and a valid bit. A block diagram of the
instruction cache organization is shown in Figure 1-4.

LINE 0
t--------1

LINE 1

••

,,../-<=-------- 8WORDS/LINE ---------;:>.....1

Figure 1-4. Instruction Cache Organization

Each instruction cache line contains eight contiguous words from memory which are
loaded from an 8-word boundary (Le., bits A4-AO of the logical addresses are zero);
thus, a cache line will never cross a page boundary. All bus operations that load
instructions into the cache from memory are performed on a line basis (Le., an entire line

1-12 MC88110 USER'S MANUAL MOTOROLA

is filled). New lines are allocated into empty cache lines if any are available. A
pseudorandom replacement algorithm is used to select a cache line when no empty
lines are available.

Bus transactions that load instructions into the cache always begin with the adqress of
the missed word, regardless of the word's location within a cache line. The missed word
is transferred to the instruction unit as soon as it is received from the bus so that
instruction issue can be resumed as quickly as possible.

On each clock cycle, the instruction unit provides the cache with the address of the first
instruction of the next instruction pair to be executed. In the case of a cache hit, the
instruction cache returns both the referenced instruction and the one following it; thus,
the instruction unit is provided with two instructions in each clock cycle as long as a
cache miss does not occur.

1.3.10 Target Instruction Cache

The MC8811 0 has a TIC, which is a fully associative 32-entry logically addressed cache.
Each entry in the TIC contains the first two instructions of a branch target instruction
stream, a 31-bit logical address tag, and a valid bit. The 31-bit logical address tag holds
a supervisor/user bit and the upper 30 bits of the address of the branch instruction.

When a branch instruction occurs, the TIC is accessed (using the address of the branch)
in parallel with the decode of the branch instruction. If there is a TIC hit, the two
instructions corresponding to the branch instruction are sent from the TIC to the
instruction unit. The instruction unit can then issue those instructions if the branch is
taken, eliminating much of the delay associated with changes in instruction flow. The
details of the operation of the TIC are discussed in Section 9 Instruction Timing
and Code Scheduling Considerations.

1.3.11 Instruction MMU

The instruction MMU provides two 4G-byte logical address spaces: one for supervisor
code and one for user code. The MMU enforces access privileges for these spaces on
block and page levels. Used and modified status is maintained by software for each
page to assist implementation of a demand-paged virtual memory system.

Memory management performance is maximized by two instruction address translation
caches (ATCs) that provide address translation in parallel with no time penalty. The
ATCs consist of the page address translation cache (PATC) and the block address
translation cache (BATe). The PATC is a 32~entry, fully-associative cache which
contains translations for 4K-byte memory pages. The PATC is automatically maintained
by MC8811 0 hardware or can be maintained by system software. The BATe is an 8
entry, fully-associative cache that contains translations for block sizes ranging from
512K-byte to 64M-byte. The BATC entries are managed by system software.

•

MOTOROLA MC88110 USER'S MANUAL 1-13

•
1.3.12 Data Unit

The data unit interfaces with the data cache and MMU and executes instructions that
access data memory. The data unit contains a dedicated calculation unit for address
computation. Addresses are formed by adding the source 1 register operand specified
by the instruction to either a source 2 register operand or a 16-bit immediate value
embedded in the instruction. This address is sent to the data cache, which performs the
memory access.

Memory accesses are pipelined in the data unit. The data unit contains a series of load
address buffers and store address/data buffers, which operate as two independent FIFO
queues. These queues are the load buffer and the store reservation station. After being
issued, all load (Id) and store (5t) instructions pass through the appropriate buffer or
reservation station.

The data unit executes the buffered load and store instructions as cache, memory, and
data become available. The data unit always executes Id instructions in program order
with respect to other Id instructions. Likewise, st instructions are executed in program
order with respect to other st instructions. However, Id instructions are allowed to
execute out of order with respect to st instructions. In the event that a st instruction is
stalled in the store reservation station waiting for data from a previous computation,
subsequent Id instructions can bypass the pending st instruction and can have access
to the memory system. To ensure mem.ory consistency, the MC8811 0 compares load
addresses to store addresses and does not allow Id instructions to run ahead of st
instructions for which there is an address match. If necessary, all loads and stores can
be forced to run in strict program sequence by setting a bit in the processor status
register (see Section 2 Programming Model).

1.3.13 Data Cache

The MC8811 0 includes an 8K-byte, 2-way set-associative, physically addressed data
cache. The data cache is 2-way set-associative to maximize the hit rate and uses
physical address tags so the cache does not need to be flushed on a process switch.
The data cache supports both write-through and write-back memory update policies
which are selectable on a page-by-page or block-by-block basis.

The data cache is configured as 128 sets which contain two lines each. Each line
contains eight 32-bit words, an address tag, and status bits. A block diagram of the data
cache organization is shown in the Figure 1'-5.

1-14 MC88110 USER'S MANUAL MOTOROLA

LINE 0
~--~

LINE 1

•• •
..,...;Ic:~----- SWORDS/LINE ---------:»...-11

Figure 1-5. Data Cache Organization

Each data cache line contains eight contiguous words from memory which are loaded
from an 8-word boundary (Le., bits A4-AO of the logical addresses are zero); thus, a
cache line will never cross a page boundary. All bus operations that load data into the
cache from memory are performed on a line basis (Le., an entire line is filled). New lines
are allocated into empty cache lines if any are available. A pseudorandom replacement
algorithm is used to select a cache line when no empty lines are available.

Bus transactions that load data into the cache always begin with the address of the
missed word, regardless of the word's location within a cache line. The missed word is
transferred to the data unit as soon as it is received from the bus so that instruction
execution can be resumed as quickly as possible.

The data cache provides a decou'pling feature to improve cache performance. When the
decoupling feature is enabled, the data unit can continue making cache accesses while
the data cache is waiting to receive data from the bus. These cache accesses are called
decoupled cache accesses. If a decoupled cache access hits in the cache and does not
require an external bus transaction, the access is allowed to complete. If a decoupled
cache access requires an external bus transaction, no further decoupled accesses are
allowed, and the cache access is restarted when the cache is available.

Data cache coherency is automatically maintained by hardware bus snooping. There
are duplicate address tags and dual-ported state bits associated with each line in the
cache to prevent snooping traffic on the bus from interfering with processor operation
and degrading performance.

1.3.14 Data MMU

The data MMU provides two 4G-byte logical address spaces: one for supervisor data
and one for user data. The MMU enforces access privileges for these spaces on block
and page levels. Used and modified status is maintained by software for each page to
assist implementation of a demand-paged virtual memory system.

Memory management performance is increased by two data ATCs that provide address
translation with no time penalty. The ATCs consist of the PATC and the BATe. The PATe
is a 32-entry, fully-associative cache which contains translations for 4K-byte memory
pages. The PATe is automatically maintained by MC88110 hardware or can be-

MOTOROLA MC88110 USER'S MANUAL 1-15

•
maintained by system software. The BATC is an eight-entry, fully-associative cache that
contains translations for block sizes ranging from 512K-byte to 64M-byte. The BATC
entries are managed by system software.

1.3.15 External Bus Overview
The MC8811 0 external bus interface includes a 32-bit address bus, a 64-bit data bus, 48
control and information signals, and 8 test pins (see Figure 1-6). The address of the
instruction or data needed by the processor is driven on the address bus. Similarly, the
requested instruction or data is transferred to the processor on the data bus. The bus
interface control and information signals include the byte parity, transfer attribute,
arbitration, transfer control, snoop control, processor status, and interrupt signals. There
are also eight test pins used to test selected internal circuitry.

ADDRESS 32
TRANSFER CONTROL
SIGNALS

DATA 64
SNOOP CONTROL
SIGNALS

BYTE PARITY
MC8811 0 PROCESSOR STATUS

SIGNALS

TRANSFER ATTRIBUTE
17 INTERRUPT SIGNALS

SIGNALS

ARBITRATION
TEST SIGNALS

SIGNALS

65 73

+5V

Figure 1-6. MC88110 External Bus Interface

The data bus can support transfer sizes of 8-, 16-, 32-, or 64- bits in one bus cycle. Data
transfers occur in either single-beat transactions or four-beat burst transactions. A single
beat transaction is a data transfer of 64 bits or less. Single-beat transactions are caused
by noncached accesses which access memory directly (Le. reads and writes when
caching is disabled, cache inhibited accesses, invalidation cycles, xmem transactions,
writes in write-through/store-through mode, and allocate loads). Burst transactions,
made up of four consecutive two-word transfers, are initiated when an entire line in the
cache is read from or written to memory.

The MC88110 bus supports multiple processors with a built-in cache coherency
mechanism called bus snooping. Bus snooping is a technique whereby all devices on
the bus monitor all transactions to ensure that all local copies of data (in caches) remain
consistent.

The MC88110 supports split bus transactions in which different processors can have
ownership of the address bus and data bus at the same time. This potentially increases

1-16 MC88110 USER'S MANUAL MOTOROLA

system performance by allowing multiple bus transactions to be in progress
simultaneously. The bus also supports pipelining, which allows the address phase of a
transaction to overlap the data phase of other transactions. The complexity of the
pipeline levels is dependent on external circuitry.

1.3.16 System Debugging Features
The MC88110 contains a debug signal, breakpoint registers, and dedicated user
accessible test logic to facilitate the debugging of MC8811 a systems. The debug signal,
when asserted, disables all caches, MMUs, and breakpoints. This forces all instruction
and data accesses to appear on the bus, making it easier to track program flow.

The data MMU contains two data breakpoint registers which can be used by a debugger
program to force an exception to occur when accesses are made to specified logical
addresses. If the data breakpoints are enabled, the MMU compares the logical address
of each access to the 32-bit logical address in each of the breakpoint registers. If there is
a match, then a data access exception is taken. For more information on the breakpoint
registers, see Section 8 Memory Management Units.

The dedicated user-accessible test logic is fully compatible with IEEE Standard 1149.1
1990 ·Standard Test Access Port and Boundary Scan Architecture. The test logic is
implemented using static logic design and is independent of the system logic of the
device. The test logic includes a 16-state controller, two test data registers (the bypass
register and the boundary scan register), and a test access port that consists of five
dedicated signal pins. The boundary scan register links all device signal pins into a
single shift register.

The MC8811 0 test logic provides the capability to perform the following procedures:
1. Boundary scan operations to test circuit board electrical continuity.

2. Bypass the MC8811 0 for a given circuit board test by effectively replacing the test
data register by single cell (the bypass register).

3. Sample the MC8811 0 system pins during operation and transparently shift out the
result through the boundary scan register.

4. Disable the output drive of all input/output pins and output pins during circuit board
testing. The single-bit bypass register is selected when in the output drive disabled
mode.

1.4 EXECUTION MODEL

The following paragraphs briefly describe the register set and some general timing
considerations. This section also includes a listing of the MC8811 0 instruction set.

1.4.1 Register Set

The MC8811 0 has two programming models: one that corresponds to the supervisor
mode of operation and one that corresponds to the user mode of operation. The
programming models incorporate three types of registers that provide data and'

•

MOTOROLA MC88110 USER'S MANUAL 1-17

II
execution information to the execution units. The following list briefly describes the three
types of registers:

1. General Registers (r31-rO)-These registers can contain program data (source
operands and instruction results). All of these registers have read/write access.
Register rO contains the constant zero, and writing to rO has no effect on the
register.

2. Extended Registers (x31-xO)-These registers can contain floating-point data
(source operands and instruction results). All of these registers have read/write
access. Register xO contains the constant zero, and writing to xO has no effect.

3. Control Registers-These registers contain status, execution control, and
exception processing information. Some of these registers have read/write access,
while others are read-only. Most control registers can be accessed only in
supervisor mode.

1.4.2 General Timing Considerations
A superscalar machine is one which can issue multiple instructions concurrently from a
conventional linear instruction stream. The MC8811 0 is a superscalar implementation of
the 88000 architecture in which two instructions are decoded and issued to multiple
execution units during each clock cycle. Any complications due to the superscalar
implementation are transparent to the software.

There are several factors which affect instruction issue timing. These factors include the
following:

• Whether instructions can be prefetched from the instruction cache (a cache hit), or
must be fetched from main memory (a cache miss).

• Whether data dependencies exist which will force an instruction stall while source
data is being generated.

• Whether execution units are available to accept additional instructions.

• Whether the history buffer is full.

Instructions are issued to the execution units in strict program sequence. If the first
instruction in an issue pair cannot be issued, then neither instruction in the pair is issued.
If the first instruction in the pair is issued but the second cannot, then the second
instruction is moved into the vacated first-issue position, and a new instruction is placed
in the second-issue position. If both instructions in the pair are issued, then two new
instructions are fetched from the instruction cache to be issued in the next clock cycle.

When two instructions are considered for issue in the same clock cycle, there are no
restrictions placed on instruction type or address alignment for either instruction in the
issue pair. In other words, instructions in either slot can be from any word-aligned
memory location and can be issued to any execution unit (provided it is available and
there are no data dependencies). This is known as symmetric superscalar instruction
issue.

1-18 MC88110 USER'S MANUAL MOTOROLA

Figure 1-7 illustrates symmetric superscalar instruction issue. In this illustration,
instruction N is not bound to be issued to any particular execution unit. Similarly,
instruction N+1 is free to be issued to any available execution unit. This feature frees the
compiler/programmer from the limitations of specific instruction ordering or alignment.

Figure 1-7. Symmetric Superscalar Instruction Issue

The execution unit pipelines are fully hardware interlocked via a scoreboard
mechanism; therefore, data dependencies automatically delay instruction issue. The
register scoreboard eliminates the need to schedule wasteful no operation (NOP)
instructions into empty pipeline delay slots.

1.4.2.1 SOURCE AND DESTINATION DATA CONSIDERATIONS. If an
instruction attempts to use a source operand which is still being computed by a previous
instruction, a data dependency exists. When a data dependency exists, instruction issue
is stalled until all of the necessary source data is available. The MC8811 0 employs the
register scoreboard as an efficient method for keeping track of when source data is
available for an instruction.

The MC88110 implements several design features to reduce data-dependency
overhead. The first feature, feed forwarding, allows the results from a previous instruction
to be forwarded directly to a waiting instruction while simultaneously being written to the
destination register. The second feature, branch prediction, reduces the delay caused by
a data dependency for a branch instruction. In this case, the branch instruction is issued
to a branch reservation station and instruction execution continues along the predicted
path. Finally, a store instruction can be issued to the store reservation station even if
source data is not yet available. For more information on these features, refer to
Section 9 Instruction Timing and Code Scheduling Considerations.

Since the MC8811 0 allows instructions to complete out of order, there is the potential for
an instruction's result to be overwritten by an instruction which issued earlier but
completed later. To preclude this possibility, the scoreboard bit corresponding to the
destination register is automatically checked as a condition for instruction issue. This
ensures that updates to any given register are always completed in the order specified
by the program and thus no data is ever incorrectly overwritten in the register files.

II

MOTOROLA MC88110 USER'S MANUAL 1-19

•
1.4.2.2 EXECUTION UNIT CONSIDERATIONS. For an instruction to be issued,
the required execution unit must be available to begin execution of the instruction. The
sequencer monitors the availability of all execution units and suspends instruction issue
if the required execution unit is not available. An execution unit may not be available
under the following circumstances:

1. A multi-cycle, nonpipelined unit can have only one instruction in execution at a
time. Such a unit becomes busy when an instruction is issued to it, and it can not
accept another instruction until the previous one completes. The divide unit is the
only such unit on the MC8811 o.

2. An execution unit may become unavailable for additional instructions if its pipeline,
becomes full. This situation may occur if execution takes more clock cycles than the
number of pipeline stages in the unit. This situation can only occur in the data unit.
In addition, if the execution unit can not get access to a write-back slot while
additional instructions continue to fill its pipeline, the pipeline may become full.

3. Execution units can accept only one instruction per clock. Issuing two instructions
to the same unit on the same clock is prohibited.

Figure 1-8 illustrates which instruction pairs can and cannot be issued simultaneously
due tathe one instruction per execution unit per clock restriction. For example, if the first
instruction in an issue pair is an integer arithmetic instruction, then the top row of the grid
in Figure 1-8 shows that any type of instruction can be issued concurrently provided
there are no data dependencies. On the other hand, if the first instruction in an issue pair
were an integer multiply, then the fourth row of the grid in Figure 1-8 shows that another
multiply (integer, graphics, or floating-point shown as the three white boxes on row four)
cannot be issued concurrently. Note that the diagram is symmetric along the diagonal
axis from the upper left to the lower right corner, indicating that this is a symmetric
superscalar design. Note that Figure 1-8 is a condensed diagram which groups like
instructions together. For a complete diagram listing each instruction, refer to Section 9
Instruction Timing and Code Scheduling Considerations.

1-20 MC88110 USER'S MANUAL MOTOROLA

FLOW CONTR<;>L -e branch

{

load
MEMORY

store

{

fpmultiply

FLOATING POINT fp add/sub/cmp

fp divide

{

graph. mult.

GRAPHICS graph. add/sub

graph. pack

INTEGER

a. ~
E :::J

>-
~ :; ; .¥

(,) .a 0

i ~
::::J tD E " as

Ji! >- .c ~ "0 as a.
E ~ Q,) ~ CD Co) '5 '> .c .c .c
~

;:: " C "0 e E "0 is a. Q. a.
j ~

'5 > ! «I .2 CD f! l! as
CD E i5 .a oS! ., .e- .eo .e- a 0) a

arithmetic

logical

blt·fleld

multiply

divide

•

LEGEND:

• CAN BE ISSUED SIMULTANEOUSLY (PROVIDED NO DATA DEPENDENCIES EXIST)

D CANNOT BE ISSUED SIMULTANEOUSLY

Figure 1·8. Simultaneous Instruction Issue Restrictions

1.4.2.3 HISTORY BUFFER. Although the MC88110 issues instructions in strict
sequential order, it is possible for instructions to complete execution out of order. The
MC88110 keeps an internal FIFO queue of all instructions that are executing. This
feature, the history buffer, keeps all details of out-af-order execution internal to the
processor.

At the time of issue, an instruction is placed at the tail of the queue. The instructions
move through the history buffer until they reach the head of the queue. An instruction
reaches the head when all of the instructions in front of it have finished execution.
However, since instructions can be executed out of order, it is possible for an instruction
to have finished execution, but still be in the middle of the queue. An instruction is retired
from the history buffer when it reaches the head and has finished execution.

The history buffer has 12 cells. If a multi-cycle instruction reaches the head of the buffer
and takes a very long time to complete execution, it is possible to fill the history buffer to
capacity. In this case, the MC8811 0 stalls instruction issue until the instruction at the
head of the buffer completes execution and is retired from the queue.

MOTOROLA MC88110 USER'S MANUAL 1-21

• 1.5 INSTRUCTION SET SUMMARY

The MC88110 instruction set is divided into seven categories: integer arithmetic,
floating-point arithmetic, graphics, logical, bit field, load/store/exchange, and flow control.
The MC8811 0 instruction set is summarized in Figure 1-9.

MC88110 USER'S MANUAL MOTOROLA

Inteaer Arithmetic Instructions
M1Emri: Description

add Signed Add

addu Unsigned Add

emp Integer Compare

dlv, Signed Divide

dlvu Unsigned Divide

nuls Signed Multiply

nulu Unsigned Multiply

sub Signed Subtract

subu Unsigned Subtract

Bit-Field hstnJdions
M1Emri: Description

elr Clear Bit Field

ext Extract Bit Field

extu Unsigned Extract Bit Field

ffO Find First Bit Clear

ffl Find First Bit Set

rTBk Make Bit Field

rot Rotate Register

set Set Bit Field

LoaicallnstnJctions
M1Emri: Description

and And

nIlsk Logical Macik Immediate

or Or

xor Exdusive Or

G

padd Pixel Add

padds Pixel Add and Saturate

pemp Pixel Compare

pmJ I Pixel Multiply

Ppaek Pixel Truncate, Insert, and Pack

prot Pixel Rotate left

psub Pixel Subtract

psubs Pixel Subtract and Saturate

un k Pixel Un

Row Control Instructions
Ihnri: De8crtDtIon

bbO Branch on Bit Clear

bbl Branch on Bit Set

bend Conditional Branch

br Unconditional Branch

bsr Branch to Subroutine

IHop Illegal Operation

jmp Unconditional Jump

jsr Jump to Subroutine

rte Return from Exception

tbO Trap on Bit Clear

tbl Trap on Bit Set

tbnd Trap on Bounds Check

tend Conditional Trap

Load/StorelExchanae Instructions
M1Emri: Description

Id load Register From Memory

Ida load Address

Ider load from Control Register

st Store Register to Memory

.ter Store to Control Register

xer Exchange Control Register

xmem Exchange Register with Memory

Floatina-Point Instructions
M1Emri: DescrtDtlon

fadd Floating-Point Ad d

femp Floating-Point Compare

fempu Unordered Floating-Point Compare

fevt Convert Floating- Point Pmeision

fdly Floating-Point Divide

flder load from Floating-Point Control Register

fit Convert Integer to Floating-Point

fmul Floating-Point Multiply

fsqrt Floating-Point SquareRoot

fster Store to Floating-Point Control Register

fsub Floating-Point Subtract

fxer Exchange Floating-P oint Control Register

Int Round Floating-P oint to Integer

nDV Register-to-Register Move

nlnt Round Floating-P oint to Nearest Integer

trne Truncate Floatina-Point to Integer

•

MOTOROLA

Figure 1-9. MC88110 Instruction Set

MC88110 USER'S MANUAL 1-23

•

1-24 MC88110 USER'S MANUAL MOTOROLA

SECTION 2
PROGRAMMING MODEL

This section briefly describes the MC88110 processor states, registers and operand
conventions. Exceptions are also briefly described in this section, but the details of
individual exceptions (including exception recovery) are given in Section 7
Exceptions. Instruction mnemonics used in this section can· be identified by referring to
Section 3 Addressing Modes and Instruction Set Summary.

2.1 PROCESSOR STATES

The MC88110 is always in one of three states: normal instruction execution, exception,
or reset. The reset state is entered when the RST signal is asserted. The exception state
is entered when any of the following conditions occurs: external interrupts, memory
access errors, internally recognized errors, or trap instructions. The following paragraphs
describe the three states of the MC8811 O.

2.1.1 Reset State
When RST is recognized as asserted, all current processor operations are aborted, the
control registers are initialized appropriately, and external signals are placed in the high
impedance state. When RST is, negated the processor begins instruction execution at
address zero.

2.1.2 Exception State
Exceptions are conditions that cause the processor to suspend execution of the current
instruction stream and perform exception processing. Exception processing provides an
efficient context switch so that system software can handle the. exception condition while
maintaining the integrity of the hardware and other software. Exception conditions
include the following:

• External interrupts, signaled by the INT or NMI signals

• Memory access errors such as page faults and bus errors

• Internally recognized errors, such as divide-by-zero and arithmetic overflow

• Trap instructions

• Illegal instructions

• Privilege violations

II

MOTOROLA MC88110 USER'S MANUAL 2-1

•
When an exception is recognized by the processor, the execution context is saved into
exception-time registers, the special function units are disabled, and the machine is
placed in supervisor mode. Control is then passed to a designated exception handler
routine. The exception handler routine processes the condition that caused the
exception. The handler routine performs specific functions (e.g., fixing internal errors,
aborting operations, or servicing interrupts) based on the type of exception that has
occurred. The exception handler routine then restores the processor to normal
operation.

The MC88110 implements a precise exception model. This means that the precise
address of the faulting instruction is provided to the exception handler and that neither
the faulting instruction nor any instructions logically following it in the code stream will
appear to have been issued. Because of the precise exception model, it is not necessary
for the internal pipeline states of the processor to be made visible to the software
handlers.

Refer to Section 7 Exceptions for detailed information on exceptions.

2.1.3 Normal Instruction Execution State
During normal instruction execution, the MC88110 operates in one of two levels of
privilege: supervisor mode or user mode. These levels define which address space is
accessed and which registers are available to the programmer. The level of privilege is
determined by the MODE bit in the processor status register (PSR). The following
paragraphs describe the levels of privilege.

2.1.3.1 SUPERVISOR LEVEL OF PRIVILEGE. The supervisor mode is the higher
level of privilege. The processor operates in this mode when the MODE bit is set. When
operating in the supervisor mode, memory accesses reference the supervisor address
space in data or instruction memory; however, the programmer can specify the .usr
option for memory-access instructions to force access to user data address space. The
supervisor mode allows execution of all instructions and allows access to all control
registers and general registers.

Operating system software typically executes in supervisor mode. Among the operating
system services provided are resource allocation (memory and peripherals), exception
handling, and software execution control (task initiation, scheduling, etc.). Execution
control normally includes controlling user programs and protecting the system from
accidental or malicious corruption by a user program.

The MODE bit is set automatically when an exception is recognized so that the exception
handler executes in supervisor mode. All bus transactions performed during exception
processing reference supervisor address space. Reset also causes the MODE bit to be
set, thus placing the processor in supervisor mode.

2-2 MC88110 USER'S MANUAL MOTOROLA

2.1.3.2 USER LEVEL OF PRIVILEGE. The processor operates in user mode when
the MODE bit in the PSR is clear. Memory accesses in user mode can only reference
user data and user instruction memory. Control register access is restricted in user
mode. The only control registers accessible in this mode are the floating-point control
and status registers. Attempting to access other control registers while in user mode
causes an exception.

2.1.3.3 CHANGING LEVELS OF PRIVILEGE. The processor switches from user
mode to supervisor mode under the following four conditions:

1. An exception occurs. Exceptions place the processor into the exception processing
state, which includes switching to supervisor mode.

2. A reset is signaled.

3. A user program executes a trap instruction.

4. An interrupt or memory access fault occurs.

The processor switches from supervisor mode to user mode under the following two
conditions:

1. The processor executes an rte instruction. The rte instruction restores the PSR,
which returns the processor to user mode if the MODE bit of the restored PSR is
clear.

2. A stcr or xcr instruction explicitly clears the MODE bit in the PSR. This method of
clearing the MODE bit may cause the MC8811 0 to fetch the next few instructions
from either supervisor or user space, and thus usually causes undesired program
execution results.

2.2 REGISTER DESCRIPTION
The MC88110 contains three types of registers which provide data and execution
information to the execution units and to software. Register access depends on the
register type and ·current level of privilege. The following paragraphs describe
programming model and the programmer's view of the general, extended, and control
registers. Refer to Section 4 Floating-Point Implementation for more information
on floating-point control registers and Section 7 Exceptions for more information on
exception control registers.

2.2.1 Supervisor/User Programming Model
The supervisor programming model includes all general, extended, and control
registers. The user programming model includes all general and extended registers, but
only two of the control registers: the floating-point control register (FPCR) and floating
point status register (FPSR). Figure 2-1 illustrates the programming model.

The contents of the general control registers can be copied to and from the general
registers using the Idcr, stcr, and xcr instructions. However, these instructions are
priVileged and therefore restrict access of the general control registers to supervisor
mode software.

•

MOTOROLA MC88110 USER'S MANUAL 2-3

..
,. ------- --- --- --- --- --- ------ --- ------------ --- --- -----

erO PID PROCESSOR IDENTIFICATION
cr1 PSR PROCESSOR STATUS REGISTER

GENERAL REGISTERS cr2 EPSR EXCEPTION PROCESSOR STATUS REGISTER

rO ZERO er4 EXIP EXCEPTION EXECUTING INSTRUCTION POINTER

r1 SUBROUTINE RETURN POINTER er5 ENIP EXCEPTION NEXT INSTRUCTION POINTER

r2 cr7 YBR VECTOR BASE REGISTER
cr16 SRO STORAGE REGISTER 0

'7

I
cr17 SR1 STORAGE REGISTER 1

TEMPORARY STORAGE REGISTERS
cr18 SR2 STORAGE REGISTER 2
cr19 SR3 STORAGE REGISTER 3

r31 cr20 SR4 STORAGE REGISTER 4
cr25 ICMD INSTRUCTION MMU/CACHEmc COMMAND
cr26 ICTL INSTRUCTION MMU/CACHE CONTROL
cr27 ISAR INSTRUCTION SYSTEM ADDRESS

EXTENDED REGISTERS cr28 ISAP INSTRUCTION MMU SUPERVISOR AREA POINTER
er29 IUAP INSTRUCTION MMU USER AREA POINTER

xO ZERO .
cr30 IIR INSTRUCTION MMU ATC INDEX REGISTER

x1
cr31 IBP INSTRUCTION MMU BATC R!'N PORT
cr32 IPPU INSTRUCTION MMU PATC Rm PORT (UPPER)

7 TEMPORARY STORAGE REGISTERS 7 cr33 IPPL INSTRUCTION MMU PATe ANI PORT (LOWER)

xJ 1
cr34 ISR INSTRUCTION ACCESS STATUS REGISTER
cr35 ILAR INSTRUCTION ACCESS LOGICAL ADDRESS
cr38 IPAR INSTRUCTION ACCESS PHYSICAL ADDRESS
cr40 DCMD DATA MMU/CACHE COMMAND
cr41 DefL DATA MMU/CACHE CONTROL
cr42 DSAR DATA SYSTEM ADDRESS REGISTER
cr43 DSAP DATA MMU SUPERVISOR AREA POINTER

for62 FPSR FLOATING POINT STATUS REGISTER
cr44 DATA MMU USER AREA POINTER

for63 FPCR FLOATING POINT CONTROL REGISTER
DUAP

cr45 DIR DATA MMU ATC INDEX REGISTER
or46 DBP DATA MMU BATC R/W PORT

USER PROGRAMMING MODEL cr47 DPPU DATA MMU PATC RI'N PORT (UPPER)
L __ cr48 DPPL DATA MMU PATC ANI PORT (LOWER)

or49 DSR DATA ACCESS STATUS REGISTER
orSO DLAR DATA ACCESS LOGICAL ADDRESS
cr51 DPAR DATA ACCESS PHYSICAL ADDRESS

FPECR I IferO FLOATING-POINT EXCEPTION CAUSE REGISTER

SUPERVISOR PROGRAMMING MODEL

Figure 2-1. Programming Model

The contents of the floating-point control registers can be copied to and from the general
registers using the fldcr, fstcr, and fxcr instructions. These instructions allow access of
fcr63 and fcr62 to user mode software but restrict access of fcrO to supervisor mode
software. Refer to Section 4 Floating-Point Implementation for a detailed
description of the floating-point control registers.

2-4 MC88110 USER'S MANUAL MOTOROLA

2.2.2 General Register File
The general register file (GRF) consists of 32 general registers, each of which is 32 bits
wide (see Figure 2-2). These registers can contain instruction operands and results and
can provide address and bit-field information. All general registers have read/write
access. •31 o

rO

r1

r2

r31

CONTAINS ZERO

SUBROUTINE RETURN POINTER

TEMPORARY STORAGE REGISTERS '7

Figure 2-2. General Register File

There are two hardware restrictions on the use of certain general registers, which are as
follows:

1. Register rG-This register always contains the constant zero and is always read as
positive zero. Register rO can b~ used by instructions requiring the constant zero as
an operand (e.g., compare to zero). Writing to rO is permissible but causes no
modification to the contents of the register and, depending on the implementation,
mayor may not cause normal instruction side effects.

2. Register r1-The return pointer generated by the bsr and jsr instructions is stored
in this register each time either of these instructions execute. Register r1 is not
protected; therefore, the return pointer (or any other data) contained in r1 can be
read or overwritten by software.

2.2.3 Extended Register File
The extended register file (XRF) consists of 32 extended registers, each of which is 80
bits wide. These registers can contain 32 data objects of any of the defined floating-point
data formats: single, double, or double-extended precision. The extended registers can
provide operands for all floating-point instructions and can serve as the data source or
destination for st and Id instructions. See Figure 2-3 for an illustration of the XRF.

The .extended register file has only one hardware restriction, which is on register xO.
This register always contains the constant zero and is always read as positive zero.
Register xO can be used by instructions requiring the constant zero as an operand.
Writing to xO is permissible but causes no modification to the contents of the register,
and, depending on the implementation, mayor may not cause normal instruction side.
effects.

MOTOROLA MC88110 USER'S MANUAL 2-5

79 0

xO CONTAINS ZERO

x1

II 7 TEMPORARY STORAGE REGISTERS 7L 1.

x31

Figure 2-3. Extended Register File

2.2.4 Control Registers
The following paragraphs describe the general control registers and the floating-point
control registers.

2.2.4.1 GENERAL CONTROL REGISTERS. The MC88110 contains 35 general
control registers (see Table 2-1). These registers are accessible only in supervisor
mode. Twelve of the general control registers are for the instruction cache and memory
management unit (MMU), and twelve are for the data cache and MMU. The remaining
registers provide status information, the base address of the exception vector table, and
general-purpose storage.

The general control registers can be read using the Idcr instruction, and can be written
using the stcr instruction. The xcr instruction exchanges the contents of a control
register with the contents of the specified general register. When a control register is
read, rese.rved bits are returned as zeros. Writes to reserved bits are ignored. When a
read or write to an unimplemented control register is attempted, an unimplemented
opcode exception is taken. When a register specified as "Motorola internal use only" is
read, undefined data is returned. Writes to these registers will not cause an exception;
however, subsequent reads are not guaranteed to return the previously written data.

The following paragraphs describe the processor identification (PID) register, the PSR,
and the supervisor storage registers. Refer to Section 4 Floating-Point
Implementation, Section 6 Instruction and Data Caches, Section 7
Exceptions, and Section 8 Memory Management Units for more detailed
information on the other control registers.

Table 2-1. General Control Registers

Register Number Acronym Register Name

crO PID Processor Identification Register

cr1 PSR Processor Status Register

cr2 EPSR Exception Processor Status Register

cr3 - Unimplemented

cr4 EXIP Exception Executing Instrudion Pointer

2-6 MC88110 USER'S MANUAL MOTOROLA

Table 2-1. General Control Registers (Continued)

Register Number Acronym Register Name

er5 ENIP Exception Next Instruction Pointer

er6 - Unimplemented

er7 VBR Vector Base Register

e8-er13 - Unimplemented

cr14-er15 - Motorola Internal Use Only

cr16 SRo Storage Register 0

cr17 SR1 Storage Register 1

cr18 SR2 Storage Register 2

er19 SR3 Storage Register 3

er20 SR4 Storage Register 4

er21-cr24 - Unimplemented

cr25 ICMD Instruction MMU/CachefTlC Command

cr26 IClL Instruction MMU/Cache Control

cr27 ISAR Instruction System Address

cr28 ISAP Instruction MMU Supervisor Area Pointer

er29 IUAP Instruction MMU User Area Pointer

cr30 IIR Instruction MMU ATC Index Register

cr31 IBP Instruction MMU BATC Rfii Port

cr32 IPPU Instruction MMU PATC Rfii Port (Upper)

er33 IPPL Instruction MMU PATe Rfii Port (Lower)

er34 ISR Instruction Access Status Register

er35 ILAR Instruction Access Logical Address

cr36 IPAR Instruction Access Physical Address

er37-cr39 - Unimplemented

cr40 DCMD Data MMU/Cache Command

cr41 Dell.. Data MMU/Cache Control

cr42 DSAR Data System Address

cr43 DSAP Data MMU Supervisor Area Pointer

cr44 DUAP Data MMU User Area Pointer

cr45 DIR Data MMU ATC Index Register

cr46 DBP Data MMU BATe RiW Port

cr47 DPPU Data MMU PATC RiW Port (Upper)

cr48 DPPL Data MMU PATC RiW Port (Lower)

cr49 DSR Data Access Status Register

cr50 DLAR Data Access Logical Address

er51 DPAR Data Access Physical Address

er52-cr63 - Unimplemented

II

MOTOROLA MC88110 USER'S MANUAL 2-7

2.2.4.1.1 Processor Identification Register. The PID (crO) contains the processor
version number. This register is read only. The PID is shown in Figure 2-4.

Figure 2-4. Processor Identification RegisterII
31

10 0 0 0 0

16 15

o 0 0 0 0 0 0 0 0 0 0 I ARCHITECTURAl REVISION

8 7 1 0

I VERSION NUMBER [2]

Bits 31-16-Reserved
Read as zero; not guaranteed to be zero in future implementations.

ARCH REVISION-Architectural Revision Number
Identifies the particular processor (MC88100, MC88110, future generations, special
purpose processors). The revision number changes when a major architectural
change is made that warrants a new part number. The revision number for the
MC88110 is 1.

VERSION I-Version Number
Identifies the particular mask version of the MC8811 0 processor. The version number
is changed by Motorola when mask changes· are made that affect the functionality of
the device.

Bit o-Reserved
Read as one; not guaranteed to be one.in future implementations.

2-8 MC88110 USER'S MANUAL MOTOROLA

2.2.4.1.2 Processor Status Register. The bits in the PSR (cr1) are set by
hardware or software to report the status of processor operations or to control processor
operation. The operation of the various bits in the PSR depends on the value of the
shadow freeze bit (EFRZ, bit 0) in the PSR. For a detailed explanation of the implications
and effects of the EFRZ, refer to Section 7 Exceptions. In the paragraphs that follow,
an asterisk (.) denotes the default state after reset. Figure 2-5 shows the PSR.

3 2 1 0

~

mE UNDEFINED-RESERVED FOR FUTURE USE

Figure 2-5. Processor Status Register

Mode-Supervisor/User· Mode
This bit is set by hardware when the processor changes to supervisor mode due to an
exception condition or trap instruction. The mode bit may be cleared by software to
return the MC8811 a to user mode.

a = User Mode
1 = Supervisor Mode·

Bo-Byte Ordering
This bit is set by software to indicate the current byte ordering. See 2.3.4.2 Byte
Ordering for a full description of byte ordering.

o= Big Endian Byte Ordering·
1 = Little Endian ~yte Ordering

SER-Serial Mode
The serial mode is generally used for debugging purposes since it significantly
reduces machine throughput. This bit is set by software.

o= Concurrent Instruction Execution
1 = Serial Instruction Execution·

e-Carry
This bit is modified by hardware according to the results of and add or subtract
instruction. It is only modified when the instruction explicitly requests the use of the
carry bit.

o= Carry Not Generated by an Add or Subtract Instruction·
1 = Carry Generated by an Add or Subtract Instruction

Bit 27-Reserved
Read as zero; not guaranteed in future implementations. Writes are ignored.

II

MOTOROLA MC88110 USER'S MANUAL 2-9

•
SGN-Signed Immediate Mode

This bit is set by software to determine whether immediate offsets and constants are
signed or unsigned.

o= Immediate Offsets and Constants are Unsigned·
1 = Immediate Offsets and Constants are Signed Two's Complement

SRM-Serialize Memory
This bit is set by software to force serialization of the processor prior to load or store
instruction execution.

o= Concurrent Memory Instruction Execution
1 = Serialize Memory Instructions·

Bit 24-1 Q-Reserved
Read as zero; not guaranteed in future implementations. Writes are ignored.

Bits 9-5-Special Function Unit Disable
These bits will be used to enable additional SFUs in future 88000 implementations.
These bits are hardwired to "one" in the MC88110.

1 = Unimplemented SFUs Always Disabled

SFD2-Special Function Unit Two (SFU2) Disable
This bit disables SFU2, the graphics unit. This bit is automatically set by hardware
when an exception or reset occurs, and can also be set or cleared explicitly by
software.

o= SFU2 Enabled
1 = SFU2 Disabled·

SFD1-Special Function Unit One (SFU1) Disable
This bit disables SFU1, the floating point unit. This bit is automatically set by hardware
when an exception or reset occurs, and can also be set or cleared explicitly by
software.

o= SFU1 Enabled
1 = SFU1 Disabled·

MXM-Misaligned Access Exception Mask
This bit is set by software to disable the misaligned access exception. When this bit is
set and a misaligned access is attempted, the processor truncates the address to a
consistent boundary (see 2.3.4.1 Misaligned Access).

o= Misaligned Access Exception Mode Enabled
1 = Misaligned Access Exception Mode Disabled·

2-10 MC88110 USER'S MANUAL MOTOROLA

IND-Interrupt Disable
This bit is automatically set by hardware to disable interrupts when an exception
occurs. This bit can also be set or cleared explicitly by software to specifically
disable/enable interrupts. Interrupts must be disabled when shadowing is frozen to
avoid an error exception. II

o= External Interrupt Enabled
1 = External Interrupt Disabled·

EFRZ-Exceptions Freeze
This bit is set by hardware when an exception occurs to preserve the processor
context for the exception. This bit can also be set or cleared explicitly by the stcr or
xcr instructions or implicitly by an rte instruction. If this bit is set and any exception
occurs, the MC8811 0 takes the error exception. Setting the EFRZ bit in the PSR with
an stcr or xcr instruction does not cause the EFRZ bit to be set in the EPSR.

o= Exceptions Enabled
1 = Exceptions Disabled·

2.2.4.1.3 Supervisor Storage Registers. The integer unit contains five 32-bit
supervisor storage registers which have read/write access. These registers provide high
speed storage space where supervisor software can store data and pointers without
referencing memory. The use and content of these registers are determined by software.

2.2.4.2 FLOATING-POINT CONTROL REGISTERS. The floating-point control
registers provide exception recovery and status and control information for the floating
point unit (FPU). Table 2-2 lists the floating-point control registers. Refer to Section 4
Floating-Point Implementation for detailed descriptions of these registers.

Table 2-2. Floating-Point Control Registers

Number Acronym Register Name

ferO FPECR Floating-Point Exception Cause Register

fcr1-fcr61 - Unimplemented

fcr62 FPSR Floating-Point Status Register

fcr63 FPCR Floating-Point Control Register

MOTOROLA MC88110 USER'S MANUAL 2-11

II

2.3 OPERAND CONVENTIONS
The following paragraphs describe the operand conventions for the MC8811 0, including
a definition of the operand types and a description of how operands are organized in
registers and in memory.

2.3.1 Operand Types
The MC88110 supports the following operand types:

Integer Operands:

Byte-8 Bits

Half Word-16 Bits

Word-32 Bits

Double Word-64 Bits

Bit-Field Operands:

Bit Field-1 to 32 Bits in a 32-Bit Register

Floating-Point Operands:
Single-Precision Floating-Point-32 Bits

Double-Precision Floating-Point-64 Bits

Double-Extended-Precision Floating-Point-80 Bits

Graphics Operands:
32-Bit Packed Nibbles

32-Bit Packed Bytes

54-Bit Packed Bytes

64-Bit Packed Half-Words

54-Bit Packed Half-Words

54-Bit Packed Words

The operand size for each instruction is either explicitly encoded in the instruction or
implicitly defined by the instruction operation. Bit fields are defined by width and offset
values given in the instruction or in a source register specified by the instruction. For
more information on floating-point and graphics operands, refer to Section 4
Floating-Point Implementation and Section 5 Graphics Unit Implementation,
respectively.

2.3.2 Data Organization in General Registers

The GRF can contain all types of operands except double-extended-precision floating
point operands. Graphics operand sizes range from 8 to 32 bits. These operands are
packed into double words (64 bits), which. are contained in a register pair.

2-12 MC88110 USER'S MANUAL MOTOROLA

Since the memory interface supports operand types other than 32-bit words, the
MC88110 incorporates the following rules for placing memory data into registers or
extracting data from registers for storing to memory (see Figure 2-6):

1. Byte operands are always contained in the lowest eight bits of a register. When a
byte is loaded into a register, it is either sign- or zero-extended to 32 bits. •

2. Half-word operands are always contained in the lowest 16 bits of a register. When
a half word is loaded into a register, it is either sign- or zero-extended to 32 bits.

3. Word operands are contained in the entire 32 bits of a register.

4. Double-word operands are loaded to or extracted from two adjacent registers (rn
and rn+1), with rn always even and always containing the higher order word.

5. Bit-field operands are defined by an offset and a width. The most significant bit
(MSB) of a bit field is the bit closest to bit 31 ; the least significant bit (LSB) is the bit
closest to bit o. The value of the offset equals the bit number of the LSB of the bit
field, and [offset + width -1] equals the bit number of the MSB of the bit field.

6. Single-precision floating-point operands are contained in the entire 32 bits of a
register. Bit 31 contains the sign bit, bits 30-23 contain the exponent, and the
remaining bits comprise the mantissa.

7. Double~precision floating-point operands are contained in two adjacent registers
(rn and rn+1), with rn always even and always containing the higher order bits. In
the upper order register (rn), bit 31 contains the sign bit, bits 30-20 contain the
exponent, and bits 19-0 contain the upper bits of the mantissa. Bits 31-0 of the
lower order register (rn+1) contain the lower bits of the mantissa.

Any double-word and double-precision floating-point operands aligned on odd
numbered register pairs (Le., r5:r6 instead of r4:r5) will cause the following exceptions
to occur:

1. Floating-point instructions referencing an odd-numbered register pair will cause an
SFU1 floating-point unimplemented exception.

2. Graphics instructions referencing an odd-numbered register pair will cause an
SFU2 exception.

3. All other instructions referencing an odd-numbered register pair will cause an
unimplemented opcode exception.

The exception handler will implement double-word alignment on odd-numbered register
pairs in software. Since the software implementation will result in slower execution time,
it is recommended that software and compilers align such data to even-numbered
registers to guarantee the best performance.

MOTOROLA MC88110 USER'S MANUAL 2-13

INTEGERS: SIGNED BYTE

UNSIGNED BYTE

SIGNED HAlF WORD

UNSIGNED HALF WORD

WORD

31 8 7

IS 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 S S S S S S SI

31 8 7

10 01
31 1615

1S 5 S 5 5 5 5 S S S S S S S S SI HALF WORD

31 1615

I0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 HALF WORD

31

I WORD

63

0

BYTE I
0

BYTE I
0

I
0

I
0

I
32

DOUBLE WORD
N WORD 0 (M05T 51GNIFICANT WORD; REGISTER N)

WORD 1(LEAST SIGNIRCANT WORD; REGISTER N+ 1)

31

MANTISSA 1

31 2423

ISI EXPONENT I

BIT NUMBER. BIT NUMBER.
OFFSET + WIDTH OFFSET

....31----------t BITRELD t I
~ WIDTH * OFFSET~

o

BIT FIELD

SINGLE·PRECISION
FLOATING POINT

FLOATING·POINT OPERANDS:

BIT FIELDS:

6362 5251 32

DOUBLE.PRECISION NS""--__E_XP_ON_E_NT H_IG_H-_OR_D_ER_B_ITS_O_F_MA_N_TIS_SA__--t

FLOATING POINT N+ 1 LOW·ORDER BIT5 OF MANTl5SA

31

GRAPHICS OPERANDS: 32-BIT PACKED NIBBLES

32-BIT PACKED BYTE5

31 2827 2423 20 19 16 15 12 11 8 7 4 3 0

I NIBBLE I NIBBLE I NIBBLE I NIBBLE I NIBBLE I NIBBLE I NIBBLE I NIBBLE I

31 2423 16 15 8 7 0

I BYTE I BYTE I BYTE I BYTE I

64-BIT PACKED BYTES

32·81T PACKED HALF-WORDS

64-BIT PACKED HAlF·WORD5

64-BIT PACKED WORDS

63 5655 4847 4039 32

I
BYTE

I
BYTE

I
BYTE

I
BYTE

IBYTE BYTE BYTE BYTE

31 2423 1615 8 7 0
31 1615 0

I HALF·WORD I HALF-WORD I
63 4847 32

I
HALF·WORD

I
HALF·WORD

IHALF·WORD HALF·WORD

31 1615 0
63 32

I
WORD IWORD

31

Figure 2-6. Data Organization in General Registers

2.3.3 Data Organization in Extended Registers
The XRF can contain all types of floating-point operands (see Figure 2-7). When data is
placed in an extended register, the value given to unused bits is not defined; for
example, if single-precision data is placed in an BO-bit extended register, then all 80 bits
are overwritten, but the value of the least significant 4B bits is undefined.

2-14 MC88110 USER'S MANUAL MOTOROLA

7978 7170 4847 0
SINGLE-PRECISION 0 EXPONENT I MANTISSA I UNDEFINED IFLOATING POINT

7978 6867 1615 0
DOUBLE-PRECISION 0 EXPONENT I MANTISSA IUNDEFINED IFLOATING POINT

7978 63 62 61 0
DOUBLE-EXTENDED-PRECISION 0 EXPONENT [g MANTISSA I IIFLOATING POINT

S: SIGN BIT
L: LEADING BIT

Figure 2-7. Operands in Extended Register File

2.3.4 Data Organization in Memory and Data Transfers

Data transfers are required to be aligned to the appropriately sized boundary in memory
(Le., byte, half word, or word), and bit fields are represented in memory as part of bytes,
half words, and words.

Single-precision floating-point values are stored in memory on word boundaries;
double-precision values are stored on even-word boundaries. Double-extended
precision values are stored on quad-word boundaries with all data left justified and all
extra space filled with zeros when writing and ignored when reading to ensure that data
stored in memory will be compatible with future implementations. Figure 2-8 illustrates
how data is organized in memory.

MSB LSB

12

16

20

24

28

32

36

40

44

48

52

56

60

0 1 1 1 2 1 31

BYTE 1 BYTE 1 BYTE 1 BYTE
'I .

1

HALF WORD 1 HALF WORD.
WORD

sl EXPONENT I MANTISSA

sl EXPONENT I MANTISSA

MANTISSA

sl EXPONENT ILl MANTISSA

MANTISSA

MANTISSA I 0

0

S: SIGN BIT
L: LEADING BIT

J- SINGLE-PRECISION
FLOATING POINT

}
DOUBLE-PRECISION
FLOATING POINT

DOUBLE-EXTENDED-PRECISION
FLOATING POINT

MOTOROLA

Figure 2-8. Floating-Point Memory Storage Alignment

MC88110 USER'S MANUAL 2-15

II

2.3.4.1 MISALIGNED ACCESS. Attempting an incorrectly aligned data transfer will
cause a misaligned reference exception if the misaligned access exception is not
masked. If the Exceptions:misaligned access exception is masked and a misaligned
transfer is attempted, the least significant bits of the address will be ignored, and the
transfer will be performed to the next lower aligned boundary.

Figure 2-9 shows the results of several memory accesses with the misaligned access
exception masked. In this illustration, the lightly shaded accesses are correctly aligned,
and the darkly shaded accesses are not correctly aligned. The shaded areas in memory
(light and dark) show the resulting alignment for each access. Note that in each case the
arrows point to the specified memory location.

MEMORY
o 1 2 3

$OOOOOOOO

REGISTERS

STORE HALF WORD @$0100

STORE HALF WORD @$0105

-+--+---l~;;;;;;~M;;;;; ~1~1111111~j STORE HALF WORD@$010A

STORE HALF WORD @$01 OF

STORE DOUBLE WORD @$012A

$FFFFFFFC

Figure 2-9. Memory Accesses with Misaligned Access Exceptions Disabled

2.3.4.2 BYTE ORDERING. The 88000 base architecture supports two byte-ordering
configurations for data operands in memory: the Big-Endian configuration and the Little
Endian configuration. The processor defaults to Big-Endian byte ordering. Additionally,
instruction addressing is performed in the Big-Endian configuration regardless of the
byte ordering mode of the processor. Figure 2-10 illustrates the Big-Endian and Little
Endian byte-ordering memory configurations.

Note that when a Big-Endian memory system is drawn, the lowest addresses are
depicted at the top of the memory system, with the addresses increasing toward the

2-16 MC88110 USER'S MANUAL MOTOROLA

bottom of the page. In the Big-Endian configuration, lower addresses correspond to
more significant bytes, and the address of a word points to the most significant byte of
the word.

When a Little-Endian memory system is drawn, the lowest address is depicted at the
bottom of the page, with the addresses increasing toward the top of the page. In the II
Little-Endian configuration, lower addresses correspond to less significant bytes, and the .
address of a word points to the least significant byte of the word.

BYTE "$2"
HALF-WORD "$6"
HALF-WORD "$8"
WORD"$C"

DOUBLE-WORD "$14"

0 1 2 • 3

4 5 6 • 70
81 9 0 A B

CI om Em FD
10 11 12 13

14. 15m 16m 17m
18[1 19m 1Am 1BD

./

f3 $00000000
~ $00000004
w
~ oo8סס$000

~ $Oooooooc
~ $00000010

~ $00000014
~ $00000018
N

T $FFFFFFF8~t $FFFFFFFC D=:i=±:J
NOTE: Address points to MSB NOTE: Address points to LSB

LEGEND:

EJ] MOST SIGNIFICANT BYTE ~ INTERMEDIATE BYTE rn LEAST SIGNIACANT BYTE

(a) 32-Bit Big-Endian
Memory Layout

(b) 32-Bit Little-Endian
Memory Layout

Figure 2-10. Byte-Ordering Configuration in Memory

The example byte ordering environment shown in Figure 2-11 illustrates how to interface
a Little-Endian device with an MC88110 based system using a Big-Endian memory
configuration.

In Figure 2-11, latches are used to transfer the data from the Little-Endian processor to
the correct byte lane of the 54-bit bus. A similar circuit is used inside the MC88110, to
align the bytes from the bus and write the correct data in the destination register. When
the MC88110 is in Little-Endian mode, a byte-swap correction circuit is enabled which
reverses the order of the bytes before they are aligned to be written to the registers.

MOTOROLA MC88110 USER'S MANUAL 2-17

o 1 2 3 4 5 6 7

$0

$4

$8

$14

$11

$E

$12

$13

$0

2

oo0000סס$ 33 22 11 00 67 45 23 01 64-BITWIDE
BIG-ENDIAN

oo0008סס$ AB 89 EF CD MEMORY
oo0010סס$ "W- ·X· -Y· ·Z-
$00000018
oo0020סס$

~------'--_L---L--'"

c:r~ + J J ~ 64-BIT BUS
w I

~

'I', I
'1\

'l' I I
6 +7L l A2 , 0 1 ' 2 3 4 ' 5 6 7 o ' 1 112 3 , 4 , 5 ,

j J
'--=====~~/~-

..J

0r --r=r- ~--,
3 2 1 0

[.J J ~A2 1 J ~A

~ ~ ~ ~ , + V + + V + , , V + + + , , +
01 I 23 I 45 I 67 33 I 22 I 11 I 00 I 67 I 45 23 I 01 Id.d$O 01 I 23 I 45 I 67 I 00 I 11 I 22 I 33 Id.d
00 111 122 133 sLd$O

+ ~ ~ t + ~ ~ t
33J 221 11 100 J Id.w$O 00 111 1221 331 Id.w

t t t t t J J t + ~ + t
01 123 I 45 167 sLw$4 67 I 45 I 23 101 1 Id.w$4 01 I 23 I 45 I 67 I Id.w

t t ~ + +
1 1891 AB sth$8 I lAB 1891 Id.h$8 1 I 89 lAB I Id.h

~ L- ~ t ~..,
I ICOl EF sth$E I I EF Icol Id.h$E I I COl EF I Id.h

L, ~ ~
I I I"W. sLb $11 J 1 1"W.J Id.b$11 I 1 1"W·I Id.b

~ =x ~
I I l-x- slb $12 J I I "X-J Id.b$12 I I I-X·I Id.b

4 t I ,
I 1 I-v- slb$13 I I I-V-J Id.b$13 I I I-V'I Id.b

t I
~t

I I l-z· slb $14 I I ITI Id.b$14 I 1 I-Z"I Id.b

II

L1TTlE-ENDIAN PROCESSOR
WITH 32-8IT EXTERNAL BUS

BIG-ENDIAN MC88110 WITH 64-BIT
EXTERNAL BUS IN BIG-ENDIAN MODE

BIG-ENDIAN MC88110 WITH 64-BIT
EXTERNAl BUS IN LITTlE-ENDIAN MODE

Figure 2-11. Example Byte-Ordering Environment Using
Big-Endian Memory and 64-Bit Bus

2-18 MC88110 USER'S MANUAL MOTOROLA

Figure 2-11 shows the results of a Little-Endian processor writing a series of data to a
Big-Endian Memory, and the MC88110 reading in the same data in both Big Endian and
Little-Endian modes. When the Little-Endian processor stores a double-word
(0123456700112233) to memory at address $0, the data is stored with the least
significant byte at memory location $0, and the most significant byte at memory location II
$7. When the double-word at memory address $0 is read in by the MC88110 in Big
Endian mode, the data in byte $0 is considered to be the most significant byte, the data
in byte $7 is considered to be the least significant byte, and the entire double-word is
loaded into the register backwards. However, if the MC88110 is placed in Little-Endian
mode, a byte-swap correction is applied to the data as it is read into the registers, and
the correct integer is loaded into the registers.

Figure 2-11 also illustrates the storage of words, half-words, and bytes. Notice that
whenever the data being transferred is more than one byte wide, the data read by the
Big-Endian processor is backwards when compared to the data written to memory from
the Little-Endian processor. In each of these cases, however, the problem is solved by
placing the Big-Endian processor in Little-Endian mode. Also notice that the data being
transferred on the bus is the same, regardless of the size of the transfer and regardless
of the byte ordering mode.

Figure 2-12 shows how the previous example is affected by replacing the Big-Endian
memory system with a Little-Endian memory system and replacing the 54-bit bus with a
32-bit bus. In this case, external circuitry is required to interface the 54-bit bus of the
MC88110 with the 32-bit bus. Note that the configu ration of the actual memory system
has no effect on the operation of the processors.

MOTOROLA MC88110 USER'S MANUAL 2-19

3
2
1o

$8

$0

$E

$14

$11

$12

$13

A2

w$O

w$4

3 2 1 0
32-BITWIDE ~~ -==::::::.......

UTTLE-ENDIAN
MEMORY

.'1:' $00000014
.Y" ·X· ·W $00000010
CD EF $OOOOOOOC

89 AB $00000OO8
01 23 45 67 $00000OO4
00 11 22 33 $OOOOOOOO

~ + + I~ 32-BITBUS
I , \It I I
I , , \It I
I , , I
I I

1 A2.1

, 0 ' 1 , 2 ' 3 +4 +5 +6 +7 , 0 , 1 2 3 ';4 ,r5 ,~6 "*17
_~~I,/~-

~I-I~I ~-,3 2 1 0
J J .J

t t t t
r

V , , V , V t , , , , , t , t t
01 123 1 45 167 33 122 1 11 100 I 67 145 , 23 , 01 Id.d$O 01 I 23 I 45 I 67 I 00 I 11 I 22 I 33 Id.d
00 111 , 22 133 st.d$O

+ ~ t ~ + + + +
33 I 22 I 11 I 00 I Id.w$O 00 I 11 I 22 I 33 I Id.

t t t t + ~ t ~ + + + +
01 I 23 I 45 I 67 at.w$4 67 I 45 , 23 '01 I Id.w$4 01 , 23 145 167 I Id.

t t ~ ~ +
I 189IAB at.h$8 I IABI891 Id.h$8 1 189IABI Id.h

LL,---, + + ~
I I col EF st.h$E I I EF ICDI Id.h$E I Icol EF I Id.h

L, ~ ~
I I I·W' st.b$11 ,

I I"WI Id.b $11 ,
I '''WI Id.b

L-, ~ ~
I I I·x· st.b$12 I I l·x·1 Id.b$12 I 1 ,·x·1 Id.b

~ i I ,
I

I 1 I"V" st.b$13 I I I"Y"I Id.b$13 I I I·Y"I Id.b

t I

+,
I I I"Z' st.b$14 I I I·Z"I Id.b$14 I I I·Z"I Id.b

II

lITTLE-ENDIAN
PROCESSOR WITH 32-81T

EXTERNAL BUS

BIG-ENDIAN MC88110WITH 64-BIT
EXTERNAL BUS IN BIG-ENDIAN MODE

BIG-ENDIAN MC8811 0 WITH 64-BIT
EXTERNAL BUS IN UTTLE-ENDIAN MODE

Figure 2-12. Example Byte-Ordering Environment Using
Little-Endian Memory and 32-Bit Bus

2-20 MC88110 USER'S MANUAL MOTOROLA

SECTION 3
ADDRESSING MODES AND INSTRUCTION SET
SUMMARY

This section describes the addressing modes available in the MC88110 and gives a
summary of the instruction set. For complete instruction descriptions, including the
exceptions caused by each instruction, refer to Section 10 Instruction Set.

The MC88110 instruction set is divided into seven categories, as shown in Figure 3-1:
integer arithmetic, logical, bit-field, floating-point, graphics, flow control, and
load/store/exchange instructions. The MC8811 0 addressing modes are defined in terms
of three types of instructions: computational, load/store/exchange, and flow control
instructions. Computational instructions include the integer arithmetic, logical, bit-field,
floating-point, and graphics instructions.

•

MOTOROLA MC88110 USER'S MANUAL 3-1

•

Inteaer Arithmetic Instructions
tkenaic Description

add Signed Add

addu Unsigned Add

emp Integer Compare

diy. Signed Divide

diyu Unsigned Divide

nuls Signed Multiply

nulu Unsigned Multiply

sub Signed Subtract

subu Unsigned Subtract

Bit-Field Instructions
M1erraic Description

elr Clear Bit Field

ext Extract Bit Field

ext u Unsigned Extract Bit Field

ffO Find First Bit Clear

ff1 Find First Bit Set

I11lk Make Bit Field

rot Rotate Register

set Set Bit Field

Loaicallnstructions
MBmri) Description

and And

nsk Logical~k immediate

or Or

xor Exdusive Or

GraDhics Instructions
M1mric Description

padd Pixel Add

padds Pixel Add and Saturate

pemp Pixel Campere

plR.Il Pixel Multiply

ppack Pixel Truncate, Insert, and Pack

prot Pixel Rotate left

psub Pixel Subtract

psubs Pixel Subtract and Saturate

punpk PixelUn~

Row Control Instructions
M1mric Description

bbO Branch on Bit Clear

bb1 Branch on Bit Set

bend Conditional Branch

br Unconditional Branch

bar Branch to Subroutine

II lop Illegal Operation

jlq) Unconditional Jump

jsr Jump to Subroutine

rt. Return from Exception

t bO Trap on Bit Clear

t b1 Trap on Bit Set

t bnd Trap on Bounds Check

tend Conditional Trap

Load/StorelExchanae Instructions
M1mric Description

Id Load Register From Memory

Ida Load Address

Ider Load from Control Register

st Store Register to Memory

ster Store to Control Register

xer Exchange Control Register

xmem Exchanae Register with Memory

Floatina-Point Instructions
M1mric Description

fadd Floating-Point Ad d

femp Floating-Point Compare

fempu Unordered Floating-Point Compare

fevt Convert Floating-Point Precision

fdly Floating-Point Divide

flder Load from Floating-Point Control Register

fit Convert Integer to Floating-Point

fmul Floating-Point Multiply

fsqrt Floating-Point Square Root

fster Store to Floating-Point Control Register

fsub Floating-Point Subtract

fxer Exchange Floating-Point Control Register

Int Round Floating-P oint to Integer

rmv Register-to-Register Move

nint Round Floating-P oint to Nearest Intagar

trne Truncate Floating-Point to Integer

3-2

Figure 3-1. MC88110 Instruction Set

MC88110 USER'S MANUAL MOTOROLA

3.1 ADDRESSING MODES
The MC88110 addressing modes are defined in terms of three types of instructions:
computational, load/store/exchange, and flow control instructions. The computational
instructions manipulate data stored in the general or extended registers. The
load/store/exchange instructions can load data into the general and extended registers,
store data to memory, exchange a memory location with a general or extended register,
or compute effective addresses. Flow control instructions alter the sequential flow of
instructions through the processor.

Each instruction type has unique addressing capabilities. Computational instructions
access data in the general-purpose registers, the extended registers, or in certain cases,
the control registers. Load/store/exchange instructions use the data unit to access data
in main memory. Flow control instructions use the instruction unit to reference
instructions in main memory.

The following paragraphs describe the addressing modes and instruction formats
available for the MC88110.

3.1.1 Computational Addressing Modes

The MC88110 supports three types of addressing modes for computational instructions:
triadic register,immediate, and control register addressing. These addressing modes
are described in the following paragraphs.

3.1.1.1 TRIADIC REGISTER ADDRESSING. Triadic register addressing uses
three 5-bit fields encoded in the instruction word to specify two source registers (rS1 and
rS2) and a destination register (rD). This addressing mode is common to all
computational instructions, but some instructions do not use all three register selection
fields. All bits in unused fields must be zero for upward compatibility. The following
paragraphs explain triadic register addressing for ALU instructions, floating-point
instructions, and graphics instructions.

3.1.1.1.1 ALU Instructions. The ALU instructions consist of the integer arithmetic,
logical, and bit-field instructions. For the integer arithmetic and logical instructions, the
data in rS1 and rS2 is processed by an integer unit and the result is placed in rD. The
arithmetic and logical instructions are add, addu. and, cmp, divs, divu, muls, mulu,
or, sub, subu, and xor.

All bit-field instructions except the bit-scan instructions (ff1 and ffO) use the triadic
register addressing mode by designating a bit-field operand in rS1. This operand is
defined by two 5-bit values contained in the lower 10 bits of rS2: the 5-bit value
contained in bits 9-5 of rS2 specifies the width of the bit field, and the 5-bit value
contained in bits 4-0 of rS2 specifies the offset of the bit field from bit 0 of rS1. The
upper 22 bits of rS2 are ignored. For the rot instruction, bits 9-5 are also ignored, but
they must be zero to ensure upward compatibility. The bit-field operand in rS1 is
processed by the integer unit according to the specified instruction and the result is
placed in rD. The bit-field instructions are elr, ext, extu, mak, rot, and set. The width

II

MOTOROLA MC88110 USER'S MANUAL 3-3

and offset values for bit-field instructions can also be specified as immediate operands,
as described in 3.1.1.2.2 Register with 10-Bit Immediate Addressing.

For bit-scan instructions (ff1 and ffO), the operand in rS2 is searched by the integer unit
to find either the first bit set (ff1) or the first bit clear (ffO). The register is scanned from
most significant bit (bit 31) to least significant bit (bit 0). The result is returned to rD. The
81 field is not used and must contain zeros.

• 31

rS1

31

rS2 SOURCE 2 REGISTER

SOURCE 1REGISTER

o

o
rD DESTINATION REGISTER

The following is the instruction format for arithmetic, logical, and bit-field instructions
using triadic register addressing:

31 26 25 21 20 16 15 5 4 0

1 1_1_1_1_0_1-&.1__0_------1.1__8_1_--'I SU_BO_PCO_OEI__82__1

Field Description

0 Specifies the destination register, rD.

S1 Specifies the source 1 register, r51. For the bit-scan
instructions, this field is not used.

SUBOPCODE Identifies the operation to be performed (add, addU, and, clr,
cmp, dlvs, dlvu, ext, extu, ff1, ffO, mak, muls, mulu, or,
rot, set, sub, subu, or xor).

S2 Specifies the source 2 register, r52.

3.1.1.1.2 Floating-Point Instructions. The operands for floating-point operations
can be taken from the general register file or the extended register file. The extended
register file contains single-, double-, or double-extended-precision numbers. For
instructions using the extended register file, the source 1, source 2, and destination
registers are denoted x81, x82, and xD, respectively.

For floating-point instructions, the data in the source 1 registers (rS1 or x81) and source
2 registers (rS2 or xS2) is processed by the floating-point unit (FPU), and the result is
placed in the destination register (rO or xO). The floating point-instructions include fmul,

3-4 MC88110 USER'S MANUAL MOTOROLA

fadd, fsub, femp, fcmpu, and fdiv. In addition, the fcvt, fit, fsqrt, int, nint, mov, and
trne instructions use floating-point triadic register addressing, but the 81 field is not
used by these instructions and must be filled with zeros.

The source 1 and source 2 operands must always originate from the same register file;
however, depending on the instruction, the destination register mayor may not have to
be located in the same register file as the source registers. For the fmul, fcvt, fadd,
fsub, fsqrt, and fdlv instructions, the source and destination registers must always be in
the same register file. The destination for the femp, fempu, int, nint, and trnc •
instructions must always be in the general register file, but the source operands can be
from either the general or extended register files. For the mov instruction, the source and
destination registers cannot both be in the general register file; however, any other
combination is allowed.

o
rS1, rS1: r$1+1. orxS1

79 31r----'v- ------S-O-uR-c-e-1R-e-GI-5T-e-R----,
!.---.l\..r---....L...----- ------'

o
OESTINATION REGISTER

!.----'\.r----'--------------'
rr>, rO: rO+1, or xO

79 31 0
rS2; r52: rS2+1. or xS2 r---Jov -- - ----S-O-UR-C-e-2R-e-GI-5T-eR-----,

~----'v----&..--------------'

The following is the instruction format for floating-point instructions using triadic register
addressing:

31 26 25 21 20 16 15 5 4 0

1~_1_0_0_0_0_1 1......__0 _---.I__S1_----.I SU_BO_PCO_DE --..L...I__S2_----I1

Field Description

D Specifies the destination register, rD or xD.

Sl Specifies the source 1 register, rS1 or xS1. For the fcvt, fsqrt,
moy, In!, nlnt, fit, and trnc instructions, Sl must be zero.

SUBOPCODE Identifies the operation to be performed (f.mul, fadd, fsub,
femp, fempu, fevt, IdlY, fit, fsqrt, Int, moy, nlnt, or
trnc).

S2 Specifies the source 2 register, rS2 or xS2.

MOTOROLA MC88110 USER'S MANUAL 3-5

•

3.1.1.1.3 Graphics Instructions. Graphics data is more efficiently processed in
double·-words, so the operands for most graphics instructions are contained in register
pairs. The data in the source 1 (r81 :r51+1) and source 2 (r52:r82+1) register pairs is
processed by the graphics unit, and the result is placed in the destination register pair
(rD :rD+1). The graphics instructions which process double-word data are padd,
padds, psub, psubs, pcmp, prot, and ppack.

The source 1 operands for the pmul and punpk instructions are only one word in
length. For the pmul instruction, the 54-bit value in the source 1 register pair
(rS1:r81 +1) is multiplied by the 32-bit value in the source 2 register and the 64 least
significant bits of the product are placed in the 54-bit destination register pair (rD:rD+1).
For the punpk instruction, nibble, byte, or half-word fields from r81 are placed into fields
of twice their size and zero-extended. These fields are concatenated to form a 54-bit
result which is placed in the destination register pair (rD:rD+1). The punpk instruction
does not"use the 82 field, so it must be filled with zeros.

The source 2 operand of the prot instruction is only one word in length. For this
instruction, the value in the source 1 register pair (r81 :r51+1) is rotated to the left by the
number of bits specified by bits 5-2 of r82, and the result is placed in the destination
register pair (rO:rO+1). The number of bits to be rotated can also be specified as
immediate operands, as described in 3.1.1.2.1 Register with 6-Bit Immediate
Addressing.

For thepcmp instruction, the value in the source 1 register pair (r81 :r81 +1) is
compared to the value in the source 2 register pair (r82:r52+1) and the resulting bit
string is returned to the destination register (rO).

rS1 or rS1: rS1+1

63 31

63 31

SOURCE 1 REGISTER

o

o

rS2 or rS2: rS2+1 SOURCE 2 REGISTER

rD or rD: rD+1

63

DESTINATION REGISTER

3-6 MC88110 USER'S MANUAL MOTOROLA

The following is the instruction format for graphics instructions using triadic register
addressing:

31 26 25 21 20 16 15 5 4 °
11..-_1_o_0_0_1_0_1....__0 _---a-I__S1_---AI S_UBO_PCOO_E ---a-I__S2_~1

Field Description

0 Specifies the destination register, rD.

51 Specifies the source 1 register, rS1.

5UBOPCODE Identifies the operation to be performed (padd, padds, pcmp,
pmul, ppack, prot, psub, psubs, or punpk).

52 Specifies the source 2 register, rS2.

3.1.1.2 IMMEDIATE ADDRESSING. This type of addressing is used by instructions
which require an immediate source value. The following paragraphs describe the 6-bit
immediate, 10-bit immediate, 16-bit signed immediate, and 16-bit unsigned immediate
addressing modes.

3.1.1.2.1 Register with 6-Bit Immediate Addressing. Register with 6-bit
immediate addressing is used by the prot instruction. For this instruction, the value in
the source 1 reg'ister pair (r81 :r81 +1) is rotated to the left by the number of bits specified
by the immediate value in the offset (06) field, and the result is placed in the destination
register pair (rD:rD+1). The 82 field is not used and must be filled with zeros.

The 06 field is made up of the 4-bit rotate (R) field concatenated with the zeros in
opcode bits 5 and 6. 'Concatenating the R field with the zeros in opcode bits 5 and 6
effectively multiplies the R field by four; therefore, the value in the 06 field is the value in
the R field times four. Bits 5 and 6 of the instruction word must be zero for upward
compatibility.

•

31

INSTRUCTION

63

rS1:rS1+1

rD:rD+1

MOTOROLA MC88110 USER'S MANUAL 3-7

•

The following is the instruction format for the prot instruction using register with 6-bit
immediate addressing:

~3126......_25 21........20 1.....6.,.....15 11o..,--1....0 __---.,7 6 5 _4 """"'10

1100010 I 0 I 81 101110 I R B 00000 I
Field Description

0 Specifies the destination register. rD.

81 Specifies the source 1 register. rS1.

R Specifies the number of bits to be rotated divided by four;
therefore. the number of bits to be rotated equalsR times 4.

3.1.1.2.2 Register with 1a-Bit Immediate Addressing. This mode of addressing
is used by bit-field instructions (elr, ext, extu, mak, rot, set). The bit field is contained
in r51 and is defined by a 10-bit immediate field in the instruction. The 10-bit immediate
field consists of two 5-bit fields which define the width and offset of the bit field from bit 0
of r81. The bit field is processed according to the specified instruction, and the result is
placed in rD.

INSTRUCTION

31

rS1

DESTINATION REGISTER
rD

3-8 MC88110 USER'S MANUAL MOTOROLA

The following is the instruction format for instructions using register with 10-bit immediate
addressing:

31 26 25 21 20 16 15 11 10 0

1...._1_1_1_1_0_0_ ..I D__....II~__S_1__....I__SU_BOP_CO_DE_-....II~ It&4_1_0_(W_5,_05_) 1

Field Description

D Specifies the destination register, rD.

Sl Specifies the source 1 register, rS1.

SUBOPCODE Identifies the operation to be performed (elr,ext, extu, mak,
rot, set).

IMM10 Contains a ten-bit immediate value which defines the width and
offset of the bit field in rS1:

(W5) Bits 9-5 define the width of the bit field
(05) Bits 4-0 define the offset of the bit field from bit 0 of rS1

3.1.1.2.3 Register with 16·Bit Signed Immediate Addressing. This form of
addressing is used by signed arithmetic instructions which require an immediate source
value. In this addressing mode, the data in rS1 and the 16-bit immediate operand are
processed by an integer unit (for add, sub, and cmp), the multiply unit (for muls), or the
divide unit (for divs), and the result is placed in rD.

The processor either sign- or zero-extends the immediate operand based on the SGN bit
(bit 26) in the processor status register. If the SGN bit is clear, the processor is operating
in unsigned mode and the immediate operands are zero-extended to 32-bits before
being used. If the SGN bit is set, the processor is operating in signed-immediate mode
and the immediate operands are sign-extended to 32-bits.

•

31 15 o

o

MOTOROLA

INSTRUCTION

rS1

rD

31

31 15
r- -SiGF.fOFliERCf--J---------.
t ~~I~~_~Q ----J----------'

o

DESTINATION REGISTER

MC88110 USER'S MANUAL 3-9

The following is the instruction format for instructions using register with 16-bit signed
immediate addressing:

31 26 25 21 20 16 15 0

•
1"--_o_PCO_DE I D_-...I__S_1__I..... SfA_M16 ---J1

Field Description

OPCODE Identifies the operation to be performed (add, cmp, diva,
mula, or aub).

0 Specifies the destination register, rD.

S1 Specifies the source 1 register, r51.

51MM16 Contains a 16-bit immediate value.

3.1.1.2.4 Register with 16·Bit Unsigned Immediate Addressing. This form of
addressing is used by logical and unsigned arithmetic instructions which require an
immediate source value.

In this addressing mode, the data in rS1 and the 16-bit immediate operand are
processed by an integer unit (for addu, and, mask, Of, subu, and xor), the multiply
unit (for mulu), or the divide unit (for divu), and the result is placed in rD. Unsigned
arithmetic instructions operate identically in both the signed and unsigned immediate
modes. The operands for unsigned integer arithmetic operations are zero-extended to
32-bits before being used. The operands for logical instructions are contained in the
lower 16 bits of rS1 and do not need to be extended regardless of the processor mode.

31 15 o

o
IMM16

31
!--iERO-EXTENDED-
-----------------+---------'

INSTRUCTION

,51

31

SOURCE 1 REGISTER
NOT ZERO-EXTENDED
FOR LOGICAL OPERATIONS
(USED WITH 16 BITS OF rSMMM16)

UNSIGNED INTEGER ARITHMETIC
. OPERATION

LOGICAL OPERATION

31 o
rD DESTINAliON REGISTER

3-10 MC88110 USER'S MANUAL MOTOROLA

The following is the instruction format for instructions using register with 16-bit unsigned
immediate addressing:

31 26 25 21 20 16 15 0

1""---_o_PCO_DE I__D _1__81 _..-......1 1M1_6 ----II

Field Description

OPCODE Identifies the operation to be performed (addu, and, dlvu,
mask, mulu, or, subu, or xor).

0 Specifies the destination register, rD.

81 Specifies the source 1 register, r81.

IMM16 Contains a 16-bit unsigned immediate value.

3.1.1.3 CONTROL REGISTER ADDRESSING. Control register addressing is used
for referencing the general control registers and FPU control registers. In this addressing
mode, general-purpose registers are loaded from, stored to, or exchanged with the
control registers using the Ider, ster, xer, fldcr, fster, and fxer instructions.

•
31 15 o

INSTRUCTION

SIGNED IMMEDIATE

rS1

MEMORY ADDRESS

31

SOURCE 2 REGISTER

rS1 +rS2

31

rD DESTINATION REGISTER

MOTOROLA MC88110 USER'S MANUAL 3-11

The following is the instruction format for instructions using control register addressing:

Field Description

0 For load and exchange instructions. specifies the general
register that is to be loaded with the mntents of the specified
control register. Must be zero for store instructions.

51 For store and exchange instructions. specifies the general
register containing the data to be transferred to the specified
control register. Must be zero for load instructions.

OP Identifies whether a load. store or exchange is to be performed
(Idcr, stcr, xcr, fldc" fstcr, or fxcr).

SFU This field specifies which special function unit (SFU) registers are
to be accessed by the instruction: a value of zero specifies the
integer unit control registers; a value one specifies the floating-
point unit control registers. A value of two through seven in this
field causes an 5FU exception for the addressed SFU.

CRSlCRD Specifies the control register to be used. For load instructions,
the control register is the source; for store instructions, the
control register is the destination.

52 Must contain the same value as the S1 field. Serves the same
purpose as the 51 field.

•
31 26 25 21 20 16 15 14 13 11 10

1r---1-0-0-0-0-0-.....I---D----rI---S1--...,~ SFU CRS/CRD
5 4

I 82

o

I

3.1.2 Load/Store/Exchange Addressing Modes
The MC88110 supports three addressing modes for accessing data memory: register
indirect with immediate index addressing, register indirect with index addressing, and
register indirect with scaled index addressing. Each of these addressing modes can load
data from or store data to the general register file or the extended register file. Overflow
conditions in the address calculations are not detected, and results are truncated to 32
bits.

The Id and 5t instructions can access either the general register file (GRF) or the
extended register file (XRF), as specified in the opcode. If the memory access involves
data in the GRF, the operand can be a byte, half-word, word, or double-word. If the
memory access involves data in the XRF, the operand can be a word, double-word, or
quad-word.

3.1.2.1 REGISTER INDIRECT WITH IMMEDIATE INDEX ADDRESSING. For
this type of addressing, a 16-bit immediate index is contained in the instruction. When
the processor is in unsigned mode, the index is zero-extended to 32-bits, and when the
processor is in signed-immediate mode, it is sign-extended. The extended immediate
index is then added to the contents of rS1 and the result is truncated to 32 bits, resulting
in a data memory address. For load instructions, the data at the calculated address is
loaded into rD. For store instructions, the data in rD is stored to the calculated address.

3-12 MC88110 USER'S MANUAL MOTOROLA

79 31r- --~---~--DE-S-TIN-A-TI-ON-R-EG-I-ST-ER----'"
~----'\.r--- ~_---.J

rDorxD

31 15 0

INSTRUCTION

31 0
SIGN OR ZERO SI16EXTENDED

31 0

rS1 SOURCE 1 REGISTER

31 0 •MEMORY ADDRESS rS1 +S116

The following is the instruction format for instructions using register indirect with
extended immediate index addressing:

31 26 25 21 20 16 15 0
J__OPCO_DE I__'D I__S1 I S_116 ------"1

Field Description

OPCODE Identifies the operation to be performed (Id or at), the register file
to be used (general or extended), and the data format (unsigned,
single-word, double-word, quad-word, half-word, unsigned half-
word, byte, unsigned byte).

D Specifies the destination register for load instructions and the
source -register for store instructions.

S1 Specifies the source 1 register, rS1.

5116 Contains a 16-bit immediate index.

3.1.2.2 REGISTER INDIRECT WITH INDEX ADDRESSING. In this addressing
mode, the contents of rS1 are added to the contents of rS2 and the result is truncated to
32 bits, resulting in a data 'memory address. For load instructions, the memory data from
the calculated address is loaded into rD. For store instructions, the data in rD is stored to
the calculated address. For xmem instructions, the memory data from the calculated
address is exchanged with the data in rD.

MOTOROLA MC88110 USER'S MANUAL 3-13

31

rS1 SOURCE 1 REGISTER

31 0

rS2 SOURCE 2 REGISTER

31

MEMORY ADDRESS rS1 +rS2

.. 79 31

rDorxD
~---.Jv---

DESTINATION REGISTER
!._--,"",,",- --

The following is the instruction format for instructions using register indirect with index
addressing:

31 27 26 25 21 20 16 15 5 4 0

I 1 1 1 1 0 0 __D__....I__S1_-..I.... S_UBO_PCO_D_EI__S_2_......II

Field Description

R Identifies the type of register file to be used (general or
extended). For the xmem and Ida instructions, this must be one.

D Specifies the destination register, rD or xD; rD or xD is the
destination register for load instructions and the source register
for store or exchange memory instructions.

S1 Specifies the source 1 register, rS1.

SUBOPCODE Identifies the operation to be performed (Id, st, xmem, Ida), the
rS2 scaling factor, the size of the data being transferred, whether
the data is to be transferred using user or supervisor space, and
whether the store-through option should be used.

52 Specifies the source 2 register, r52.

3.1.2.3 REGISTER INDIRECT WITH SCALED INDEX ADDRESSING. In this
addressing mode, the contents of rS2 are first scaled according to the size of the access
(Le., byte, half-word, word, double-word, or quad-word). The scaled contents of rS2 are
then added to the contents of rS1 and the result is truncated to 32 bits, resulting in a data
memory address. For load instructions, the data from the calculated address is loaded
into rD. For store instructions, the data in rD is stored to the memory address. For the
Ida instruction, the calculated address is loaded into rD. For xmem instructions, the
memory data from the calculated address is exchanged with the data in rD.

Scaling the rS2 operand causes it to shift by 0, 1, 2, 3 or 4 bits (Le., the operand is
scaled by factor of 1, 2, 4, 8 or 16) for byte, half-word, word, double-word, or quad-word

3-14 MC88110 USER'S MANUAL MOTOROLA

accesses, respectively. For byte accesses, the result of this type of addressing is
identical to the result achieved by the register indirect with index addressing (unsealed)
mode, even though the SUBOPCODE fields are distinctly different for the two addressing
modes.

31 0

rS1 SOURCE 1 REGISTER

31 0 •rS2

SCALE

31 0

MEMORY ADDRESS r51 +(r52* SCALE)

rDorxD

79 31
~,---..I\v----,.---------------,
!. __ -.J\v ____ DESTINATION REGISTER 104-----'

The following is the instruction format for instructions using register indirect with scaled
index addressing:

_3...1 2.-.0117 26 25 21 20 16 15 5 4 0I 1 1 1 1 0 0--0--.....I--S1----rI----S-UBO-PCOD-E---.........1~-s2--..;...,1

Field Description

R Identifies the type of register file to be used (general or
extended). For the xmem and Ida instructions. R must be one.

0 Specifies the destination register. rD or xD; rD or xD is the
destination register for load instructions and the source register
for store or exchange memory instructions.

51 Specifies the source 1 register. r51.

SUBOPCODE Identifies the operation to be performed (Id. st, xmem. Ida), the
r52 scaling factor, the size of the data being transferred, whether
the data is to be transferred using user or supervisor space, and
whether the store-through option should be used.

52 Specifies the source 2 register, r52.

MOTOROLA MC88110 USER'S MANUAL 3-15

•

3.1.3 Flow Control Addressing Modes
Flow control instructions can address or reference instruction memory using four
different addressing modes: triadic register addressing, register with 9-bit vector table
index addressing, register with 16-bit displacementlimmediate addressing, and 26-bit
branch displacement addressing. Address calculations for flow control addressing are
performed using signed arithmetic. Overflows are not detected, and results are truncated
to 32 bits. The following paragraphs describe the flow control addressing modes.

3.1.3.1 TRIADIC REGISTER ADDRESSING. This addressing mode is used to
specify the target for jmp and isr or the operands for the tbnd instruction. These flow
control instructions have the same format as computational instructions which use triadic
register addressing: the instruction word has three 5-bit fields which specify two source
registers and a destination register. Also, as with the computational instructions, some
instructions do not use all three of the register selection fields. All bits in unused fields
must be zero for upward compatibility. Triadic register addressing provides access to the
entire 32-bit address space.

3.1.3.1.1 Jump Instructions (jmp, isr). For jump instructions, rS2 contains the
target address of the jmp or jsr instruction. The two least significant bits of r52 are
cleared to ensure that the address is aligned to a word boundary, and program flow is
transferred to the resulting address. The 51 and D fields are not used and must be filled
with zeros.

rS2

TARGET INSTRUCTION
ADDRESS

31

31

SOURCE 2 REGISTER

SOURCE 2 REGISTER CONTENTS

o

o

The following is the instruction format for the imp and Jsr instructions:

31 26 25 21 20 16 15 5 4 °
1__1_1_1_1_0_1_......11--_0_0_0_0_0---.111--_0_0_0_0_0---.l1.... 8U_BO_PCO_D_E &-1__8_2__1

Field Description

SUBOPCODE Identifies the operation to be performed (jmp, Jmp.n, Jsr, or
Jsr.n).

82 Specifies the source 2 register, r52, which contains the target
address of the jmp or Jsr instruction to be executed.

3.1.3.1.2 Trap-Generating Bounds-Check Instruction (tbnd). For the tbnd
instruction, the data in rS1 is compared to the data in r52 using unsigned arithmetic,
and a trap is taken if the rS1 data is greater than the rS2 data. If the trap is taken, the 20
bit address in the vector base register (VBR) is concatenated with the bounds check

3-16 MC88110 USER'S MANUAL MOTOROLA

exception vector and with three trailing zeros resulting in a 32-bit instruction address.
Program flow begins at the resulting address. The D field is not used and must be filled
with zeros.

rS1

rS2

31

SOURCE 2 REGISTER

31

SOURCE 1 REGISTER

rS1 >rS2

o

•
tbnd INSTRUCTION

EXCEPTION VECTOR

31 12
VECTOR BASE VECTOR TABLE BASE

REGISTER ADDRESS

NEXT INSTRUCTION
ADDRESS

The following is the instruction format for the tbnd instruction when using triadic register
addressing:

31

1 1 1 1 0 1 I 00000

21 20

81

16 15

SUBOPCODE

5 4

82

o

MOTOROLA

Field Description

S1 Specifies the source 1 register, rS1.

SUBOPCODE Identifies the operation to be performed (tbnd).

82 Specifies the source 2 register. rS2.

MC88110 USER'S MANUAL 3-17

•

3.1.3.2 REGISTER WITH 9-BIT VECTOR TABLE INDEX ADDRESSING. This
addressing mode is used by the trap-generating instructions tbO, tb1, and tend (not
tbnd).

For the bit-test trap instructions (tbO and tb1), the bit in rS1 specified by the 85 field of
the instruction is tested for either a set or clear condition. For the conditional trap
instruction (tend), rS1 is tested for the condition(s) specified in the M5 field of the
instruction. For both instruction types, if the test condition is true, the trap is taken, the 20
bit address in the vector base register (VBR) is concatenated with the VEC9 field of the
opcode and with three trailing zeros resulting in a 32-bit instruction address. Program
flow begins at the resulting address.

INSTRUCTION

31

rS1 SOURCE 1 REGISTER

CONDITION
TRUE?

INSTRUCTION

VECTOR BASE
REGISTER

NEXT INSTRUCTION
ADDRESS

31I VECTOR TABLE BASE
ADDRESS

3-18 MC88110 USER'S MANUAL MOTOROLA

The following is the instruction format for instructions using 9-bit vector table index
addressing:

31 26 25 21 20 16 15 9 8 0

1l..._1_1_1_1_0_o_.....I....__B5_/MS__...I....__S_1__...I SU_BO_._PCO_DE__.....I VE_C_9 ---....,j1

Field Description

B51M5 For bit tests, the B5 field specifies which bit in rS1 is to be tested.

For conditional tests, the M5 field specifies which of the following conditions
for which to test the contents of rS1:

Bit 25: Reserved; unused by the branch selection logic; must be zero
for upward compatibility.

Bit 24: Maximum negative number [Sign and Zero]
Bit 23: Less than zero (not max) [Sign and (not Zero)]
Bit 22: Equal to zero [(not Sign) and Zero]
Bit 21: Greater than zero [(not Sign) and (not Zero)]

Muftipleconditions can be specified by setting more than one bit in the M5
field as shown in the following table. The most common combinations are
shown, but all combinations are possible.

Bit: .25 ~ 2a 22 2.1
eqO (equals zero) 0 0 0 1 0
neO (not equal to zero) 0 1 1 0 1
gtO (greater than zero) 0 0 0 0 1
ftO (less than zero) 0 1 1 0 0
geO (greater than/equals zero) 0 0 0 1 1
leO (less than/equals zero) 0 1 1 1 0

S1 Specifies the source 1 register, rS1.

SUBOPCODE Identifies the operation to be performed (tbO, tb1, tend).

VEC9 Contains a 9-bit vector number.

3.1.3.3 REGISTER WITH 16·BIT DISPLACEMENT/IMMEDIATE
ADDRESSING. This form of addressing is used by branch (bbO, bb1, and bcnd) and
trap on bound (tbnd) instructions to generate target addresses and test conditions.

3.1.3.3.1 Bit-Test and Conditional Branch Instructions. For the bit-test branch
instructions (bbO and bb1), the bit in rS1 specified by the 85 field of the instruction is
tested for either a set or clear condition. For the conditional branch instruction (bend),
,51 is tested for the condition(s) specified in the M5 field of the instruction. For both types
of instructions,if the test' condition is true, the 16-bit displacement specified in the
instruction is shifted left two positions and sign-extended to 32 bits, and the two least
significant bits are cleared to force word alignment. This 32-bit displacement value is
then added to the branch instruction address, and program flow begins at the resulting
address.

..

MOTOROLA MC88110 USER'S MANUAL 3-19

The following is the instruction format for the bbO, bb1, and bend instructions:

31 26 25 21 20 16 15 0

I OPCODE_·_·_--....-l__B51U_5_.....II......__S1_---...I D_16 1

Field Description

OPCOOE Identifies the operation to be performed (bbO, bbO.n, bb1, bb1.n,
bend, or bend.n)

B51M5 For bit tests, the 85 field specifies which bit in rS1 is to be tested.

For conditional tests, the MS field specifies which of the following
conditions for which to test the contents of rS1:

Bit 25: Reserved; unused by the branch selection logic; must be zero
for upward compatibility.

Bit 24: Maximum negative number [Sign and Zero]
Bit 23: Less than zero (not max) [Sign and (not Zero)]
Bit 22: Equal to zero [(not Sign) and Zero]
Bit 21: Greater than zero [(not Sign) and (not Zero)]

Multiple conditions can be specified by setting more than one bit in the M5
field as shown in the following table. The most common combinations are
shown, but all combinations are possible.

Bit: ~ 2i .aa 22 21
eqO (equals zero) 0 0 a 1 0
neO (not equal to zero) 0 1 1 0 1
gtO (greater than zero) 0 0 a 0 1
ItO (less than zero) 0 1 1 0 a
geO (greater than/equals zero) 0 a a 1 1
lea (less than/equals zero) 0 1 1 1 0

51 Specifies the source 1 register, r81.

016 Specifies a signed 16-bit displacement

3-20 MC88110 USER'S MANUAL MOTOROLA

3.1.3.3.2 Trap-Generating Bounds-Check Instruction (tbnd). For tbnd, the 16
bit immediate operand (unsigned) specified in the instruction is zero-extended and then
compared with the data in r81. A trap is taken if the data in r81 is greater than the
immediate operand. If the trap is taken, the 20-bit address in the VBR is concatenated
with the bounds-check exception vector and three trailing zeros resulting in cI 32-bit
instruction address. Program flow begins at this resulting address.

31 15

INSTRUCTION

rS1

31

SOURCE 1REGISTER

31

ZERO EXTENDED

o

15

IMM16

o •
tbnd INSTRUCTION

EXCEPTION VECTOR

VECTOR BASE
REGISTER

NEXT INSTRUCTION
ADDRESS

31I vEcTOR fABLE BASE
ADDRESS

rS1 >IMM16

The following is the instruction format for the tbnd instruction when using register with
16-bit displacement/immediate addressing:

31 26 25 21 20

I 111110 I 000 0 0 I' 81

16 15

"'16

o

Field I Description

81 ISpecifies the source 1 register, r81.

IMM16 ISpecifies a 16·bit immediate operand.

3.1.3.4 26-BIT BRANCH DISPLACEMENT ADDRESSING. This form of
addressing is used to specify the branch target address for unconditional branch
instructions (br and bsr). The 26-bitdisplacement specified in the instruction word is
shifted left by two bits, sign-extended to 32 bits, and added to the address of the branch.
Program flow is transferred to the resulting address.

MOTOROLA MC88110 USER'S MANUAL 3-21

•

INSTRUCTION

DISPLACEMENT

BRANCH
INSTRUCTION

ADDRESS

TARGET INSTRUCTION
ADDRESS

31

31 25

BRANCH INSTRUCTION ADDRESS

o

The following is the instruction format for instructions using 26-bit branch displacement
addressing:

31

L...--_OP;;;;.;....COD.::....::...:;:E~--II D_26 1

Field Description

OPCOOE Identifies the operation to be performed (br, br.n, bsr, or
bar.n)

- 026 Specifies a 26-bit displacement.

3.1.3.5 RETURN FROM EXCEPTION (rte) AND ILLEGAL OPERATION (illop)
INSTRUCTION ADDRESSING. The rte and illop instructions use an addressing
mode in which no operands are specified. The illop instructions (illop1, illop2, and
illop3) perform no user-visible operation but cause an unimplemented opcode
exception. When the rte instruction executes, the instruction unit restores the machine
state saved in the exception-time registers and resumes normal program execution.

The following is the instruction format for the rte instruction addressing:

31 26 25

111101 I 0000000000

16 15

11111100000
5 4 °
100000 I

The following is the instruction format for the illop instruction addressing:

r-3::;.:,.1 --:;;.;;.26-,.-;.;.25~ ...;..16;;..,_1-5-------------~2 1 0

11-_1_1_1_1_0_1_....1__0_0_0_0_0_0_0_0_0_o 1.... 1_1_1_1_1_1_0_0_0_0_0_0_0_0__~

Field Description

IL Identifies the illegal opcode instruction
01-iIIegal opcode 1
1O-illegal opcode 2
11-iIIegal opcode 3

3-22 MC88110 USER'S MANUAL MOTOROLA

3.2 INSTRUCTION SET SUMMARY
MC88110 instructions fall into seven categories: logical, integer arithmetic, floating-point,
graphics, bit-field, load/store/exchange, and flow control. The following paragraphs
describe these categories and provide operand syntax and operational descriptions for
the instructions in each category. Table 3-1 identifies the abbreviations and symbols
used in the instruction set.

Table 3-1. Instruction Description Notations

Abbreviation/Symbol Description

r1 General register 1

rS1 Source 1 register-General register containing the first source operand

rS2 Source 2 register -General register containing the second source operand

rD Destination register-Register destination that will be modified by the operation or
source of data on a store operation

xS1 Source 1 extended register-Extended register containing the first source operand.

xS2 Source 2 extended register -Extended register containing the second source operand

xD Destination extended register -Extended register destination that will be modified by
the operation or source of data on a store operation

crS Source control register

crD Destination control register

crS/D Source and destination control registers for xcr instruction

fcrS Source floating-point control register

fcrD Destination floating-point control register

fcrS/D Source and destination floating-point control registers for fxcr instruction

016,026 Sixteen and twenty-six bit signed instruction address displacement

IMM16 Unsigned 16-bit immediate operand

SIMM16 Signed 16-bit immediate operand; this operand is sign-extended when the processor is
operating in signed mode, zero-extended when operating in unsigned mode.

SI16 Signed 16-bit immediate index; this operand is sign-extended when the processor is
operating in signed mode, zero-extended when operating in unsigned mode.

VEC9 Offset from the page address contained in the vector base register

M5 Five-bit condition match field. The bits indicate the following conditions:

Bit 25: Reserved
Bit 24: Sand Z
Bit 23: S and (not Z)
Bit 22: (not S) and Z
Bit 21 : (not S) and (not Z)

S: Sign bit (bit 31 of the tested register)
z: Zero bit (logical NOR of bits 30 through 0 of the tested register)

B5 Unsigned 5-bit integer denoting a bit number within a word

05 Unsigned 5-bit integer denoting a bit-field offset within a word

W5 Unsigned 5-bit integer denoting a bit-field width within a word (0 denotes a width of 32)

•

MOTOROLA MC88110 USER'S MANUAL 3-23

•

Table 3-1 Instruction Description Notations (Continued)

Abbreviation Description

06 Unsigned 6-bit integer denoting the number of bits to rotate a pixel

{.n} Delayed branch option. If specified, the next sequential instruction is executed before
the branch target instruction.

{.c} Complement option. If specified, the second operand is ones-eomplemented before it is
used in the operation.

{.d} Double-word option. If specified for the dlvu instruction, double register rS:rS+1 is
used for source 1, and rD:rD+1 is used for the destination register. If specified for the
mulu instruction, double register rD:rD+1 is used ,for the destination register.

{.u} Upper half word option. If specified, the 16-bit logical operation is performed with the
upper 16 bits of the source register.

.car Carry

{.cl} Carry in option. If specified, includes the processor status register (PSR) carry bit in
the arithmetic operation.

{.co} Carry out option. If specified, sets or clears the P5R carry bit based on the result of
the arithmetic operation.

{.clo} Carry in/carry out option. If specified, includes the P5R carry bit in the arithmetic
operation and sets or clears the carry bit based on the result.

.sz Memory size for general register file (default. word):

• b Byte(8 bits).
•bu Unsigned byte (8 bits).
• h Half word (16 bits).
•hu Unsigned half word (16 bits).
.d Double word (64 bits)

.xsz Memory size for extended register file (default. word)

• d Double word (64 bits).
• x Quad word (128 bits).

.fsz Floating-point operand size. The .fsz is a 3-letter designator that corresponds to the
sizes of the 0, 51, and 52 operands, respectively (2-letter designator for D and 52
operands for the conversion instructions). Floating-point operations support mixed
operand sizes; two or three register operands can use two or three of the ".s" or ".d"
qualifiers in any combination to support the operand size mix.

For example: fadd.dds r3,r5,r9
r3 and r5 are double precision, r9 is single precision, .s is single precision, .d is
double precision, and .x is extended precision

.r Graphics pack result field size:

.8 8 bits

.16 16 bits

.32 32 bits

. t Graphics field size (default - word):

.b Byte (8 bits)

.h Half word (16 bits)

3-24 MC88110 USER'S MANUAL MOTOROLA

Table 3-1 Instruction Description Notations (Continued)

Abbreviation Description

.x Graphics saturation option:

.u unsigned ± unsigned. unsigned

.s signed ±signed - signed

.us unsigned ± signed - unsigned

{.usr} User memory option. This option pertains to memory access instructions, allowing the
user memory space to be accessed while in the supervisor mode.

{.wt} Store-through option. This option pertains to the store (st) instrudion, forcing the store
to write to the cache and to memory.

[rS2] Scaled index

x "Don1 care" bit.

+ Add

- Subtract

* Multiply

.. Compare

/ Divide

II Concatenate

« Shift left
.. Repraced by

A AND

V OR

ED EXCLUSIVE OR

< Relational test; true if left operand is less than right operand

> Relational test; true if left operand is greater than right operand

{} Optional

•

MOTOROLA MC88110 USER'S MANUAL 3-25

..

3.2.1 Logical Instructions
The logical instructions provide three common logical operations: AND, OR, and XOR.
An immediate mask instruction is also provided. These instructions operate on the entire
rS1 operand when triadic register addressing is used or on either the lower or upper half
word of the rS1 operand when register with 16-bit immediate addressing is used. In
addition, when triadic register addressing is used, the logical instructions can optionally
complement the rS2 operand before the operation occurs. Table 3-2 lists the logical
instructions.

Table 3-2. Logical Instructions

Instruction Name Operand Operation
Syntax

and{.u} Logical AND rD,rS1,IMM16 rD~ rS1 (lower or upper 16 bits) A IMM16.
Remaining 16 bits of rS1 are copied to rD.

and{.c} Logical AND rD,rS1,rS2 rD ~ rS1 A rS2 (normal or complemented)

mask{.u} Logical Mask rD,rS1,IMM16 rD (lower or upper 16 bits) ~ rS1 (lower or upper
Immediate 16 bits) A IMM16. Remaining bits ~ zero.

or{.u} Logical OR rD,rS1,IMM16 rS1 (lower or upper 16 bits) V IMM16. Remaining
16 bits of rS1 are copied to rD.

or{.c} Logical OR rD,rS1,rS2 rD ~rS1 V rS2 (normal or complemented)

xor{.u} Logical Exclusive rD,rS1,IMM16 rD~ rS1 (lower or upper 16 bits) E9IMM16.
Or (XOR) Remaining 16 bits of rS1 are copied to rD.

xor{.c} Logical Exclusive rD,rS1,rS2 rD ~ rS1 E9 rS2 (normal or complemented)
Or (XQR)

3-26 MC88110 USER'S MANUAL MOTOROLA

3.2.2 Integer Arithmetic Instructions

nteger arithmetic instructions provide the standard arithmetic operations and an integer
compare operation. Signed and unsigned add and subtract, multiply and divide
operations are available. Various combinations of carry bits can be specified for the add
and subtract instructions. Table 3-3 lists the integer arithmetic instructions.

Table 3-3. Integer Arithmetic Instructions

Instruction Name Operand Operation
Syntax

add{.car} Integer Add rD,rS1,SIMM16 rD r rS1 + SIMM16
rD,rS1,rS2 rD r rS1 + rS2

addu{.car} Unsigned Integer rD,rS1,IMM16 rD r rS1 + IMM16
Add rD,rS1,rS2 rD r rS1 + rS2

cmp Integer Compare rD,rS1,SIMM16 rD r rS1 :: SIMM16
rD,rS1,rS2 rD r rS1 :: rS2

dlvs Integer Divide rD,rS1,SIMM16 rD r rS1/SIMM16
rD,rS1,rS2 rD r rS1/rS2

dlvu Unsigned Integer rD,rS1,IMM16 rD r rS1/1MM16
Divide

dlvu{.d} Unsigned Integer rD,rS1,rS2 rD r (rS1 or rS1 :rS1+1)/rS2
Divtde

muls Integer Multiply ,rD,rS1,SIMM16 rD r rS1 * SIMM16
rD,rS1,rS2 rD r rS1 * rS2

mulu Unsigned Integer rD,rS1,IMM16 rD r rS1 * IMM16
Multiply

mulu{.d} Unsigned Integer rD,rS1,rS2 (rD or rD:rD+1) r rS1 • rS2
Multiply

sUb{.car} Integer Subtract rD,rS1,SIMM16 rD r rS1 - SIMM16
rD,rS1,rS2 rD r rS1 - rS2

subu{.car} Unsigned Integer rD,rS1,IMM16 rD r rS1 -IMM16
Subtract rD,rS1,rS2 rD r rS1 - rS2

•

MOTOROLA MC88110 USER'S MANUAL 3-27

•

3.2.3 Bit-Field Instructions
The bit-field instructions set, clear, make, extract, rotate, and find bit fields in the source
operand. Certain bit-field instructions (ext, extu, and mak) can be used to perform right
or left shift operations in addition to their normal functions. A bit field is defined by the
width of the bit field and by the offset of the bit field from bit 0 of the source operand.
Depending on the instruction, the width and offset are specified either in the instruction
word or in the lower ten bits of the rS2 operand. The lower ten bits of rS2 are divided
into two 5-bit fields: bits 4-:-0 specify the offset «as» and bits 9-5 specify the width
«W5». A width of zero specifies all 32 bits. Table 3-4 lists the bit-field instructions.

Table 3-4. Bit-Field Instructions

Instruction Name Operand Operation
Syntax

elr Clear Bit Field rD,rS1,WScOS> rD~ rS1 with bit field clear. Bit field is OS bits
rD.rS1.rS2 from bit zero. WS bits wide.

ext Extract Bit Field rD,rS1.WScOS> rD ~ rS1 bit field. rS1 bit field is 05 bits from bit
rD,rS1,rS2 zero, WS bits wide, sign-extended. The reSUlting

bit field is placed in rD starting at bit o.
extu Extract Bit Field D,rS1,WScOS> o~ rS1 bit field. rS1 bit field is 05 bits from bit

Unsigned rD,rS1,rS2 zero, W5 bits wide, zero-extended. The resulting
bit field is placed in rD starting at bit o.

ffO Find First Bit Clear rD,rS2 rD~ position of rS2 first zero'bit (32 if none
found). The search begins at bit 31 of rS2 (the
most significant bit).

fl1 Find First Bit Set rD,rS2 rD~ position of rS2 first one bit (32 if none
found). The search begins at bit 31 of rS2 (the
most significant bit).

mak Make Bit Field rD,rS1,WSc05> rS1 bit field is W5 bits wide starting at bit zero.
rD,rS1,rS2 rD~ rS1 bit field shifted left by offset 05.

Remaining rD bits cleared.

rot Rotate Register rD,rS1,<OS> rD ~ rS1 rotated right by 05 bits.
rD,rS1,rS2

set Set Bit Field rD,rS1,WS<05> o~ rS1 with bit field set. Bit field is 05 bits from
rD,rS1.rS2 bit zero, W5 bits wide.

3.2.4 Floating-Point Instructions
The floating-point instructions provide standard floating-point arithmetic operations and
integer/floating-point conversions for various operand sizes (single-, double-, and
double-extended-precision). These instructions meet the IEEE standard for binary
floating-point arithmetic (ANSI-IEEE 754-1985). Included in the floating-point instruction
category are instructions which access the floating-point control registers. Table 3-5 lists
the floating-point instructions.

3-28 MC88110 USER'S MANUAL MOTOROLA

Table 3·5. Floating-Point Instructions

Instruction Name Operand Operation
Syntax

fadd. fsz Floating-Point Add rD,rS1,rS2 rD f- rS1 + r52
xD,x51,xS2 xD f- xS1 + xS2

fcmp.fsz Floating-Point rD,rS1,rS2 rD ~ rS1 :: rS2
Compare rD,xS1,x52 rD f- xS1 :: xS2

fcmpu.fsz Unordered rD,rS1,rS2 rD ~ rS1 :: rS2
Floating-Point rD,xS1,x52 rD f- xS1:: xS2
Compare

fcyt.fsz Convert Floating- rD,rS2 rD f- conv9rt{rS2)
Point Precision xD,x52 xD f- convert(xS2)

fdlv.fsz Floating-Point rD,rS1,r52 rD f- r51/rS2
Divide xD,xS1,x52 xD f- x51 IxS2

fldcr Load From rD,fcrS rD +- fcrS
Floating-Point
Control Register

flt.fsl Convert Integer to rD,rS2 rD f- 1Ioat(rS2)
Floating Point xD,rS2 xD f- float{rS2)

fmul.fsz Floating-Point rD,rS1,rS2 rD +- rS1 *rS2
Multiply xD,xS1,xS2 xD +- xS1 ·xS2

fstcr Store to Floating- rS1,fcrD fcrD +- rS1
Point Control
Register

fsub.fsz Floating-Point rD,rS1,rS2 rD f- rS1 - r52
Subtract xD,xS1,xS2 xD f- xS1 - xS2

fxcr Exchange rD,rS,fcrS/D temp +- fcrS/D
Floating-Point fcrS/D +- rS
Control Register rD f-temp

mov{.s} Register-to- rD,xS2 Move the contents of rS2 (xS2) to rD (xD).
mov{.d} Register Move xD,rS2

xD,xS2

Int. fsz Round Floating rD,rS2 rD +- round(rS2)
Point to Integer rD,xS2 rD f- round(xS2)

n Int.fsz Round Floating rD,rS2 rD.f- round_nearest(rS2)
Point to Nearest rD,xS2 rD f- round_nearest{xS2)
Integer

trnc.fsz Truncate Floating rD,rS2 rD.+- trunc(r52)
Point to Integer rD,xS2 rD.+- trunc(xS2)

..

MOTOROLA MC88110 USER'S MANUAL 3-29

•

3.2.5 Graphics Instructions
The graphics instructions accelerate 3D graphics rendering algorithms. Multiple pixels of
varying length are packed into 54-bit fields stored in register pairs. The graphics
instructions process the individual fields within the 54-bit fields in parallel, avoiding the
need to pull them apart and operate on them separately. Table 3-6 lists the graphics
instructions.

Table 3-6. Graphics Instructions

Instruction Name Operand Operation
Syntax

padd.t Pixel Add rD, rS1, rS2 rD:rD+1 +- rS1 :rS1+1 + rS2: rS2+1 modulo 2t

add

padds.x.t Pixel Add and rD, rS1, rS2 rD:rD+1 +- rS1 :rS1 +1 + rS2: rS2+1 modulo 21

Saturate add and saturate

pcmp Z-Compare rD, r51, r52 rD +-r51 :r51+1 :: r52: r52+1

pmul Pixel Multiply rD, r81, r52 rD:rD+1 +- r51 * r52: r52+1

ppack.r.t Pixel Truncate, rD, r81, rS2 rD:rD+1 +- fields of size t from r52: r52+1
Insert, and Pack truncated to t*r/64, packed together, and

concatenated with r51 :r51 +1

prot Pixel Rotate rD, r81,<06> rD:rD+1 +- r51 :rS1+1 rotated left by rS2 or 06
rD, r81, rS2 bits. rS2 or 06 should be an even multiple of 4

psub.t Pixel Subtract rD, rS1, r52 rD:rD+1 +- rS1 :rS1+1 - ,S2: r52+ modulo 2t

subtract

psubs.x.t Pixel Subtract and rD, rS1, r52 rD:rD+1 +- rS1 :rS1+1 - rS2: rS2+1 modulo 2t

Saturate subtract and saturate

punpk.t Pixel Unpack rD, rS1 rD:rD+1 +- fields of size t from r51 are put in
fields of size 21 and placed in rD:rD+1

3-30 MC88110 USER'S MANUAL MOTOROLA

3.2.6 Load/Store/Exchange Instructions
The load/store/exchange instructions perform memory accesses that move data of
various sizes between memory and general registers. Also, this category includes the
instructions that access the integer unit control registers. Table 3-7 lists the
load/store/exchange instructions.

Table 3-7. Load/Store/Exchange Instructions

Instruction Name Operand Operation
Syntax

Id {.sz} Load Register from rD,rS1,SI16 (rD or xD) +- contents of memory location.
Id {.xsz} Memory xD,rS1,SI16 Memory address is rS1 + 5116

Id {.sz}{.usr} Load Register from rD,rS1,rS2 (rD or xD) +- contents of memory location.
Id {.xsz}{.usr} Memory rD,rS1,[rS2J Memory address is rS1 + rS2, or rS1 + (r52 «

xD,rS1,r52 scale). Scale factor = 0, 1, 2, 3, or 4 for byte, half
xD,rS1,[r52] word, word, double word, or quad word,

respectively

Ida (.h) Load Address rD,rS 1,[r52] rD +- r51 +(rS2« scale) 5cale factor = 1, 2, 3,
Ida {.xsz} or 4 for half word, word, double word, or quad

word, respectively. Note that the .b size option
is not available for the Ida instruction

Ider Load from Control rD,erS rD +- erS
Register

st {.sz} 5tore Register to rD,rS1,SI16 Contents of memory location Eo- (rD or xD).
st {.xsz} Memory xD,rS1,SI16 Memory address is r51 + 5116

st {.sz}{.usr}{.wt} 5tore Register to rD,rS1,r52 Contents of memory location Eo- (rD or xD).
st {.xsz}{.usr}{.wt} Memory rD,r51,[r52] Memory address is rS1 + rS2, or rS1 + (r52«

xD,r51,r52 scale). 5cale factor = 0, 1, 2, 3, or 4 for byte, half
xD,rS1,[r52J word, word, double word, or quad word,

respectively

stcr Store to Control r51,erD erD +- rS1
Register

xmem{.bu}{.usr} Exchange rD,r51,r52 rD+- contents of memory location. Contents of
Register With rO,r51,[r52] memory location +- rD. Memory address is rS1 +
Memory r52, or rS1 + (r52« scale). Scale factor = 0 or 2

for byte or word, respectively

xcr Exchange rD,r5,erS/D tempf- r5; rD f- er5/D; ferS/O +- temp Control
Register

3.2.7 Flow Control Instructions
The flow control instructions alter the sequential execution stream. These instructions
include jump, branch and trap instructions. Table 3-8 lists the flow control instructions.

•

MOTOROLA MC88110 USER'S MANUAL 3-31

•

Table 3-8. Flow Control Instructions

Instruction Name Operand Operation
Syntax

Jmp {.n} Unconditional rS2 Program flow is transferred to the address in
Jump rS2.

jsr {.n} Jump to rS2 Program flow is transferred to the address in
Subroutine rS2, and the address of the first instruction after

the Jsr (second if .n) is written to r1.

bbO {.n} Branch on Bit 85,rS1,016 If bit 85 of ,S1 c1ear~ (016 « 2) is sign-extended
Clear and added to the branch instruction address.

Program flow is transferred to the resulting
address.

bb1 {.n} 8ranch on Bit Set 85,rS1,016 If bit 85 of rS1 set, (016 « 2) is sign-extended
and added to the branch instruction address.
Program flow is transferred to the resulting
address.

bend {.n} Conditional Branch M5,rS1,016 If rS1 meets condition(s) M5, (016 « 2) is sign-
extended and added to the branch instruction
address. Program flow is transferred to the
resulting address.

br {.n} Unconditional 026 (026 «2) is sign-extended and added to the
Branch branch instruction address. Program flow is

transferred to the. resulting address.

bsr {.n} Branch to 026 The address of the first instruction after the bsr
Subroutine (second if .n) is written to r1. (026 « 2) is sign-

extended and added to the branch instruction
address. Program flow is transferred to the
resulting address.

IIIop1 Illegal Operation none An unimplemented opcode exception is

IIIop2 unconditionally taken.

IIIop3

tbO Trap on Bit Clear 85,rS1 ,VEC9 If bit 85 of r51 clear, save execution context;
program flow is transferred to V8R II VEC9113
trailing zeros

tb1 Trap on Bit Set 85,rS1,VEC9 If bit 85 of r51 set, save execution context;
program flow is transferred to VBR " VEC9 II 3
trailing zeros

tbnd Trap on Bounds rS1,rS2 If rS1 > IMM16 or r51 > rS2 (unsigned rS1 ,r52

rS1,IMM16 comparison) save execution context; program
flow is transferred to VBR II bounds check vector
II 3 trailing zeros

tend Conditional Trap M5,rS1,VEC9 If rS1 meets condition(s) MS, save execution
context; program flow is transferred to VBR II
VEC9 II 3 trailing zeros

rte Return from none Restore saved context
Exception

3-32 MC88110 USER'S MANUAL MOTOROLA

SECTION 4
FLOATING-POINT IMPLEMENTATION

This section describes the MC8811 0 floating-point function unit (FPU), implemented as
special function unit one (SFU1), and how it conforms to the ANSI/IEEE Standard 754
1985 for binary floating-point arithmetic. Floating-point numeric representations, floating-
point status and control registers, and exception handling for floating-point instructions •
are discussed. For more information on the specific operation of floating-point
instructions and their timing, refer to Section 9 Instruction Timing and Code
Scheduling Considerations and Section 10 Instruction Set.

NOTE

The MC88110 provides the capability to conform to
ANSI/IEEE Standard 754-1985. Although the information
presented in the following paragraphs will aid in
understanding the MC88110 floating-point implementation,
this information is not intended as a complete definition of the
ANSI/lEEE floating-point functionality. The ANSI/IEEE
standard is the governing document for this information.

The MC88110 completely conforms to the ANSI/IEEE standard when used with the
software envelope supplied by Motorola. In addition to providing full conformance with
the exception specification of the ANSI/IEEE standard, the software envelope
implements those features of the ANSI/IEEE standard that are important functionally, but
occur rarely in practice (e.g. NaNs, denormalized numbers). However, the MC88110
floating-point implementation has many features, such as support for mixed-mode
arithmetic, that extend beyond the IEEE standard.

For applications that do not require strict adherence to the IEEE standard, there also is a
time-critical floating-point (TCFP) mode that may be selected that provides default results
for conditions that otherwise cause exceptions. For more information on exception
processing with the MC88110, refer to Section 7 Exceptions. For a complete
description of the software envelope and its interaction with the system software, refer to
the MC88110 Floating-Point Exception Envelope (FPEE) User's Guide.

MOTOROLA MC88110 USER'S MANUAL 4-1

•

4.1 FLOATING-POINT NUMERIC REPRESENTATION

The following paragraphs describe floating-point numeric representations in the
MC88110. Numeric formats, denormalized numbers, unnormalized double-extended
precision numbers, and not-a-numbers (NaNs) are discussed.

4.1.1 Floating-Point Numeric Formats

The MC8811 0 architecture supports three IEEE 754 standard floating-point data formats
(see Figure 4-1): single-precision, double-precision, and double-extended-precision. In
all three formats, numbers are encoded with the following four fields:

1. Sign fiel~a one-bit field which is 0 for positive numbers and 1 for negative
numbers.

2. Exponent fiel~a bit field which represents the exponent of the floating-point
number. The exponent is contained in 8 bits for single-precision numbers, 11 bits
for double-precision numbers, and 15 bits for double-extended-precision numbers.
The exponent is represented in excess 127 notation for single-precision numbers,
in excess 1023 notation for double-precision numbers and in excess 16,383
notation for double-extended-precision numbers. Exponents are converted to
excess 127,1023, or 16,383 notation by adding a bias of 127, 1023, or 16,383,
respectively, to the true exponent of the number.

Two exponent values are reserved for special representations. A biased exponent
value of zero indicates that the floating-point number is a denormalized number
(mantissa nonzero or mantissa zero and leading bit one) or zero (mantissa zero
and leading bit zero). A biased exponent value of all ones (binary) indicates infinity
(mantissa zero) or a NaN (mantissa nonzero).

3. Leading Bit-a bit which represents the integer portion of the floating-point
number. For single- and double-precision numbers this bit is implied and is
referenced as the hidden bit. When the exponent is a nonzero number (but not all
ones), then the leading bit is one for normalized numbers and zero for
unnormalized numbers (see 4.1.4 Unnormalized Double-Extended
Precision Numbers). When the exponent and the mantissa are zero and the
leading bit is zero, the value is zero; however, if the leading bit is one, the value is
denormalized (see 4.1.3 Denormalized Numbers). For single- and double
precision numbers, the hidden bit is assumed to be a one when the exponent is a
nonzero number and a zero when the exponent is zero.

4. Mantissa-a bit field which represents the fractional binary portion of both
normalized and unnormalized floating-point numbers. The mantissa is contained in
23 bits for single-precision numbers, 52 bits for double-precision numbers, and 63
bits for double-extended-precision numbers. In addition, the most significant bit
(MSB), which is the left-most bit, of the mantissa also distinguishes between
signaling and nonsignaling NaNs (see 4.1 ..5 Not-a-Numbers (NaN's»).

4-2 MC88110 USER'S MANUAL MOTOROLA

SINGLE-PRECISION

DOUBLE-PRECISION

DOUBLE-EXTENDED-PRECISION

1 8 23

G:E!]L...-_M_A_N_TI_SS_A_

1 ff 52

~ M_A_N_TI_SS_A _

1 15 1 63

~..... M_AN_T_IS_S_A --I

S:SIGNBIT
EXP: EXPONENT
L: LEADING BIT

Figure 4-1. Floating-Point Data Formats

Table 4-1 contains a summary of biased exponent values and Table 4-2 contains a ••
summary of the floating-point numbers which are recognized by the MC8811 O.

Table 4-1. Biased Exponent Value Summary

Exponent Single-Precision Double-Precision Double-Extended-
Precision

Maximum Exponent (Unbiased) +127 +1023 +16,383

Minimum Exponent (Unbiased) -126 -1022 -16,382

Exponent Bias +127 +1023 +16,383

Exponent Width 8 bits 11 bits 15 bits

Table 4-2. Recognized Floating-Point Number Summary

Sign Bit Exponent (Biased) Leading Bit Mantissa Value

0 Maximum x Nonzero +NaN

0 Maximum x Zero +Infinity

0 o< Exponent < Maximum 0 Nonzero +Unnormalized

0 o< Exponent < Maximum 1* Nonzero +Normalized

0 0 x Nonzero +Denormalized

0 0 1 Zero +Denormalized

0 0 0* Zero +0

1 0 0* Zero -0

1 0 1 Zero -Denormalized

1 0 x Nonzero -Denormalized

1 o< Exponent < Maximum 0 Nonzero -Unnormalized

1 o< Exponent < Maximum 1* Nonzero -Normalized

1 Maximum x Zero -Infinity

1 Maximum x Nonzero -NaN

x: don't care
* not visible for single- and double-precision numbers (hidden)

MOTOROLA MC88110 USER'S MANUAL 4-3

*

•

NOTE

All floating-point operands should be explicitly converted to
the desired precision before use. Explicit conversion does not
carry an associated performance penalty since all floating
point instructions support full mixed-mode operations.
Specifying a precision for an operand that is different from the
precision used to originally generate the operand, without
explicit conversion, is a programming error.

Table 4-3 summarizes the values of the numbers generated by the MC8811 0 that differ
from the representations that are recognized by the MC8811 o. All values in Table 4-3,
except for positive and negative infinity, are generated by the MC88110 only in TCFP
mode (see 4.3.3 Time-Critical Floating-Point (TCFP) Mode).

Table 4-3. Summary of Results Generated by MC88110

Sign Exponent (Biased) Leading Mantissa Results
Bit Bit

0 Maximum 1* 110...0 +Universal NaN (nonsignaling)

0 Maximum 0 Zero +Infinity

0 N/A** N/A** 100...0 +Large Integer

1 Maximum 1* 110...0 -Universal NaN (nonsignaling)

1 Maximum 0 Zero -Infinity

1 N/A** N/A** Zero -Large Integer

not visible for single- and double-precision numbers (hidden)

* * not applicable because the result is an integer, i.e., the +Iarge integer is 01000...0 and the
large integer is 10000...0

4.1.2 Normalized Floating-Point Numbers
The positive and negative normalized number formats are used to represent real
floating-point numbers. The four fields that define normalized floating-point numbers are
derived from the floating-point value as shown in Example 1. This example shows the
normalized representation of the number 1.010 in single-precision format (see Figure 4
2). Note that the mantissa represents all digits to the right of the binary point.

Example 1:

Value = 1.010 = 1.02 = 1.0 * 20

Sign Bit =0
Exponent =0

Biased Exponent (= exponent+127) = +127

Hidden Bit = 1

Mantissa = 0

4-4 MC88110 USER'S MANUAL MOTOROLA

MANTISSA (0)

I

0011111 1 100 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 000

HIDDEN
SIGN EXPONENT BIT (1)

(POSITIVE) (+127) I
I Y

t
BINARY
POINT

Figure 4-2. Single-Precision Floating-Point Representation of 1.0 '

Example 2 shows the normalized representation of the number 1/8 (0.125) in single- II.~.J.
precision format (see Figure4-3):.

Value =0.12510 =0.001 2 =1.0 * 2-3

Sign bit = 0

Exponent = -3

Biased Exponent (= exponent +127) = +124

Hidden Bit = 1

Mantissa = 0

MANTISSA (0)

I

001 1 1 1 1 000

HIDDEN
SIGN EXPONENT BIT (1)

(POSITIVE) (+124) I
I Y

t
BINARY
POINT

Figure 4-3. Single-Precision Floating-Point Representation of 1/8 (.125)

4.1.3 Denormalized Numbers
Denormalization occurs when a number is too small to be represented as a normalized
number in the specified format. For example, the smallest single-precision normalized
number that can be normally represented is 1.0 * 2-126. If this number is divided by four,
the result cannot be represented as a single-precision normalized number.

Denornialized numbers are represented by a biased exponent of zero with a nonzero
mantissa. Also, the double-extended-precision number with the biased exponent zero,

MOTOROLA MC88110 USER'S MANUAL 4-5

the mantissa zero, and the leading bit one is treated as a denormalized number. The
value of the denormalized number can be calculated from the nonzero mantissa using
the foHowing equation:

denormalized number = leading bit.<mantissa> x 2-minimum exponent

where the leading bit is zero for single- and double-precision numbers.

Therefore, to represent 1.0 * 2 -126 + 4, the following conversion is made:

(1.0 * 2-126) + (1.0 * 22) =(1.0 * 2-128) =(0.01 * 2-126)

a
The denormalized result of the preceding calculation is represented with a sign bit of
zero, an exponent of zero (indicating a denormalized number), and a mantissa of .012
(see Figure 4-4). Since the mantissa is 2-2 (.012), the format indicates that the desired
result was 2-128.

MANTISSA (.01 2)

I

00000 000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000

SIGN EXPONENT
(POSITIVE) (-126)

I

Figure 4-4. Example of a .Denormalized Number

When the MC88110 is not operating in TCFP mode and an instruction specifies a
denormalized source operand, a floating-point reserved operand exception occurs when
the instruction begins execution. If the exception handler provided in the software
envelope is used, the handler performs the operation and returns the result to the
destination register of the instruction that caused the exception. The denormalized
source is not affected by this process and remains denormalized.

When the result of an ,operation is too small to be represented as a normalized number
in the specified format, a floating-point underflow exception occurs upon completion of
the instruction. Refer to 4~3 Floating-Point Exceptions for a definition of IEEE
exception conditions and descriptions of the functions performed by the software
envelope for the various exception conditions.

When the MC8811 0 is operating in TCFP mode and a denormalized number is specified
as a source operand, a nonsignaling NaN is returned to the destination register.

4.1.4 Unnormalized Double-Extended-Precision Numbers
Because double-extended-precision numbers have an explicit leading bit of either 1 or
0, there is the possibility of more than one encoding for a given number. For example:

1.1001 * 2011 = 0.1101 * 2100

where the first number is normalized and the second number is unnormalized. Note that
unnormalized numbers are distinguished from denormalized numbers by the fact that
unnormalized numbers have a nonzero biased exponent.

4-6 MC88110 USER'S MANUAL MOTOROLA

The IEEE standard requires that redundant encodings either be disallowed or that they
be indistinguishable from each other. The MC88110 accommodates the second
alternative. When an instruction specifies an unnormalized source operand, a floating
point reserved operand exception occurs when the instruction begins execution. The
exception handler provided in the software envelope then normalizes the number,
performs the operation, and returns the result to the destination register of the instruction
that caused the exception. The unnormalized source is not affected by this process and
remains unnormalized. The MC88110 never generates unnormalized results.

4.1.5 Not-a-Numbers (NaNs)

The IEEE standard provides for the representation of NaNs. There are two types of
NaNs: signaling and nonsignaling. When an instruction specifies either type of NaN as a •
source operand, a floating-point reserved operand exception occurs when the .~

instruction begins to execute; however, signaling NaNs cause the IEEE invalid operation .
user exception handler to be invoked when enabled (see 4.3 Floating-Point
Exceptions).

Signaling NaNs are useful for representing uninitialized variables and uninitialized
memory. The MSB of the mantissa contains a zero for signaling NaNs. Nonsignaling
NaNs are useful for representing the results of invalid operations such as 0/0. The MSB
of the mantissa contains a one for nonsignaling NaNs. The MC88110 only generates
NaNs while in TCFP mode (see 4.3.3 Time-Critical Floating-Point (TCFP) Mode)
and these NaNs are nonsignaling.

4.2 ROUNDING

The FPU supports four rounding modes that can be used for floating-point calculations:
round-to-nearest, round-toward-zero, round-toward-negative-infinity, and round-toward
positive-infinity. Bits 15 and 14 in the floating-point control register (FPCR) (see 4.3.1.2
Floating-Point Control Register (FPCR») are used to select the desired rounding
mode as shown in Table 4-4. To determine the outcome of a rounding operation, the
rounding modes rely on three extra bits of precision which are generated from the
floating-point result being rounded. The rounding modes and extra bits of precision are
consistent with the IEEE standard. The nint and trnc instructions always round as
specified in the instruction description (see Section 10 Instruction Set), regardless
of the current rounding mode.

MOTOROLA MC88110 USER'S MANUAL 4-7

•

Table 4-4. Rounding Modes

FPCR Bits

1 5 14 Rounding Modes

0 0 Round-to-Nearest-The result is rounded up to the next higher number when the extra bits
of precision make the result closer to the higher number than to the original result. If there
is a tie, round to even.

a 1 Round-toward-Zero-Extra bits of precision are truncated.

1 0 Round-toward-Negative-Infinity-A negative result is rounded down to the next more
negative number if any of the extra bits of precision are set. Positive results are truncated.

1 1 Round-toward-Positive-Infinity-A positive result is rounded up to the next more positive
number if any of the extra bits of precision are set. Negative results are truncated.

The three extra bits of precision are defined as follows (see Figure 4-5):
1. The Guard Bit (G)-The bit immediately to the right of the least significant bit (LSB)

of the number being rounded.

2. The Round Bit (R)-The bit immediately to the right of the guard bit.

3. The Sticky Bit (S)-The logical OR of all the bits that would be to the right of the
rC?und bit if the result was infinitely precise.

Note that these bits are not visible in the MC8811 0 programming model.

0131 30 2322 MANTISSA

EXTRA BITS OF PRECISION

I

4-8

101010101010101010101010101010101

3130 2322 0

101010101010101010101010101010101

Figure 4-5. The Guard, Round, and Sticky Bits

NOTE

Note that mixed-mode operations, except in the round
toward-zero mode, can produce more accurate results than
specified by the IEEE standard. Therefore, the round-toward
zero mode should be used when strict compliance with the
IEEE standard is required.

MC88110 USER'S MANUAL MOTOROLA

4.2.1 Round-to-Nearest
Round-to-nearest is the default rounding mode after the MC8811 0 is reset. In this mode,
a result is rounded up to the next higher number when the guard, round, and sticky bits
make the result closer to the higher number than to the intermediate result.

A tie situation occurs when the guard bit is one and the round and sticky bits are zero. In
the case of a tie, rounding depends on the LSB of the result: the result is rounded up if
the LSB is one and is unchanged if the LSB is zero (G, R, andS are truncated).

The following statements summarize the round-to-nearest rounding mode:

If G=Q-Oo Not Round

If G=1 and (R=1 and/or 8=1)-Round Up

If G=1, R=O, and 8=0

and LSB = o-Do Not Round

and LSB = 1-Round Up

4.2.2 Round-toward·Zero
When the round-toward-zero rounding mode is selected, the guard, round, and sticky
bits are truncated.

4.2.3 Round-toward-Positive-Infinity
In the round-toward-positive-infinity mode, only positive results require the use of the
extra bits of precision. If a result is positive and any of the extra bits of precision are set,
the result is rounded up to the next higher number. After rounding, the guard, round, and
sticky bits are discarded. Negative numbers are truncated in this mode.

4.2.4 Round-toward-Negative-Infinity

In the round-toward-negative-infinity mode, only negative results require the use of the
extra bits of precision. If a result is negative and any of the extra bits of precision are set,
the result is rounded down to the next lower number. After rounding, the guard, round,
and sticky bits are discarded. Positive numbers are truncated in this mode.

4.3 FLOATING-POINT EXCEPTIONS

There are three definitions of floating-point exceptions that are referenced in this
manual: (1) the SFU1 exception, (2) floating-point exceptions, and, (3) IEEE exception
conditions. First, the MC88110 hardware automatically uses one exception vector,
defined by the exception vector table to be the SFU1 exceptiorl vector (see Section 7
Exceptions), for all floating-point exceptions detected by the MC88110. Second,
floating-point exceptions are the eight events (privilege violation,underflow, overflow,
etc.) that cause the SFU1 exception to occur under the default operation (out of reset) of.
the MC8811 O. The program residing at the location of the SFU1 exception vector may

•

MOTOROLA MC88110 USER'S MANUAL 4-9

•

then use the bits in the floating-point exception cause register (FPECR) to explicitly
branch to the appropriate routine for each of the eight floating-point exceptions. Third,
there are five exception conditions that are defined by the IEEE standard and are
referenced as IEEE exception conditions.

The software envelope maps seven of the eight floating-point exceptions into the five
IEEE exception conditions as shown in Figure 4-6 in order to provide IEEE conformance.
Note from Figure 4-6 that the software envelope maps the floating-point exceptions
depicted with a dashed line to the corresponding IEEE exception conditions only in
certain cases, whereas it always maps the floating-point exceptions depicted with a solid
line to the specified IEEE exception conditions.

The floating-point privilege violation exception is specific to the MC88110 and does not
map into an IEEE exception condition. The floating-point unimplemented opcode and
floating-point reserved operand exceptions mayor may not map to IEEE exception
conditions, depending on the cause. However, handlers for the floating-point privilege
violation, floating-point unimplemented opcode, and floating-point reserved operand
exceptions are also provided in the software envelope.

FLOATING-POINT
UNIMPLEMENTED OPCODE ------ COULD MAP TO ANY

FLOATING-POINT
PRIVILEGE VIOLATION ------ NEVER MAPS TO ANY

FLOATING-POINT INTEGER --------31.... IEEE INVALID OPERATION
CONVERSION OVERFLOW

FLOATING-POINT COULD MAP TO ANY
RESERVED OPERAND

FLOATING-POINT ------:i~~ IEEE DIVIDE-BY-ZERO
DIVIDE-BY-ZERO

FLO~~~~;~~~ .-=:::::::----------~ IEEE UNDERFLOW

FLOATING-POINT ~--.... _.. _.. - IEEE INEXACT
INEXACT

FLOATING-POINT IEEE OVERFLOW
OVERFLOW

LEGEND:

--.. ALWAYS MAPS
----~ SOMETIMES MAPS

Figure 4-6. Mapping of Floating-Point Exceptions
to IEEE Exception Conditions

The MC8811 0 has the ability to enable user-specified handlers for each of the five IEEE
exception conditions. The software envelope explicitly checks the bits in the FPCR and
passes parameters to ttie system software for branches to the appropriate user routine
when it is enabled and the corresponding IEEE exception condition occurs. The system
software should then perform the branch to the user handler. These routines are
referenced as user routines in this section, but this does not imply that they necessarily

4-10 MC88110 USER'S MANUAL MOTOROLA

execute in user mode as defined by the supervisor/user mode bit of the PSR (see
Section 2 Programming Model).

The system software can use the eight floating-point exceptions and the software
envelope to provide full binary floating-point exception compatibility with the IEEE
standard. However, supervisor software can also enable time-critical floating-point
(TCFP) mode when strict IEEE conformance is not required. In TCFP mode, the
hardware generates default results instead of taking the SFU1 exception when IEEE
exception conditions occur. The software envelope is invoked only if non-IEEE exception
conditions cause the exception.

When the SFU1 exception occurs, the MC88110 suspends all operations, signals the
floating-point exception in the FPECR, and branches to the address specified by the 4
vector base register and exception vector table (see Section 7 Exceptions). The
software envelope can then be invoked to process the exception in a predefined way.

Table 4-5 depicts a summary of all the floating-point instructions of the MC88110 and the
exceptions that each of these instructions can cause. The exceptions are itemized by
setting the corresponding bit in the FPECR. Refer to Section 7 Exceptions for a more
detailed description of exception processing for all exceptions.

Table 4-5. Exceptions Caused by Floating-Point Instructions

Instructions FIOV FUNIMP FROP FDVZ FUNF FOVF FINX FPRV
fmul SFU1 NaN.

disabled, invalid, Underflow Overflow Inexact
odd reg. pair denorm, or

unnorm

fadd SFU1 NaN,
disabled, invalid, Underflow Overflow Inexact
odd reg. pair denorm, or

unnorm

fsub SFU1 NaN.
disabled, invalid. Underflow Overflow Inexact
odd reg. pair denorm. or

unnorm

levt SFU1 NaN,
disabled, denorm, or Underflow Overflow Inexact
odd reg. pair unnorm

femp SFU1 NaN.
disabled, denorm, or
odd reg. pair unnorm

fcmpu SFU1 NaN,
disabled. denorm. or
odd reg. pair unnorm

fit SFU1
disabled, Inexact
odd reg. pair

MOTOROLA MC88110 USER'S MANUAL 4-11

•

Table 4-5. Exceptions Caused by Floating-Point Instructions (Continued)

Instructions FIOV FUNIMP FROP FDVZ FUNF FOVF FINX FPRV

Int rS2<-231 , SFU1 NaN,
rS2>~1-1 disabled, denorm, or Inexact

odd reg. pair unnorm

nlnt rS2<-~1, SFU1 NaN,
rS2>~1-1 disabled, denorm, or Inexact

odd reg. pair unnorm

trnc rS2 <_231 , SFU1 NaN,
rS2>~1-1 disabled, denorm, or Inexact

odd reg. pair unnorm

fdlv SFU1 NaN,
disabled, invalid, rS2=0 Underflow Overflow Inexact
odd reg. pair denorm, or

unnorm

fsqrt Always

mov SFU1
disabled,
odd reg. pair

fldcr, SFU1
fstcr, disabled *

fxcr ***

other FP** Always

* FPRV set when any of these instructions specify any of fcro-fcr61 while operating in the user mode (as
determined by supervisor/user mode bit of PSR-see Section 2 Programming Model). Note that when fcr1
fcr61 are referenced while operating in user mode, the FPRV bit is set but the FUNIMP bit is not.

** "Other FP" refers to all other opcodes (not described above) that map into the SFU1 0PCOd9 space.

*** FUNIMP set when any of these instructions specify any of fcr1-fcr61 while operating in the supervisor mode (as
determined by the supervisor/user mode bit of PSR-see Section 2 Programming Model).

The following paragraphs 'describe the floating-point registers, the handling of floating
point exceptions by the software envelope and the operation of TCFP mode.

4.3.1 Floating-Point Control Registers
The MC8811 0 implements three floating-point control registers as follows:

ferO-floating-point exception cause register (FPECR)

fer62-floating-point status register (FPSR)

fer63-floating-point control register (FPCR)

The floating-point control registers are accessed using the fldcr, fstcr, fxcr instructions
(see Section 10 Instruction Set).

4.3.1.1 FLOATING-POINT EXCEPTION CAUSE REGISTER (FPECR). The
FPECR is written by the hardware whenever floating-point exceptions occur to indicate
which floating-point exception has occurred when the SFU1 exception is taken. Each of
the possible eight MC88110 floating-point exceptions has a corresponding bit in the
FPECR which is set by the hardware when that exception occurs. Some exceptions,
such as overflow and inexact, occur simultaneously and thus multiple bits may be set in

4-12 MC88110 USER'S MANUAL MOTOROLA

the FPECR. If the floating-point unimplemented instruction bit is set, then all other bits in
the FPECR are undefined.

The FPECR is read by the software envelope to determine which floating-point exception
occurred. The FPECR has read/write access and is accessible from supervisor mode
only. The FPECR and its defined bits are shown in Figure 4-7. Refer to section 4.3.2
IEEE Exceptions Conformance for more detail on the causes of these eight
exceptions and actions performed by the software envelope in response to these various
conditions. In the paragraphs that follow, an asterisk (*) denotes the default state after
reset.

[ill] RESERVED FOR FUTURE USE

Figure 4-7. Floating-Point Exception Cause Register

Bits 31-8-Reserved
Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

FIOV-Floating-Point to Integer Conversion Overflow
This bit is set by the MC8811 0 to indicate that the exception was caused by a floating
point to integer conversion overflow.

Q-No floating-point to integer conversion overflow*
1-Exception caused by floating-point to integer conversion overflow

FUNIMP-Floating-Point Unimplemented Instruction
This bit is set by the MC8811 0 to indicate that the exception was caused by a floating
point instruction opcode that is unimplemented in the MC8811 0 hardware. In addition,
when SFU1 opcodes are attempted to be executed when SFU1 is disabled in the PSR
(see Section 2 Programming Model), the FUNIMP bit is set.

Q-No floating-point unimplemented instruction*
1-Exception caused by a floating-point unimplemented instruction

FPRV-Floating-Point Privilege Violation
This bit is set by the MC8811 0 to indicate that the exception was caused by an attempt
to access a privileged (implemented or unimplemented) floating-point control register
while in user mode.

Q-No floating-point privilege violation*
1-Exception caused by a floating-point privilege violation

•

MOTOROLA MC88110 USER'S MANUAL 4-13

•

FROP-Floating-Point Reserved Operand
This bit is set by the MC8811 0 to indicate that the exception was caused by either a
floating-point reserved operand check (nonsignaling NaN, denormalized operand, or
double-extended-precision unnormalized operand was specified) or by an invalid
operation with zero, infinity, or signaling NaN (see 4.3.2.4 Floating-Point
Reserved Operand).

Q-No floating-point reserved operand*
1-Exception caused by a floating-point reserved operand

FDVZ-Floating-Point Divide-by-Zero
This bit is set by the MC88110 to indicate that the exception was caused by the
division of a normalized nonzero number by zero or the division of infinity by zero.
Note that the division of zero by zero and division of NaN by zero do not cause the
FDVZ bit to be set, but instead cause the FROP bit of FPECR to be set.

Q-No floating-point divide-by-zero*
1-Exception caused by floating-point divide-by-zero

FUNF-Floating-Point Underflow
This bit is set by the MC8811 0 to indicate that the exception was caused by a floating
point underflow.

Q-No floating-point underflow*
1-Exception caused by floating-point underflow

FOVF-Floating-Point Overflow
This bit is set by the MC8811 0 to indicate that the exception was qaused by a floating-
point overflow. '

Q-No floating-point overflow*
1-Exception caused by floating-point overflow

FINX-Floating-Point Inexact
This bit is set by the MC8811 0 to indicate that the exception was caused by a floating
point inexact condition. A floating-point overflow condition also causes this bit to be
set.

Q-No floating-point inexact condition*
1-Exception caused by floating-point inexact condition

4.3.1.2 FLOATING-POINT CONTROL REGISTER (FPCR). The FPCR is used to
specify the desired rounding mode and to specify which IEEE floating-point exception
conditions should branch to a user software exception handler. The FPCR defines one
bit for each of the five user-enabled IEEE floating-point exception conditions, two bits for
specifying the rounding mode, and three bits for enabling TCFP mode (see 4.3.3 Time
Critical Floating-Point (TCFP) Mode). The FPCR has read/write access and is
accessible from both user and supervisor modes. The FPCR and its defined bits are
shown in Figure 4-8. In the following paragraphs, an asterisk (*) denotes the default state
after reset.

4-14 MC88110 USER'S MANUAL MOTOROLA

EEl RESERVED FOR FUTURE USE

Figure 4-8. Floating-Point Control Register

Bits 31-22- Reserved
Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

TCFP-Time-Critical Floating-Point Mode •
This bit enables TCFP mode. If this bit is set, the TCFPUNF and TCFPOVF bits are :4

ignored. ,
0-Take SFU1 exception for all IEEE floating-point exception conditions·
1-Return TCFP mode default results for all IEEE floating-point exception conditions

and do not cause SFU1 exception

Bits 20,19-Reserved
Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

TCFPUNF-Time-Critical Floating-Point Underflow
This bit enables TCFP mode for underflow conditions; it is ignored if the TCFP bit is
set.

0-Take SFU1 exception for floating-point underflow condition·
1-Return correctly signed zero for floating-point underflow and do not cause SFU1

exception

TCFPOVF-Time-Critical Floating-Point Overflow
This bit enables TCFP mode for overflow conditions; it is ignored if the TCFP bit is set.

o-Take SFU1 exception for floating-point overflow conditions·
1-Return correctly signed infinity for floating-point overflow and do not cause SFU1

exception

Bit 16-Reserved
Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

RM-Rounding Mode
These two bits are used to by the hardware for rounding floating-point calculations.

Oo-Round-to-nearest·
01-Round-toward-zero
1Q-Round-tQward-negative-infinity
11-Round-toward-positive-infinity

MOTOROLA MC88110 USER'S MANUAL 4-15

•

Bits 13-5-Reserved
Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

EFINV-Enable Invalid Operation User Exception Handler
Q-Oisable invalid operation user exception handler*
1-Enable invalid operation user exception handler

EFDVZ-Enable Divide-by-Zero User Exception Handler
Q-Oisable divide-by-zero user exception handler·
1-Enable divide-by-zero user exception handler

EFUNF-Enable Underflow User Exception Handler
Q-Oisable underflow user exception handler*
1-Enable underflow user exception handler

EFOVF-Enable Overflow User Exception Handler
Q-Oisable overflow user exception handler·
1-Enable overflow user exception handler

EFINX-Enable Inexact Exception Handler
Q-Oisable inexact user exception handler*
1-Enable inexact user exception handler

4.3.1.3 FLOATING-POINT STATUS REGISTER (FPSR). Each of the five IEEE
exception conditions has a corresponding bit in the FPSR that is set by the software
envelope (except for the inexact bit which can also be set by the hardware) when the
exception occurs. The FPSR also defines the XMOD bit which is set by hardware to
indicate that the extended register file has been modified. Neither the hardware nor the
software envelope clear bits in the FPSR; the bits must be cleared by user software. The
FPSR has read/write access and is accessible from both user and supervisor modes.
The FPSR and its defined bits are shown in Figure 4-9. In the following paragraphs, an
asterisk (*) denotes the. default state after reset.

31 17 16 15 5 4 3 2 1 0

[ill] RESERVED FOR FUTURE USE

Figure 4·9. Floating-Point Status Register

Bits 31-17-Reserved
Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

4-16 MC88110 USER'S MANUAL MOTOROLA

XMOD-Extended Register File Modified
This bit is used by the MC88110 to indicate that the extended register file has been
modified.

o-Extended register file not modified·
1-Extended register file modified

Bits 15-5-Reserved
Always read as zero but not guaranteed to be zeros in future imprementations; writes
are ignored.

AFINV-Accumulated, Invalid Operation Flag

This bit is set by the software envelope to indicate that an IEEE invalid operation .'J...
exception condition has occurred. II

Q-No IEEE invalid operation exception condition·
1-IEEE invalid operation exception condition

AFDVZ-Accumulated Divide-by-Zero Flag
This bit is set by the software envelope to indicate that an IEEE divide-by-zero
exception condition has occurred.

Q-No IEEE divide-by-zero exception condition*
1-IEEE divide-by-zero exception condition

AFUNF-Accumulated Underflow Flag
This bit is set by the software envelope to indicate that an IEEE underflow exception
condition has occurred.

Q-No IEEE underflow exception condition*
1-IEEE underflow exception condition

AFOVF-Accumulated Overflow Flag
This bit is set by the software envelope to indicate that an IEEE overflow exception
condition has occurred.

Q-No IEEE overflow exception condition·
1-IEEE overflow exception condition

AFINX-Accumulated Inexact Flag
This bit is set by the hardware to indicate that an IEEE inexact exception condition has
occurred. In addition, the software envelope sets this bit as well as the AFOVF bit
when both the overflow and inexact user handlers are disabled and an overflow
exception condition occurs.

Q-No IEEE inexact exception condition*
1-IEEE inexact exception condition

MOTOROLA MC88110 USER'S MANUAL 4-17

a

4.3.2 IEEE Exceptions Conformance
In addition to providing full conformance with the IEEE exception specification, the
software envelope implements those features of the IEEE standard that are important
functionally, but occur rarely in practice (e.g. NaNs and denormalized numbers). For
applications that do not require strict adherence to the IEEE standard, TCFP mode may
be selected (see 4.3.3 Time-Critical Floating-Point (TCFP) Mode).

When a floating-point exception occurs, the hardware records the exception by setting
the appropriate bit in the FPECR and takes the SFU1 exception. The software envelope
then determines if the floating-point exception can be mapped into the IEEE exception
conditions as shown in Figure 4-6.

The software envelope signals an IEEE exception condition to the user by either causing
a branch (software envelope passes parameters to the system software so that the
system software actually performs the branch) to the user exception handler for that
condition if it is enabled, or by setting the accumulated flag in the FPSR and returning
the IEEE default result. The software envelope first checks the FPCR to see if the
corresponding user exception handler is enabled. If the user handler is enabled, then
information for the branch is passed to the system software. If the user handler is
disabled, the software envelope sets the appropriate accumulated flag in the FPSR and
then calculates the IEEE designated result and returns this result to the destination
register of the instruction that generated the SFU1 exception.

The following paragraphs discuss the eight floating-point exceptions that generate the
SFU1 exception (each one haVing a corresponding bit in the FPECR), the conditions that'
cause them, and how the software envelope responds to them. For a complete
description of the software envelope and its interaction with the system software, refer to
the MC88110 Floating-Point Exception Envelope (FPEE) User's Guide.

4.3.2.1 FLOATING-POINT UNIMPLEMENTED INSTRUCTION. When this
floating-point exception occurs, the hardware sets the FUNIMP bit in the FPECR and
takes the SFU1 exception. This floating-point exception does not directly map into the
IEEE exception conditions; therefore, there are no corresponding accumulated flags to
be set or user handlers to be enabled. The causes of this floating-point exception and
the manner in which the software envelope responds to each are as follows:

1. If a floating-point operation is attempted when SFU1 is disabled (see Section 2
Programming Model), the software envelope signals to the system software that
SFU1 is disabled.

2. If there is an attempt to execute the fsqrt instruction, the software envelope
calculates the square root and returns the result to the destination register. If an
IEEE exception condition is encountered while calculating the square root, then the
software envelope checks the appropriate FPCR bit and branches to the user
handler if the user trap is enabled. If the user trap is disabled, the software
envelope sets the appropriate accumulated flag in the FPSR.

3. If there is an attempt to execute an unimplemented floating-point opcode, the
software envelope signals to the system software that an unimplemented opcode
was attempted to be executed.

4-18 MC88110 USER'S MANUAL MOTOROLA

4. If there is an attempt from supervisor mode to access an unimplemented floating
point control register, the software envelope signals to the system software that an
access violation was attempted.

5. If there is an attempt to access a double-precision floating-point number which is
aligned on an odd-numbered register pair (i.e., r5:r6 instead of r4:r5) in the
general register file, the software envelope transfers the operands to an even
register pair, performs the operation, and returns the result to the destination
register. If an IEEE exception condition is encountered while the software envelope
is performing these actions, then it checks the appropriate FPCR bit and branches
to the user handler if it is enabled. If the user handler is disabled, the software
envelope sets the appropriate accumulated flag in the FPSR.

4.3.2.2 FLOATING-POINT PRIVILEGE VIOLATION. This exception occurs
whenever there is an attempt to access a privileged (implemented or unimplemented) •
floating-point control register from user mode. When this happens, the hardware sets the
FPRV bit in the FPECR and takes the SFU1 exception. The software envelope then
signals to the system software that a privilege violation was attempted. This floating-
point exception does not map into the IEEE exception conditions; therefore, there are no
corresponding accumulated flags to be set or user handlers to be enabled. Note that the
only floating-point registers that are not privileged are the FPSR (fcr62) and the FPCR
(fcr63). The FPECR (fcrO) and the unimplemented floating-point registers (fcr1-fcr61)
are all privileged.

4.3.2.3 FLOATING-POINT TO INTEGER CONVERSION OVERFLOW. This
exception occurs when the source operand of a floating-point to integer conversion
operation (int, nint, or trnc instruction) is too large to be represented as a signed 32-bit
integer. When this happens, the hardware sets the FIOV bit in the FPECR and takes the
SFU1 exception. The. software envelope then maps this exception to the IEEE invalid
operation exception condition. If the EFINV bit in the FPCR is set, the system software is
notified so that it can perform a branch to the user handler. If the EFINV bit is clear, the
software envelope sets the AFINV bit in the FPSR and returns the processor to normal
instruction execution.

MOTOROLA MC88110 USER'S MANUAL 4-19

•

4.3.2.4 FLOATING-POINT RESERVED OPERAND. When this floating-point
exception occurs, the hardware sets the FROP bit in the FPECR and takes the SFU1
exception. The causes of this floating-point exception and the manner in which they are
handled by the software envelope are listed below and encompass both reserved
operand conditions and invalid operation conditions. Notice that causes 1, 2, and 3 are
resolved by the software envelope without mapping into IEEE exception conditions;
therefore, there are no corresponding accumulated flags set or user handlers to be
taken. Note also that the MC88110, unlike the MC88100, does not treat infinity as a
reserved operand. Infinity arithmetic is performed directly in hardware except in the
invalid operation cases described in cause 4.

1. If a nonsignaling NaN is specified as a source operand for any instruction which
returns a floating-point quantity, the software envelope returns a nonsignaling NaN
to the destination register as defined by the IEEE standard and the MC88110
Floating-Point Exception Envelope (FPEE) User's Guide.

2. If a nonsignaling NaN is specified as a source operand for femp, then the software
envelope returns the result string, with all of the unordered bits set, to the
destination register.

3. If a denormalized number or an unnormalized number is specified as a source
operand, the software envelope performs the operation and returns the result to the
destination register.

4. If any of the following occur:
(a) signaling NaN is specified as a source operand

(b) the four combinations of magnitude subtraction of infinities (00 - 00, -00 + 00,
00 + (-00), and 00 - (-00))

(c) the multiplication of (0 x 00)
(d) the division of (0/0) or (00/00)
(e) nonsignaling NaN is specified as a source operand for fcmpu,
(f) NaN is specified as a source for int, nint, or trnc instruction

the software envelope maps this floating-point exception to the IEEE invalid
operation exception condition. If the EFINV bit in the FPCR is set, a branch is
caused (by signaling the system software) to the user handler. If the EFINV bit in
the FPCR is clear, the software envelope sets the AFINV bit in the FPSR and
delivers the IEEE designated result (the universal nonsignaling NaN) to the
destination register of the instruction that caused the SFU1 exception. Note that in
the case (f) above, there is no IEEE designated result and so the results of the
destination register are unchanged.

4.3.2.5 FLOATING-POINT OVERFLOW. This exception occurs when the rounded
result of an operation is too large to be represented as a finite normalized number in the
destination format. The actions taken by the hardware and the software envelope when
a floating-point overflow exception occurs are shown in Figure 4-10.

4-20 MC88110 USER'S MANUAL MOTOROLA

FLOATING-POINT
OVERFLOW EXCEPTION

DETECTED

RESULT
RE-COMPUTED

NO

YES

HARDWARE

SOFlWARE ENVELOPE

COMPUTE IEEE SCALED RESULT;
DATA BLOCK- SCALED RESULT;

DATA BLOCK- OVERflOW TRAP STATUS CODE

SYSTEM SOFTWARE

II

NO

RESUME PROCESSING

YES

DATABLOCK-C1U;
DATA BLOCK-INEXACT TRA'P'STATUS CODE

RETURN TO
SYSTEM SOFTWARE

BRANCH TO OVERFLOW
USER HANDLER AND

RESUME PROCESSING

BRANCH TO INEXACT
USER HANDLER AND

RESUME PROCESSING

MOTOROLA

Figure 4-10. Default Floating-Point Overflow
Algorithm for Software Envelope

MC88110 USER'S MANUAL 4-21

•

When a floating-point overflow condition is detected, the MC8811 0 sets both the FOVF
and FINX bits of the FPECR and takes the SFU1 exception. The software envelope then
scales the source operands appropriately so that the operation can be performed
without causing an overflow exception. The software envelope then recomputes the
original operation. The result is then unsealed so that the overflow result is generated
(without causing the exception).

If the EFOVF bit is set in the FPCR, then the software envelope scales the unsealed
result (by subtracting either 192 (single-precision), 1536 (double-precision) or 24576
(double-extended-precision) to the exponent of the result) and writes it to a predefined
data block in memory. This data block is the mechanism used to transfer parameters to
the system software. In addition, an overflow trap status code is also written to the data
block. Finally, the software envelope returns to the system software, which then should
branch to the user handler for overflow.

If the EFOVF bit is not set in the FPCR, the software checks the value of the EFINX bit in
the FPCR. If the EFINX bit is set, then the unsealed result recomputed by the software
envelope is written to the data block. In addition, an inexact trap status code is also
written to the data block. Finally, the software envelope returns to the system software,
which then should branch to the user handler for inexact.

If the EFINX bit is not set in the FPCR, then the software envelope maps the floating-point
exception for overflow into both the IEEE overflow and IEEE inexact exception conditions
and sets both the AFOVF and AFINX bits in the FPSR. The IEEE-designated result is
then written to the destination register and the original program flow continues.

The IEEE designated result is based on the rounding mode (as set in the FPCR) and the
sign of the intermediate result as follows:

1. Round-to-nearest rounds all overflows to infinity with the sign of the intermediate
result.

2. Round-toward-zero rounds all overflows to the format's largest finite number with
the sign of the intermediate result.

3. Round-toward-negative infinity carries positive overflows to the format's largest finite
number and rounds negative overflows to negative infinity.

4. Round-toward-positive infinity rounds negative overflows to the format's most
negative finite number and rounds positive overflows to positive infinity.

4.3.2.6 FLOATING-POINT UNDERFLOW. This exception occurs when the rounded
result of an operation is too small to be represented as a finite normalized number in the
destination format. The actions taken by the hardware and the software envelope when
a floating-point underflow exception occurs are shown in Figure 4-11.

4-22 MC88110 USER'S MANUAL MOTOROLA

FLOATING·POINT
UNDERFLOW EXCEPTION

DETECTED

RESULT
RE-COMPUTED

NO

YES

HARDWARE

SOFTWARE ENVELOPE SYSTEM SOFTWARE

II

RESUME PROCESSING

COMPUTE IEEE SCALED RESULT;
DATA BLOCK- SCALED RESULT;

DATA BLOCK- UNDERFLOW TRAP STATUS CODE

RETURN TO
SYSTEM SOFTWARE

YES

DATABLOCK-Q;);
DATA BLOCK- INEXACTTRAFfSTATUS CODE

RETURN TO
SYSTEM SOFTWARE

BRANCH TO UNDERFLOW
USER HANDLER AND

RESUME PROCESSING

BRANCH TO INEXACT
USER HANDLER AND

RESUME PROCESSING

MOTOROLA

Figure 4-11. Default Floating-Point Underflow
Algorithm for Software Envelope

MC88110 USER'S MANUAL 4-23

a

When a floating-point underflow condition is detected, the MC8811 0 sets the FUNF bit in
the FPECR and takes the SFU1 exception. The software envelope then scales the
source operands appropriately so that the operation can be performed without causing
an underflow exception. The software envelope then recomputes the original operation.
The result is then unsealed so that the underflow result is generated (without causing the
exception).

If the EFUNF bit is set in the FPCR and precision was lost, then the software envelope
clears the AFINX bit in the FPSR (if it was set), scales the unsealed result (by adding
either 192 (single-precision), 1536 (double-precision) or 24576 (double-extended
precision) to the exponent of the result), and writes the scaled result to a predefined data
block in memory. This data block is the mechanism used to transfer parameters to the
system software. In addition, an underflow trap status code is also written to the data
block. Finally, the software envelope returns to the system software, which then should
branch to the user handler for underflow.

If the EFUNF bit is not set in the FPCR, the software checks to see if a loss of accuracy
has occurred. If it has, the software envelope checks the value of the EFINX bit in the
FPCR. If the EFINX bit is set, then the AFINX bit in the FPSR is cleared (if it was set) and
the unsealed result recomputed by the software envelope is written to the data block. In
addition, an inexact trap status code is also written to the data block. Finally, the software
envelope returns to the system software, which then should branch to the user handler
for inexact.

If the EFINX bit is not set in the FPCR, then the software envelope maps the floating-point
exception for underflow into both the IEEE underflow and the IEEE inexact exception
conditions and sets the AFUNF bit in the FPSR. Finally, the IEEE-designated result is
written to the destination register and the original program flow continues. This last step
also occurs when a loss of accuracy has not occurred.

4.3.2.7 FLOATING-POINT DIVIDE-BY-ZERO. This exception occurs when the
denominator of a floating-point divide operation is zero and the numerator is a nonzero
finite normalized number. When this happens, the hardware sets the FDVZ bit in the
FPECR and takes the SFU1 exception. The software envelope then maps this floating
point exception to the IEEE divide-by-zero exception condition. If the EFDVZ bit in the
FPCR is set, a branch is made to the user handler. If the EFDVZ bit is clear, the software
envelope sets the AFDVZ bit in the FPSR and delivers the IEEE designated result to the
destination register.

4.3.2.8 FLOATING-POINT INEXACT. If the result of a floating-point operation is not
exact (e.g., due to loss of accuracy caused by rounding or loss of significance caused by
overflow), the hardware checks the EFINX bit in the FPCR. If the EFINX bit is clear, the
hardware does not take the SFU1 exception, but it signals the condition by setting the
AFINX bit in the FPSR. If the EFINX bit is set, the hardware sets the FINX bit in the
FPECR and takes the SFU1 exception. The software envelope then maps this floating
point exception to the IEEE inexact exception condition and a branch is made to the user
handler.

4-24 MC88110 USER'S MANUAL MOTOROLA

4.3.3 Time-Critical Floating-Point (TCFP) Mode

Time~critical floating-point (TCFP) mode is the alternative to the,,~efault operation (out of
reset) of the MC8811 0, which takes the SFU1 exception for IEEE· exception conditions.
In TCFP mode, default results are generated directly in hardware rather than taking an
SFU1 exception when an IEEE exception condition occurs. TCFP mode avoids SFU1
exceptions for all but two of the floating-point exceptions (floating-point unimplemented
instruction and floating-point privilege violation).

TCFP mode is selected by three control bits in the FPCR (see Figure 4-8). Setting the
TCFPUNF bit selects TCFP mode operation when an IEEE underflow exception
condition occurs. Setting the TCFPOVF bit selects TCFP mode operation when an IEEE
overflow exception condition occurs. Setting the TCFP mode bit selects TCFP mode II,.,.
operation for all IEEE exception conditions regardless of the values of TCFPUNF and •
TCFPOVF.

The following paragraphs describe the eight floating-point exceptions and the actions
taken in TCFP mode by the hardware and the software envelope when they occur.

NOTE

The eight floating-point exceptions referenced here are
defined a~ those events that cause the SFU1 exception to
occur when the MC88110 is not operating in TCFP mode.
Although six of the eight conditions do not cause MC88110
exception processing to occur when operating in TCFP mode,
they are still defined as exception conditions.

4.3.3.1 FLOATING-POINT UNIMPLEMENTED INSTRUCTION IN TCFP
MODE. Since this floating-point exception does not directly map into the IEEE
exception conditions, the hardware takes the SFU1 exception in TCFP mode when this
floating-point exception occurs. The causes of this floating-point exception and the
manner in which the software envelope responds to each are as follows:

1. If a floating-point operation is attempted when SFU1 is disabled (see Section 2
Programming Model), the software envelope signals to the system software that
SFU1 is disabled.

2. If there is an attempt to execute the fsqrt instruction, the software envelope
calculates the square root and returns the result to the destination register. If an
IEEE exception condition is encountered while calculating the square root, then the
TCFP mode default result for that condition is delivered to the destination register.

3. If there is an attempt to execute an unimplemented floating-point opcode, the
software envelope signals to the system software that an unimplemented opcode
was attempted to be executed.

MOTOROLA MC88110 USER'S MANUAL 4-25

a

4. If there is an attempt from supervisor mode to access an unimplemented floating
point control register, the software envelope signals to the system software that an
access violation was attempted.

5. If there is an attempt to access a double-precision floating-point number which is
aligned on an odd-numbered register pair (i.e., r5:r6 instead of r4:r5) in the
general register file, the software envelope transfers the operands to an even
register pair, performs the operation, and returns the result to the destination
register. If an IEEE exception condition is encountered while the software envelope
is performing these actions, then the TCFP mode result for that condition is
delivered to the destination register.

4.3.3.2 FLOATING-POINT PRIVILEGE VIOLATION IN TCFP MODE. The
hardware and the software envelope carry out the same actions for this floating-point
exception in TCFP mode as when not in TCFP mode (see 4.3.2.2 Floating-Point
Privilege Violation).

4.3.3.3 FLOATING-POINT TO INTEGER CONVERSION OVERFLOW IN TCFP
MODE. This exception occurs when the source operand of a floating-point to integer
conversion operation (int, nint, or trnc instruction) is too large to be represented as a
signed 32-bit integer. When this happens, the hardware delivers the large properly
signed integer (see Table 4-3) to the destination register instead of taking the SFU1
exception.

4.3.3.4 FLOATING-POINT RESERVED OPERAND IN TCFP MODE. The
causes of this exception and the default results provided by the hardware instead of
taking the SFU1 exception are as follows:

1. If a denormalized number, unnormalized number, signaling NaN, or nonsignaling
NaN is specified as a source operand for an add or subtract operation, then the
universal positive nonsignaling NaN (see Table 4-3) is delivered to the destination
register.

2. If a denormalized number, unnormalized number, signaling NaN, or nonsignaling
NaN is specified as a source operand for a multiply or divide operation, then the
universal properly signed nonsignaling NaN is delivered to the destination register.
The sign bit of the result is the exclusive-OR of the sign bits for the two source
operands.

3. If a denormalized number, unnormalized number, signaling NaN, or nonsignaling
NaN is specified as an operand for a compare instruction, then the result string with
all of the unordered bits set is delivered to the destination register.

4. If a signaling NaN or nonsignaling NaN is specified as the source operand for a
floating-point to integer conversion operation, then the large properly signed
integer (see Table 4-3) is delivered to the destination register.

5. When an invalid operation (00 - 00, a x 00, 00/00, or 0/0) is attempted, the universal
nonsignaling NaN (see Table 4-3) is delivered to the destination register.

Table 4-6 summarizes the values generated by the MC8811 0 for the cases when the
FROP bit is set in the FPECR (reserved operand exception) in TCFP mode.

4-26 MC88110 USER'S MANUAL MOTOROLA

Table 4-6. Results for Reserved Operand Exception in TCFP Mode

Operand(s) Compare Convert to Int. Add/Sub MUI/Dlv

±Signaling NaN Unordered Large ± Integer Universal +Non- Universal ±Non-
Signaling NaN Signaling NaN

± Non-Signaling Unordered Large ± Integer Universal +Non- Universal ±Non-
NaN Signaling NaN Signaling NaN

± Unnormalized Unordered 0 Universal +Non- Universal ±Non-
Signaling NaN Signaling NaN

± Denormalized Unordered 0 Universal +Non- Universal ±Non-
Signaling NaN Signaling NaN

Invalid (~, Oxoo, N/A N/A Universal +Non- Universal ±Non-
00/00,0/0) Signaling NaN Signaling NaN

NOTE: For conversion to integer, the sign of the result is the same as the sign of the source
operand. For addition and subtraction the result is correctly signed except for nonsignaling
NaNs, which are always positive. For multiplication and division the result is always correctly
signed-Le., it is the exclusive-OR of the sign bits of the two source operands.

4.3.3.5 FLOATING-POINT OVERFLOW IN TCFP MODE. This exception occurs
when the rounded result of an operation is too large to be represented as a finite
normalized number in the destination format. When this happens in TCFP mode, the
hardware delivers the properly signed infinity to the destination register instead of taking
the SFU1 exception.

4.3.3.6 FLOATING-POINT UNDERFLOW IN TCFP MODE. This exception occurs
when the rounded result of an operation is too small to be represented as a finite
normalized number in the destination format. When this happens in TCFP mode, the
hardware delivers the properly signed zero to the destination register instead of taking
the SFU1 exception.

4.3.3.7 FLOATING-POINT DIVIDE-BY-ZERO IN TCFP MODE. This exception
occurs when the denominator of a floating-point divide operation is zero and the
numerator is a nonzero finite normalized number. When this happens in TCFP mode, the
hardware delivers the properly signed infinity to the destination register instead of taking
the SFU1 exception.

4.3.3.8 FLOATING-POINT INEXACT IN TCFP MODE. This exception occurs
when the result of a floating-point operation is not exact (e.g., due to loss of accuracy
caused by rounding or loss of significance caused by overflow). When this happens in
TCFP mode, the hardware delivers the properly signed inexact result to the destination
register instead of taking the SFU1 exception.

•

MOTOROLA MC88110 USER'S MANUAL 4-27

..

4-28 MC88110 USER'S MANUAL MOTOROLA

SECTION 5
GRAPHICS UNIT IMPLEMENTATION

The MC88110 provides dedicated instructions (executed by on-chip execution units) to
accelerate the processing of special-purpose data types for graphics operations. The
graphics instructions are optimized to support pixel-ori-ented graphics operations, such
as bit-mapped display functions and three-dimensional (3D) graphics rendering
algorithms. The graphics processing unit (GPU) is implemented as special function unit
two (SFU2), and it is specific to the MC8811 0; thus it may not be supported in the same
manner in future 88000 implementations.

This section describes the various operations performed by the GPU and discusses how •
they can be applied to accelerate fundamental two-dimensional (20) and 3D graphics
operations. The forming of useful primitive operations by combining sequences of
instructions is described in this section, and examples are shown of how those primitive
operations may be used in some common graphics algorithms. -However, the user has
the flexibility to use the instructions and algorithms that best fit the application rather than
being restricted to a particular set of predefined graphics algorithms.

Data types and the behavior of specific instructions are described within the context of
example graphics algorithms in this section; the complete definition of the graphics
instructions is provided in Section 10 Instruction Set. The detailed timing for the
execution of the graphics instructions is provided in Section 9 Instruction Timing
and Code Scheduling Considerations.

5.1 GPU OVERVIEW

The operation of the GPU is architecturally compatible with all other MC88110
operations in that operands reside in the general register file and data movement to and
from memory is performed using load and store instructions. Graphics instructions, which
can be issued two at a time, can be intermixed with other integer and floating-point
instructions with no restrictions on instruction alignment. Data dependencies are
detected and interlocked -by the same register scoreboard that is used for all other
instructions. I

The graphics functionality of the MC88110 extends beyond support for incremental
drawing and shading algorithms, which is provided by multipixel add and subtract
instructions. The multipixel add and subtract instructions also have saturation arithmetic
variations with the ability to specify either maximum (or minimum) field values or user
defined saturation limits. The multipixel add and subtract instructions are supplemented
by pixel pack and unpack instructions, which facilitate efficient storing, retrieving, and·
manipulation of images stored in a packed pixel format such as a frame buffer.

MOTOROLA MC88110 USER'S MANUAL 5-1

•

In a typical interactive graphics system, displays are composed of preexisting
background objects, objects being created on the screen, and objects held in memory
(such as fonts) for rapid transfer to the screen. In a complex environment, any or all of
these objects may require anti-aliasing and/or be partially transparent. Combining these
objects into a single image is typically performed by a process called compositing, in
which object images are blended together rather than being tiled or overlaid.

To perform compositing, every pixel of every image must be multiplied by a value
representing its level of transparency. The MC8811 0 provides the capability to perform
interactive compositing of images with the pixel multiply instruction, which can perform a
parallel multiply of each individual red-green-blue (RGB) intensity component of a pixel
in one instruction.

Table 5-1 summarizes the MC88110 graphics instructions and the options available for
each instruction.

Table 5-1. Graphics Instructions

Instruction Name Operand Operation
Syntax

padd.t Pixel Add rD,rS1,rS2 rD:rD+1 {- r51 :r51 +1 + r52: r52+1 modulo 2t

add

padds.x.t Pixel Add and rD,r51,r52 rD:rD+1 {- r51 :r81+1 + r82: r82+1 modulo 2t

Saturate add and saturate; x specifies signed,
unsigned, or mixed arithmetic

pcmp Z-Compare rD,rS1,rS2 rD ~rS1 :r51+1 :: r52: r52+1

pmul Pixel Multiply rD,rS1,r52 rD:rD+1 ~ rS1 * rS2: rS2+1

ppack.r.t Pixel Truncate, rD,rS1,r52 rD:rD+1~ fields of size t from rS2: rS2+1
Insert, and Pack truncated to l*r/64, packed together, and

concatenated with r51 :r51 +1 rotated left by r
bits

prot Pixel Rotate rD,rS1,<06> rD:rD+1 ~ r51 :rS1 +1 rotated left by r52 or
rD,rS1,rS2 06 bits; rS2 or 06 should be an even multiple

of4

psub.t Pixel Subtract rD,rS1,rS2 rD:rD+1~ rS1:rS1+1 - rS2: r52+ modulo 2t

subtract

psubs.x.t Pixel Subtract and rD,rS1,r52 rD:rD+1~ rS1 :r81 +1 - r82: r82+1 modulo 21

Saturate subtract and saturate; x specifies signed,
unsigned, or mixed arithmetic

punpk.t Pixel Unpack rD,rS1 rD:rD+1~ fields of size 1from r51 are put in
fields of size 2t with zero fill and placed in
rD:rO+1

5-2 MC88110 USER'S MANUAL MOTOROLA

All of these instructions (with the exception of pmul) are executed by the pixel add unit
or the pixel pack/unpack unit of the MC88110, each of which operates completely
independently. Each of these execution units executes instructions in a single clock and
can accept a new instruction on every clock. The pmul instruction is executed in the
multiply execution unit of the MC8811 O. It is subject to the same issue restrictions and
latency times as all other multiply instructions.

No control registers are associated with the GPU. The only exception generated as the
result of executing a graphics instruction is the graphics unimplemented opcode
exception. This exception is generated if SFU2 is disabled (bit 4 of PSR set; see
Section 2 Programming Model) and execution of an SFU2 instruction is attempted.
This exception also occurs if an odd register is specified for a double-word operand, or if
execution of any undefined SFU2 instruction is attempted. Refer to Section 7
Exceptions for a more detailed description of exception processing.

5.2 GRAPHICS DATA TYPES

Operands for all graphics instructions are located in the general register file, providing
the graphics instructions with the same register flexibility as all other instructions. All
graphics instructions have the capability to operate on 64-bit values, which allows
multiple pixels to be processed with a single instruction. Double-word operands used in
graphics instructions must be aligned in even-numbered register pairs (e.g., r4:r5 rather
than r5:r6) with the first register (the even one) specifying the register pair in the
instruction syntax.

Graphics data is represented by packed bit fields that are 4, 8, 16, or 32 bits wide to
reduce storage and memory bandwidth requirements. The MC88110 graphics
instructions operate in parallel on the individual pixel fields packed into a 64-bit double
word value. This parallel operation on packed pixels avoids the need to extract the
individual fields from the data structures for performing many graphics operations.

The following paragraphs summarize the organization of data in general registers for the
MC88110 and describe how the specific options of the graphics instructions use the
general registers to manipulate some common graphics data types.

5.2.1 General Data Types
Figure 5-1 depicts the general data types for packed bit fields that are supported by the
MC88110. It shows how the MC8811 0 interprets packed nibbles, packed bytes, packed
half-words, and packed words. The width of the fields for pixel add/subtract or
pack/unpack instructions is defined by the t value specified with the instruction syntax
(.n for nibble, .b for byte, .h for half-words, and blank for word). These fields can be
represented as signed or unsigned integers, fractional values, or, in the case of the
pcmp instruction, floating-point values as an arbitrary convention chosen by the user to
simplify the implementation of data structures.

II

MOTOROLA MC88110 USER'S MANUAL 5-3

32-BIT PACKED NIBBLES

31 2423 1615 8 7 0

32-BIT PACKED BYTES I BYTE I BYTE I BYTE I BYTE I
63 5655 4847 4039 32

N:11
BYTE

I
BYTE

I
BYTE

I

BYTE

I
64-BIT PACKED BYTES

BYTE BYTE BYTE BYTE

31 2423 1615 8 7 0
31 1615 0

32-BIT PACKED HALF-WORDS I HALF-WORD I HALF-WORD I
63 4847 32

N:11
HALF-WORD

I

HALF-WORD

I64-BIT PACKED HALF-WORDS
HALF-WORD HALF-WORD

31 1615
63 32

N:11
WORD

I•
64-BIT PACKED WORDS

WORD

31 0

Figure 5·1. Packed Data Organization in General Registers

The pixel add/subtract instructions perform integer operations on fields of either 8, 16,. or
32 bits contained in a register pair. Although 4-bit fields may not be explicitly specified by
the pixel add/subtract instructions they can be first unpacked into a-bit fields and then
added/subtracted.

The pixel pack/unpack instructions operate on data fields that are 4, 8, or 16 bits wide
within a register pair. Because fields of 32 bits are easily manipulated by other 88000
instructions, the graphics instructions require no additional support for pixel packing or
unpacking operations.

5.2.2 Fixed-Point Data Type Definition

Graphics data is always treated as unsigned integers by the MC8811 0, but it is often
convenient to assign it other forms, at least conceptually. A common practice is to assign
a binary point to an arbitrary bit location, treating the value as a fixed-point number with
both an integer and fractional part. For example, Figure 5-2 shows a 32-bit value
specified as an 8.24 fixed-point number, consisting of an 8-bit integer part in bit locations
31-24 and a 24-bit fractional part in bit locations 23-0. Unsigned integer operations
carried out on fixed-point numbers of this type always give correct results, regardless of
the location of the conceptu-al binary point.

< -------:l>.......<E---------- 24 ------------:l>....
31 24 23 0

Figure 5-2. Example 32·Bit Fixed-Point Number (8.24)

5-4 MC88110 USER'S MANUAL MOTOROLA

Fixed-point representation is useful for maintaining higher precision intermediate values
when interpolating between endpoints on a scan line. This prevents quantization errors
from propagating and causing visible artifacts when the results are written out to the
frame buffer.

When using the pcmp instruction, operand values may be represented as either 32-bit
unsigned integers or positive single-precision floating-point values, depending upon the
dynamic range required. Although the pcmp instruction performs a comparison using
fixed-point unsigned arithmetic, the bit pattern maintains the same relative order when
single-precision positive IEEE floating-point values are interpreted as unsigned integers
in this context.

5.2.3 Other Common Data Types
The MC8811 0 allows a wide variety of formats to be used for graphics data structures.
Data used by the GPU is generally interpreted as either of pixel type (visual image
information represented) or of number type (numerical light intensity value represented). 5
Figure 5-3 illustrates some of the more commonly used data types which can be
implemented by the MC88110; a brief explanation of pixel and number types is
presented in the paragraphs that follow.

MOTOROLA MC88110 USER'S MANUAL 5-5

•

~---------------------:;i>~ 64 BITS

~
PIXEL

~
PIXEL

~ ~4BITS

~8BITS

32-BITTRUE
COLOR PIXELS L..-_---I-__.....L.-_---'-_B_~---'----I.---.a.....-----'

I
PIXEL

'< >- 16BITS

16-BIT FIXED-POINT]NTEGER::}FRACTroN INTEGER :FRACTION INTEGER :FRACTION INTEGER :FRACTIONNUMBERS (8.8) :'::::::::::::::::::::::::::::::::::f::::::::::::-::::;':-:.;".'0'.'.' I I I

I
NUMBER

-< >- 32BITS

32-B~L~I~~~t(~.1~41 l]rrt~9~Bi!:~~!!i~:ii~ii:!iii~ i:i!i:iii!i[i!i!~ffi\9I@Niiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiii] INTEGER 1

I I '
NUMBER

~8BITS

32-BIT FLOATING-POINT
Z·VALUES~..;,;,,;.; ..

I
NUMBER

FRACTION

FRACTION

Figure 5-3. Common Graphics Data Types

5.2.3.1 PIXEL TYPES. Pseudocolor pixels are multibit values used to index a lookup
table that maps them to an RGB color value. The 8-bit value shown in Figure 5-3 allows
256 different color values to be represented by each pixel. Grayscale values represent a
fractional intensity value between 0 and 1. For example, 1 can be a white pixe,1 and 0
can be a black pixel. An a-bit grayscale value provides 256 shades of gray.

True color pixels provide a separate 8-bit field for the intensity of each of the RGB color
components. These can be direct intensity values and are large enough to satisfactorily
represent all colors in most situations. Some applications also include a fourth field,
called alpha (a), which represents either the transparency or the relative coverage of an
object over the pixel. If used to represent transparency, ex is a fractional value between 0
and 1. (e.g., 0 can indicate totally transparent and 1 can indicate totally opaque). If used
to represent relative coverage, 0 can indicate no contribution to the pixel and 1 can
indicate that the pixel color is completely determined from the associated RGB value
Le., the object completely covers the pixel. Intermediate values of ex indicate that the RGB
value must be combined with another RGB value to determine the final color of the pixel.
See 5.4.3 Intensity Scaling and 5.5.4 Compositing for further explanation of the <X

field.

5-6 MC88110 USER'S MANUAL MOTOROLA

For applications where system cost is more critical than color realism, dithered color
pixels can substantially reduce memory size and bus bandwidth requirements relative to
true color pixel representation. As can be seen in Figure 5-3, each color channel of the
dithered color pixel is represented by a 4-bit value, rather than the 8-bit value associated
with the true color data type.

5.2.3.2 NUMBER TYPES. Fixed-point numbers are a convenient representation
when using integers in graphics operations, particularly when performing scaling and
conversion operations with graphics instructions. Figure 5-3 illustrates two fixed-point
formats, 8.8 and 8.24, which can be used as intermediate representations of 8-bit pixels
requiring different degrees of precision. The decimal point may be placed anywhere in
the bit field of fixed-point numbers since it is merely a data abstraction used for the
convenience of the programmer.

Floating-point number representations can be used as Z-buffer values because integer
operations on IEEE single-precision numbers yield correct results in this context (see
5.2.2 Fixed-Point Data Type Definition).

5.3 GRAPHICS INSTRUCTIONS

The following paragraphs provide an overview of the functionality provided by the
graphics instructions of the MC88110. Refer to Section 10 Instruction Set for a
complete definition of the graphics instructions.

5.3.1 Pixel Add/Subtract Operations

The possibility exists that, when adding and subtracting fields, the final result will
overflow (or underflow) the destination field size. For example, adding a 750/0 intensity
value to a 500/0 intensity value would cause the most significant bits to be lost, resulting
in a 25% intensity value. This could produce an unacceptable visual anomaly in the
resultant image if the values were representing color intensity. Therefore, it is more
appropriate for the addition operation to clamp or saturate at the maximum intensity
representable by the field, resulting in a more visually acceptable 1000/0 intensity for this
example.

The mathematics used in many graphics algorithms automatically precludes the
possibility of overflow and therefore does not require saturation arithmetic. An example
is a shading interpolation between two known points, where no overflow is possible.
Other algorithms depend on the wraparound nature of modulo arithmetic and also
require nonsaturating arithmetic. Still other algorithms perform intermediate calculations
that may overflow, but the final operation does not. Thus, some calculations need to be
performed with modulo arithmetic and some with saturation arithmetic.

The pixel add/subtract instructions of the MC8811 0 are executed by a dual 32-bit adder
with controllable carry chains on each 8-bit boundary, allowing multiple add operations
to be performed in parallel. Arithmetic is executed using either modulo arithmetic using
the padd and psub instructions or saturation arithmetic using the padds and psubs

•

MOTOROLA MC88110 USER'S MANUAL 5-7

•

instructions. Saturation arithmetic is performed by substituting the appropriate maximum
or minimum value for any field that overflows or underflows. The pixel compare
instruction, pcmp, is also executed in the pixel add unit.

Without saturation (using the padd and psub instructions), the arithmetic is performed
modulo [destination bit-field size], and bits that overflow (Le., carry or borrow out of) the
destination field are lost.

The following paragraphs describe the three types of saturation arithmetic that are
provided to handle various data representations: 1) unsigned ± unsigned = unsigned,
2) signed ± signed = signed, and 3) unsigned ± signed = unsigned. Overflow (underflow)
detection and the maximum (minimum) field value is different in all three cases. Whether
data is signed or unsigned is a data abstraction only and does not affect any graphics
operation except for saturation. In addition, the setting of user-defined saturation limits is
discussed.

5.3.1.1 TYPES OF SATURATION. Saturation arithmetic results are clamped at a
given value, depending upon how the source operands are specified in the instruction
syntax. The actual binary arithmetic performed in all saturation forms is identical to the
arithmetic performed in the nonsaturation form. The differences between the various
forms of saturation are defined by the method used to detect overflow or underflow in a
field and the value substituted for the result when a field overflows or underflows as
described below:

Unsigned ± unsigned = unsigned: saturation occurs if there is a carry (or borrow in the
case of subtraction) out of the most significant bit (MSB) of the sum. The maximum field
value is 21-1, where t is the value of field size, and is substituted if an addition carries
out. The minimum field value is 0 and is substituted if a subtraction borrows out.

Unsigned ± signed =unsigned: saturation occurs if the MSBs of the two source fields are
different in sign and if the MSB of the signed field is the same as the MSB of the sum; for
rS1 +rS2 = rO, saturation = «(rS1 [MSB] A rS2[MSB]) A !(rS2[MSB] A rD[MSB])) where
rS2 contains the signed field. The maximum field value is 21-1, where t is the value of
field size, and is substituted if addition of a positive number or subtraction of a negative
number saturatese The minimum field value is 0 and is substituted if addition of a
negative number or subtraction of a positive number saturates.

Signed ± signed = signed: saturation occurs if the carry into the MSB of the sum is
different than the carry out of the MSB of the sum. The maximum field value is 2(1-1)-1,
where t is the value of field size, and is substituted if the sum does not carry out. The
minimum field value is -2(1-1) and is substituted if the sum does carry out.

Table 5-2 lists some of the permutations possible when performing saturation arithmetic
on 8-bit fields (t =8).

5-8 MC88110 USER'S MANUAL MOTOROLA

Table 5-2. 8-Bit Saturation Examples

81 82 padd.b padds.u.b padds.s.b padd8.us.b

00 00 00 00 00 00

00 55 55 55 55 55

100 7F 7F 7F 7F 7F

00 80 80 80 80 00

00 AA AA AA AA 00

00 FT FT FT R= 00

55 00 55 55 55 55

55 55 AA AA 7F AA

55 7F D4 D4 7F D4

55 80 os os os 00

55 AA FT FT FF 00

55 FT 54 FF 54 54

7F 00 7F 7F 7F 7F

7F 55 D4 D4 7F D4

7F 7F FE FE 7F FE

7F 80 FF FT R= 00

7F AA 29 FT 29 29

7F FT 7E FF 7E 7E

80 00 80 80 80 80

80 55 os - os os os
80 7F FF FT FT FF

80 80 00 FF 80 00

80 AA 2A FT 80 2A

80 FF 7F FT 80 7F

AA 00 AA AA AA AA

AA 55 FT FF FF FF

AA 7F 29 fT 29 FT

AA 80 2A fT 80 2A

AA AA 54 fT 80 54

AA FT A9 fT A9 A9

FF 00 FF fT FT FF

FF 55 54 fT 54 FF

FF 7F 7E FF 7E FF

FF 80 7F fT 80 7F

FF AA A9 fT A9 A9

FF R= FE FF FE FE

•

MOTOROLA MC88110 USER'S MANUAL 5-9

5.3.1.2 USER-DEFINED SATURATION LIMITS. User-defined saturation limits
allow a result to be kept within a certain range smaller than the normal field range. The
saturation forms of pixel addition and pixel subtraction provided by the GPU can be used
to synthesize this functionality.

A value can be clamped below a user-defined saturation level using the method
described below (see Figure 5-4). The padds.u instruction can be used to add the
difference between the user-defined upper saturation limit and the maximum field value.
Then the psubs.u instruction can be used to subtract that difference. If the value being
clamped was already below the user-defined upper saturation limit, then this operation
would be a NOP and the result would be unchanged, shown by point A in Figure 5-4.
However, if the value being clamped was above the user-defined saturation limit, then
the first add operation would have saturated at the maximum field value, and the subtract
operation would have set the result to the user-defined saturation limit value, as shown
by point B. An analogous operation can be performed to clamp the value above a certain
user-defined lower saturation level.

T MAXIMUM FIELD VALUE
..

UPPER
SATURATION

LEVEL

LOWER
SATURATION

LEVEL

+A -A

B

~a:
9
wu:

MINIMUM FIELD VALUE

Figure 5-4. User-Defined Saturation Limits

5.3.2 Pixel Pack/Unpack Operations
The pixel pack/unpack instructions are executed by a specialized bit-field unit for
packing, unpacking, and shifting pixel or fixed-point data. The pixel pack/unpack
instructions operate in parallel on multiple bit fields within 54-bit operands. The pixel
pack instruction (ppack) accumulates pixel data as it is computed by truncating multiple
fixed-point values from the second source operand, packing the resulting bit fields
together as specified, concatenating them with data from the first source operand, and
rotating the result as specified. The punpk instruction performs the inverse operation by
unpacking bit fields from a 32-bit operand and properly placing them into a 54-bit double
word for subsequent arithmetic calculations.

5-10 MC88110 USER'S MANUAL MOTOROLA

Figures 5-5, 5-6, and 5-7 show representative examples of the ppack, punpk, and
prot instructions, respectively. These operations are explained further in 5.4.2.1
Packing Pixels and 5.4.2.2 Unpacking Pixels.

The ppack instruction performs a format conversion from a high-precision i'1tensity
value to a low-precision pixel value. Intensity values can be 8, 16, or 32 bits and can be
truncated to 4, 8, or 16 bits. The truncated values are concatenated to the least
significant end of rD:rD+1, building a packed pixel value in raster order. Figure 5-5
shows 8/8/8/8 bit nRGS pixels being constructed from their high-precision, 32-bit, fixed
point values.

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

rS1:rS1 +1

rS2: rS2+ 1

rD:rD+1
•

Figure 5-5. ppack.16 rD,r51,r52

The punpk instruction performs a format conversion from a low-precision packed pixel
representation to a high-precision format, providing more dynamic range and allowing
arithmetic calculations to be performed without overflow. The punpk instruction takes 8-,
16-, or 32-bit packed pixel fields and expands them into fields twice as large, right
justified, and zero-filled. Figure 5-6 shows 8/8/8/8 bit nRGB packed pixels being
unpacked into 16-bit fields.

~8->-
31 24 23 16 15 8 7

rS1: rS1 +1

rD:rO+1

Figure 5-6. punpk.b rD,rS1

The prot instruction rotates a 64-bit value to any modul0-4 boundary between 0 and 60
bits. Any rotation count that is not a multiple of 4 is truncated to the next lower multiple of
4. Any count greater than 60 bits is truncated to be less than or equal to 60 in multiples of
4. Figure 5-7 illustrates eight 8-bit pixels being rotated by two pixels (16 bits).

MOTOROLA MC88110 USER'S MANUAL 5-11

•

The prot instruction is intended primarily for rotation of color pixels having a pixel depth
of four bits or greater. Monochrome pixels or pixels represented by less than four bits
can be rotated using the standard 88000 bit manipulation instructions, mak, ext, extu,
and rot.

63 48 47 40 39 32 31 24 23 16 15 8 7

rS1:rS1 +1

rO:rO+1

Figure 5·7. prot rD,rS1,<16>

5.3.3 Pixel Multipl.y Operation

The pmul instruction executes in the multiply execution unit. The mUltiply execution unit
can accept one integer, one floating-point, or one pixel multiplication instruction every
clock.

Unlike the pixel add unit, when carries occur out of each field in the multiplier, they are
not prevented from affecting the next most significant field. The contents of register pair
rS1 :rS1 +1 are multiplied by the contents of register rS2 as if they were full 64- and 32
bit numbers, respectively, as shown in Figure 5-8. Any bits lost as a result of truncating
the product to 64 bits are discarded, with no indication of loss of significance. Note that
Figure 5-8 shows an example with zeros in the upper bytes of each field. This is not a
hardware requirement, but it is one way for the programmer to prevent the results of one
multiply from overflowing and affecting the results of the next field. See 5.5.4
Compositlng for more information on how to use the pmul instruction.

63 48 47 32 31 16 15 8 7 0

AX ,52

5-12

Figure 5-8. pmul rD,rS1,rS2

MC88110 USER'S MANUAL MOTOROLA

5.4 PRIMITIVE OPERATIONS
The GPU instructions are designed to be general enough to support a wide variety of
graphical primitive operations, including rendering and shading operations. Since the
graphics instructions were not intended to directly implement any particular set of
algorithms, examples are provided to illustrate how to implement various graphics
algorithms.

Graphics instructions perform four classes of operations: arithmetic (pixel add/subtract),
format conversion (pixel pack/unpack), intensity scaling (pixel multiply), and coordinate
comparison (pixel compare). The operation of the graphics instructions are explained in
the following paragraphs in terms of the types of operations they perform in a graphics
context. For a detailed description of each instruction's operation, see Section 10
Instruction Set.

5.4.1 Arithmetic Operations
Many graphics algorithms have been optimized for incremental modification, in which •
new values are generated by adding or subtracting an error term from a previous value.
This type of optimization emphasizes addition and subtraction operations that generally
execute quickly. The pixel add instructions can simultaneously perform several addition
or several subtraction operations, further increasing the performance of these types of
algorithms.

5.4.1.1 INTERPOLATION. Interpolation is a common operation used in incremental
algorithms, such as Gouraud shading. The nonsaturation version of the padd instruction
can be used for these types of algorithms. Shading interpolation can be performed by
incrementally adding delta values-to each of the RGB intensity ~omponents of sequential
pixels, resulting in a linear change in color b~tween a set of endpoints. Since the
incremental delta values are computed from bounded endpoints, overflow cannot occur
during the summing operation. A sample instruction sequence -for Gouraud shading is
described in section 5.5.1 Gouraud Shading.

5.4.1.2 INTENSITY SUMMIN'G. When calculating intensity at a point where there
may be several light sources and their total contribution exceeds the largest value that
can be represented, the saturation version of the padd instruction can be used to
ensure that a visually acceptable result is obtained. In this case, padds can clamp the
maximum value to either the maximum representable value or some other user-defined
value as described in 5.3.1.2 User-Defined Saturation Limits.

5.4.2 Format Conversion
Modeling or display list data is generally stored in a database with a high degree of
precision. To ensure display fidelity, this computational precision must be maintained
through the transformation and rendering operations until the image is ready to be
displayed; then the pixel data is truncated to the depth of the frame buffer. The ppack
instruction is used to truncate pixel data and pack it tightly into a format that matches the
structure of the frame buffer.

MOTOROLA MC88110 USER'S MANUAL 5-13

•

Sometimes images are not generated from an internal data structure or display list, but
are built from existing images already in the frame buffer or in memory in packed form. In
this case, in order not. to lose precision and generate objectionable artifacts in the final
image, the source pixels must be expanded to a higher precision format. The punpk
instruction can be used to unpack pixels from a frame buffer format and expand their
precision.

5.4.2.1 PACKING PIXELS. As an image is rendered and pixels are generated, there
is a precision conversion step in which the computed color value of the pixel is truncated
to the depth of the frame buffer. The ppack instruction performs this precision
conversion and combines the resulting value into a packed structure alongside adjacent
pixels. The ppack instruction performs this operation in raster order, allowing the
display image to be built up as it is computed. Data can then be written to the frame
buffer after 64 bits of image are assembled, thus reducing bus traffic to the frame buffer.

Figure 5-9 illustrates the operation of the ppack.32.h r2,r2,r1 instruction. Grayscale or
pseudocolor pixels in 8.8 fixed-point format are shown being packed before being
written to an 8-bit frame buffer. The packed pixels are being accumulated in r2:r3, with
PO-P3 having been generated in a previous operation. P4-P7 have been rendered in
8.8 format, with ppack truncating their fractional parts and concatenating the integer
portion to the previously generated pixels in raster order. After the ppack operation is
complete, the eight pixels in r2:r3 are ready to be written to the frame buffer.

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7

r2: r3

r1

r2: r3

Figure 5-9. ppack.32.h r2,r2,r1

There are six possible variations of the ppack instruction. Figures 5-9-5-14 show the six
possible combinations of the ppack instruction as well as some possible applications
for each.

The ppack.8 instruction can be used to build 16-bit 4/4/4/4 aRGB pixels from 4.28-bit
fixed-point intensity values (see Figure 5-10).

5-14 MC88110 USER'S MANUAL MOTOROLA

Figure 5-10. ppack.8

The ppack.16 instruction can be used to build 32-bit 8/8/8/8 aRGS pixels from 8.24-bit
fixed-point intensity values (see Figure 5-11). ..

r52: r52 +1

rS1:rS1 +1

o40 39 32 31 24 23 16 15 8 763 56 55

Figure 5-11. ppack.16

The ppack.16.h instruction can be used to build 16-bit 4/4/4/4 aRGS pixels from 4.12
bit fixed-point intensity values (see Figure 5-12).

6360 3 0

Figure 5-12. ppack.16.h

MOTOROLA MC88110 USER'S MANUAL 5-15

The ppack.32 instruction can be used to build 64-bit 16/16/16/16 <lRGS pixels from
16.16~bit fixed-point intensity values (see Figure 5-13).

63 48 47 32 31 16 15 o
x rS1:rS1 +1

•

rS2:rS2+1

rD:rD+1

Figure 5-13. ppack.32

The ppack.32.b instruction can be used to build 16-bit 4/4/4/4 (lRGS pixels from 4.4-bit
fixed-point intensity values. This variation can also be used to convert 32-bit 8/8/8/8
<lRGS pixels to 4/4/4/4 pixels (see Figure 5-14).

Figure 5-14. ppack.32.b

5.4.2.2 UNPACKING PIXELS. The punpk instruction takes a packed bit field and
expands it into a bit field twice as large. The original value is right justified in the
expanded field, and the remainder of the expanded field is zero-filled. The original value
can also be placed in the upper half of the expanded field by following the punpk
instruction with a prot instruction. This procedure is useful during incremental algorithms
where a difference value must be added to the color value of a previous pixel. After
performing the desired calculations, the integer result can then be obtained using the
ppack instruction. The punpk instruction can also be used to prevent overflow in
scaling operations by assuring that the destination field is large enough to hold the
largest possible result. The punpk instruction can operate on source fields of 4, 8, or 16
bits in length where the field length is specified as the t value in the instruction syntax

5-16 MC88110 USER'S MANUAL MOTOROLA

Figures 5-15, 5-16, and 5-17 illustrate various permutations of the punpk instruction.
Figure 5-18 demonstrates how the prot instruction is used to unpack pixels into the
integer rather than the fractional portion of the destination bit field.

.. 4
31 28 3 0

Figure 5-15. punpk.n

Figure 5-16. punpk.b

•

MOTOROLA

0000 0000

Figure 5-17. punpk.h

MC88110 USER'S MANUAL 5-17

~8~

31 24 7

• Figure 5-18. punpk.b followed by prot by 8

5.4.3 Intensity Scaling
Operations such as compositing require intensity values to be scaled by an a value
represented by a fractional value between 0 and 1. Although the pmul instruction
operates only on unsigned integers, these can be interpreted as fixed-point fractional
values, as described in 5.2.2 Fixed-Point Data Type Definition. By performing a
punpk operation on the multiplicand, integer values can be converted to fractions.
When multiplied by the alpha value, the proper result is obtained. There is no possibility
of overflow during the multiplication because the punpk operation automatically
provides the necessary resolution to hold the largest possible result. The integer portion
of the result can then be extracted using the ppack instruction.

The example shown in Figure 5-19 illustrates an 8/8/8/8 packed aRGB pixel being
unpacked, scaled by a fractional value, then packed and combined with a previously
computed pixel.

5-18 MC88110 USER'S MANUAL MOTOROLA

punpk.b r2,r1
pmul r2,r2,r4
ppack.32.h r6,r6,r2

punpk

x
pmul

ppack

•

Figure 5-19. Intensity Scaling Example

5.4.4 Coordinate Comparison
When rendering 3D objects, their front-to-back hierarchy must be maintained in the 2D
projection to the display. A common method of preserving this order is to store the Z-axis
coordinate of each pixel. These coordinates can then be compared to determine which
pixel is .frontmost. The pcmp instruction simultaneously compares two pairs of 32-bit
coordinates, which can be represented as either a 32-bit unsigned integer or a positive
single-precision floating-point value. Each of the two comparisons may return either
less-than «) or greater-than-or-equal-to (;~), resulting in four possible combinations.

The pcmp instruction returns an a-bit result string; four bits indicate which of the four
possible conditions was met, and four bits indicate the complement of those bits.
Conditional branching on the results of a pcmp instruction can be implemented in two
ways: with a sequence of conditional branches or with a jump table. Section 5.5.2
Hidden-Surface Removal discusses some of the trade-offs with both methods. Table·
5-3 lists the logical definitions of each bit in the result string for the pcmp instruction.

MOTOROLA MC88110 USER'S MANUAL 5-19

Table 5·3. pcmp Result String

Register Condition
BIt(s)

rO[3:0]: 0

rO[4]: (r51:r51+1[63:32] ~ r52:r52+1[63:32)) and (r51:r51+1[31:0] ~ r52:r52+1[31:0])

rO[5]: (r51 :r51 +1[63:32] < r52 :r52+1[63:32)) and (r51 :r51 +1[31 :0] < r52 :r52+1[31 :0])

rO[6]: (r51 :r51 +1[63:32] ~ r52:r52+1[63:32]) and (r51 :r51 +1[31 :0] < r52:r52+1[31 :0])

rO[7]: (r51 :r51 +1[63:32] < r52:r52+1[63:32]) and (r51 :r51 +1[31 :0] ~ r52:r52+1[31 :0])

rO[8]: IrO[4]

rO[9]: IrO[5]

rO[10]: IrO[6]

rO[11]: IrO[7]

rO[31 :12]: 0

• 5.5 ACCELERATED FUNCTIONS

The graphics extensions of the MC88110 are targeted at improving performance for
several of the most common 3D rendering and display maintenance operations. These
operations include Gouraud and incremental Phong shading, Z-buffering, compositing,
and pixel block transferring.

Several of these operations are discussed in the following paragraphs, and examples
are given of how the graphics instructions may be used to implement some of these
algorithms.

5.5.1 Gouraud Shading

When polygons are rendered, a color is computed for each vertex of the polygon. The
interior of the polygon could be filled with a solid color, usually computed as the average
color of the polygon vertex values. This technique is called flat shading, and, although it
gives a rudimentary illusion of a solid object and is relatively simple to compute, it
produces visible facets that detract from the desired realistic appearance.

Gouraud shading is a more visually accurate method of modeling solid objects. Gouraud
shading first interpolates the colors along the edges of the polygon between the vertices,
then interpolates across the face of the polygon between edges. This bilinear
interpolation removes much of the objectionable faceting and discontinuities found in flat
shaded images, creating a more realistic image.

In the Gouraud algorithm, once the edges of the polygon have been interpolated, the
interior is filled by interpolating between edges along scan lines. Figure 5-20 shows both
the pseudocode and graphical representation for this operation. This example is for an
8/8/8/8 aRGB frame-buffer format, with intermediate color values maintained in an 8.24
fixed-point format.

5-20 MC88110 USER'S MANUAL MOTOROLA

for each scanline do {
compute AaRGB • (Prt(aRGB) - Ptt(aRGB» + (Yrt - Ytt)
from left to right endpoints do {

Pn = padd(Pn-1 (aRGB),AaRGB)
ppack(Pn)
if (two pixels have been packed together)

write double word out to frame buffer

63 56 55 32 31 24 0

1~:~:~;t~;~G~?~;~t:~; .G0 Ij1~~1~~~~~1~~I~~1~j~~11~~1~~~ .B0 I=:~:}~{=;::;:::.:..=t~;~:~;~o:.--;~ ----a.="=:.:O:.=~ _

+
padd

.&G .aB

ppack

Figure 5-20. Interpolating and Building Pix,els

•
The following code is an example implementation of the inner loop of the Gouraud
shading algorithm shown in the pseudocode of Figure 5-19, unrolled to a depth of two.
This loop computes two 32-bit aRGB pixels in each iteration. Each loop executes 12
instructions in six clocks generating a new pixel every three clocks (16.7 million pixels
per second at 50 MHz assuming cache hits).

clock:
g_loop
001C
0020
0024
0028
002C
0030
0034
0038
003C
0040
0044

023 4
I-I
I-I I-I

I-I
I-I

1-·1
I-I

I-I
I-I

I-I
I-I

5
padd AR,AR,DAR
st.d POP1,RO,PPTR
ppack.16 POP1 ,POP1 ,AR
add PPTR,PPTR,8
padd GB,GB,DGB
sub N,N,2
ppack.16 POP1 ,POP1 ,GB
padd AR,AR,DAR
ppack.16 POP1 ,POP1 ,AR
padd GB,GB,DGB

I-I ppack.16 POP1 ,POP1 ,GB
I-I bend neO,N,g_loop

MOTOROLA MC88110 USER'S MANUAL 5-21

;compare new point to Z-buffer value
;both pixels <, copy both to frame buffer
;both pixels ~, move to next pair
;first pixel <, copy to frame buffer
;second pixel <, copy to frame buffer

II

5.5.2 Hidden-Surface Removal

One of the simplest algorithms for solving the hidden-surface problem is the Z-buffer. For
each pixel displayed, a depth value (Z-axis distance from the eye) is maintained along
with the color value. When a new polygon is rendered, the Z-value for each pixel is
computed and compared to the existing value in the Z-buffer. If the Z-value indicates that
the new pixel is closer to the viewer than the pixel currently in the Z-buffer, the existing z
value and color value is replaced. Figure 5-21 describes a Z-buffer compare algorithm.
Note that this algorithm is often combined with the Gouraud shading algorithm, but it is
described separately here for clarity.

for each polygon P in the polygon list do {
for each pixel in the polygon P(x,y) do {

compute Z-depth of P(x,y)
if Z-depth < Z-buffer(x,y) then {

compute color(x,y). color of P(x,y)
Z-buffer(x,y) • Z-depth

}
}

Figure 5-21. Example Z-Buffer Algorithm

Using the pcmp instruction, two 32-bit Z-values can be compared in parallel. The
comparison is performed using unsigned arithmetic, allowing Z-values to be represented
either as unsigned integers or as positive single-precision floating-point numbers. See
5.2.2 Fixed-Point Data Type Definition for a description of possible Z-buffer
coordinate data types. Each pair may return either < or ~, resulting in four possible
compare combinations.

The following test method explicitly tests for the four possible combinations and
branches to the appropriate routine. Due to the continuity of objects being rendered,
adjacent pixels are generally either both visible or both obscured. Therefore, in the
majority of cases, the sequential test takes either the first or second branch, resulting in
an average of 1.5 clocks of execution time.

seCLtest
pcmp CCR,newZ,Zbufr
bb1 4,CCR,repl_both

bb1 5,CCR,repl_"one
bb1 6,CCR,repl_first
bb1 7,CCR,repl_secnd

rapi_both
xxx rD,r51,r52

A jump table method uses the result string to directly index into the four routines. The
mak instruction masks off the complement bits and shifts the result string as required to
allow enough room for the largest target routine. Using a jump table as shown in the
following code segment take~ a longer but more consistent amount of time (4 to 5 clocks)

5-22 MC88110 USER'S MANUAL MOTOROLA

to execute (depending upon instruction alignment and the state of the target instruction
cache), as compared to the 1-6 clocks of the previous sequential test method.

jmp_table
bsr.n @next ;put PC of next instruction in r1
pcmp CCR,newZ,Zbufr ;compare new point to Z-buffer value
@next
subu r1 ,r1 ,(1 «SCALE)-16 ;adjust PC to point to first routine
mak CCR,CCR,8<5CALE> ;SCALE =LOG2(size of largest routine)
addu r1 ,r1 ,CeR ;add offset to target routine
jmp r1

repl_none
xxx rD,r51,r52

5.5.3 Pixel Block Transfer (PixBit)

In a display system, it is convenient to move rectangular blocks of pixels to and from the •
frame buffer-an operation called a pixel block transfer (PixBlt). The PixBlt operation is
not used for rendering primitives directly, but is used rather to make portions of off-
screen bit maps visible and to save and restore pieces of the screen for window
management, menu handling, scrolling, and other display maintenance functions.

A PixBlt function may include some or all of the following operations: reading the source
and destination pixel maps, masking, rotating, and logically combining them, and writing
the result to the frame buffer. The GPU instruction prot, the user-mode cache control
features, and the base 88000 architecture bit field and logical instructions provide a
flexible and efficient mechanism for performing PixBlt operations on pixels of any color
depth.

5.5.4 Compositing

Images that have been rendered independently often need to be combined into one
image. For simple opaque rectangular images that can be overlaid on pixel boundaries
(such as windowing operations), a PixBlt operation is usually sufficient. For more
complex objects of arbitrary shape, which may also be partially transparent, another
method of combination should be used to avoid objectionable aliasing artifacts and to
create a realistic image.

For objects of arbitrary shape, compositing using an a channel to represent the
transparency of a pixel is an effective method of combining images. In addition to having
a color value, each pixel is also assigned an a value, which is stored with that pixel. A
pixel near the edge of a polygon will have an a value less than one if the polygon does
not cover the entire pixel. Images can be overlaid, and a composite color can be
computed by summing the relative contribution of the foreground and background pixels.
Figure 5-22 shows some ex. values that might be assigned to a simple solid polygon.

MOTOROLA MC88110 USER'S MANUAL 5-23

•

Figure 5-22. Example Polygon
<X Value Assignment

The GPU efficiently supports this type of compositing operation with the punpk, pmul,
and ppack instructions. First, foreground pixels are loaded and unpacked to a format
appropriate for the pmul operation. Then they are multiplied by <X. Background pixels
are loaded, unpacked, and multiplied by (1 - a). The foreground and background are
then summed, packed, and stored to the frame buffer. Saturation arithmetic is not used
during the summing operation because the result cannot overflow. Figure 5-23 illustrates
both the pseudocode and graphical representation for the compositing operation.

A similar compositing operation can be performed on objects that are not totally opaque.
By assigning solid pixels a values of less than 1.0, an object will appear partially
transparent when composited over a background image.

5-24 MC88110 USER'S MANUAL MOTOROLA

punpk

pmul

for each foreground pixel Pf(x,y) (
punpk (Pr(x,y»

Pt' = pmul (a.Pr(x.y»
fetch background pixel Pb(x,y)
punpk (Pb(X.y»
Pb' = pmul «1-a).Pb(x,y»
Pc(x.y) =padd (Pf·.Pb·)
ppack (Pdx.y»
store composite result Pdx.y) in frame buffer
}

x

+

•

MOTOROLA

ppack

Figure 5-23. Compositing Operation Example

MC88110 USER'S MANUAL 5-25

•

5-26 MC88110 USER'S MANUAL MOTOROLA

SECTION 6
INSTRUCTION AND DATA CACHES

The data and instruction caches of the MC8811 0 each provide 8K-bytes of high-speed
storage. These caches are two-way set associative and physically addressed. Cache
management facilities provide both the instruction and data caches with a cache
freezing capability. In addition, the data cache has three software-selectable memory
update policies and hardware to support cache coherency.

This section describes the cache organization, cache coherency support, memory
update policies, cache accesses, data cache decoupling, and cache control and
maintenance for the MC8811 O. This section also describes the target instruction cache
(TIC), which is used by the instruction unit for branch acceleration. Refer to Section 11
System Hardware Design for more information on hardware cache coherency
support and secondary cache support.

Although this section describes the action of the data cache during memory accesses, it
does not include information on the data unit and the run-time reordering of loads and
stores. This information resides in Section 9 Instruction Timing and Code
Scheduling Considerations. Also, note that the timing for the external signals in this
section is only accurate to within a half-clock cycle and is included for reference only.

6.1 CACHE ORGANIZATION

The instruction and data caches are each configured as 128 sets with two lines per set:
line zero and line one (see Figure 6-1). Each line contains eight words of data, an
address tag, and status bits. Note that in Figure 6-1 , line zero of each set is shaded. The
entire shaded area (all of the line zeros as a unit) is bank zero. Likewise, the entire
nonshaded area (all of the line ones as a unit) is bank one.

II

MOTOROLA MC88110 USER'S MANUAL 6-1

SET 0 { L-- --'

I
ADDRESS TAG

LEGEND:

II BANKO

o BANK1

~::::
••

LINE 0

LINE 1

II

Figure 6-1. MC88110 Cache Terminology

The following paragraphs describe the organization of the data cache, instruction cache,
and TIC.

6.1.1 Data Cache

Each line of the data cache contains eight 32-bit words, an address tag, and three status
bits. The three status bits indicate whether the cache line is valid or invalid, modified or
unmodified, and shared or exclusive. A block diagram of the data cache organization is
shown in the Figure 6-2.

Each data cache line contains eight contiguous words from memory which are loaded
from an 8-word boundary (Le., bits A4-AO of the logical addresses are zero); thus, a
cache line will never cross a page boundary. All bus operations that load data into or out
of the cache from memory are performed on a line basis (Le., an entire line is filled). New
lines are allocated into empty cache lines if possible. A pseudorandom replacement
algorithm is used to select a cache line when no invalid lines are available.

LINE 0
t--------1

LINE 1

••

~IT'lIl(l:-------- 8WORDSIlINE -------;l>'~1

Figure 6·2. Data Cache Organization

Bus transactions to load data into the data cache always begin with the address of the
evenly aligned double word containing the missed data. For example, if a half-word load
from the address $700016 is requested but misses the cache, then the double word at
address $700010 is loaded into the cache first, followed by the double words at

6-2 MC88110 USER'S MANUAL MOTOROLA

$700018, $700000, and $700008 (see Figure 6-3). The missed data is forwarded to the
data unit as soon as it is received from the bus so that it can be used as soon as
possible.

00 08 10 18

$700000 l----.:,....---,r---.--[J]I_'~

I I I

EVENLY-ALIGNED
DOUBLE WORD

1m HALF-WORD @ $700016

Figure 6·3. Double-Word Alignment

The data cache supports write-through, write-back, and cache inhibited memory update
policies which are selectable on a page-by-page or block-by-block basis. These memory
update policies are described in 6.4 Memory Update Policies.

The data cache uses physical address tags, so the data cache does not need to be
flushed on a context switch. Cache coherency is automatically maintained by hardware
bus snooping. To prevent snooping traffic on the bus from interfering with processor
operation and degrading performance, the state bits associated with each line in the
cache are dual ported and a duplicate set of cache tags is maintained.

6.1.2 Instruction Cache
Each line of the instruction cache contains eight 32-bit words, an address tag, and a
valid bit. A block diagram of the instruction cache organization is shown in Figure 6-4.

Each instruction cache line contains eight contiguous words from memory which are
loaded from a 8-word boundary (Le., bits A4-AO of the logical addresses are zero); thus,
a cache line will never cross a page boundary. All bus operations that load instructions
into the cache from memory are performed on a line basis (Le., an entire line is filled).
New lines are allocated into empty cache lines if possible. A pseudorandom
replacement algorithm is used to select a cache line when no empty lines are available.

Bus transactions to load instructions into the cache always begin with the address of the
evenly aligned double word containing the missed word. The missed word(s) is
forwarded to the instruction unit as it is received from the bus so that instruction issue
and execution can be resumed as quickly as possible.

The instruction cache uses physical address tags, so the instruction cache does not
need to be flushed on a context switch. Instruction cache coherency must be maintained
by software and is supported by a fast hardware invalidation capability. For a detailed
description of the invalidate feature, refer to 6.9.3 The Invalidate Command.

II

MOTOROLA MC88110 USER'S MANUAL 6-3

•••
128SE/E]

~ .
LINE 0

I-----~

LINE 1

I~C:r.------ 8WORDSIlINE ------j>~1

Figure 6-4. Instruction Cache Organization

•

6.1.3 Target Instruction Cache (TIC)

The MC88110 has a TIC, which is a 32-entry, fully associative, logically addressed
cache. Each entry in the TIC contains the first two instructions of a branch target
instruction stream, a 31-bit logical address tag, and a valid bit (see Figure 6-5). The 31
bit· logical address tag holds a supervisor/user bit and the upper 30 bits of the address of
the branch instruction. Because the TIC is logically addressed, it must be invalidated on
a context switch. The operation of the TIC is discussed in detail in Section 9
Instruction Timing and Code Scheduling Considerations.

ADDRESS OF
BRANCH INSTRUCTION

FIRST TWO INSTRUCTIONS OF
TARGET INSTRUCTION STREAM

•••

32ENT~ ADDRESS TAG 31

~
I ~D~$~O W ~~.__~_T_~_C_OO_N_O__~__~_~_~_C_OO_N_1_~W

.....-c:i<-------- 2WORDS I LINE --------:>~

Figure 6-5. Target Instruction Cache (TIC)

6.2 CACHE COHERENCY

The instruction cache is physically addressed and is therefore coherent across multiple
process contexts. However, no hardware support is provided to maintain coherency
between multiple instruction caches or between the instruction cache and main memory.
Software must force coherency in any situation which could cause the instruction cache
to have invalid data (e.g., virtual memory page replacement).

Hardware support is provided to maintain coherency between the data cache and
memory. To maintain this coherency, the MC88110 incorporates bus snooping. For a
complete description of data cache coherency and bus snooping refer to Section 11
System Hardware Design.

6-4 MC88110 USER'S MANUAL MOTOROLA

One aspect of data cache coherency that must be considered by the software
programmer is whether to mark a page global or local. In order for other processors to
snoop a transaction, the page containing the data must be marked global. Therefore, if a
page is accessed by more than one processor, and changes made by one processor are
relevant to the others, the page should be marked as global. If a page is being accessed
by more than one processor, but the changes are only relevant to one processor, the
page should be marked as local.

Note that marking a page as global can cause a decrease in performance. In a no-wait
state system with snooping enabled, one clock cycle must be added to the beginning of
each bus transaction to give the snooping processor time to assert a retry. When a
processor receives a retry, it is delayed while the snooping processor arbitrates for the
bus and copies the data back to memory. This process of flushing a dirty (modified)
cache line to update memory is called a copyback. Then, the initiating processor must
retry the original transaction from the logical address cache lookup and re-arbitrate for
the bus. The snooping processor's data cache is unavailable for five clocks while it
copies back the modified data to memory. Because of this potential performance
degradation, care should be taken to group local data together on a page without global
data so that transactions accessing local data are not snooped.

6.3 ADDRESS TRANSLATION OVERVIEW

When an instruction or data access is initiated, the instruction unit or data unit provides
the appropriate cache and memory management unit (MMU) with the logical address of
the desired information. The instruction or data MMU translates the logical address to the
physical address and provides the cache with information about the type of cache
access to be performed. For detailed information on the MMUs, see Section 8
Memory Management Units.

The instruction and data MMUs each contain two address translation caches (ATCs) that
provide address translation with no time penalty: a page address translation cache
(PATe) and a block address translation cache (BATC). The PATCs are 32-entry, fully
associative caches that contain address translations for 4K-byte memory pages and are
automatically maintained by MC88110 hardware. The BATCs are 8-entry, fully
associative caches containing address translations for block sizes ranging from 512K
byte to 64M-byte. The BATC descriptors are managed by system software. Each BATC
and PATC descriptor contains a logical address field, a physical address field, and
attribute bits that define the characteristics of the corresponding block or page (e.g.,
supervisor/user memory space, global/local space, etc.)

When address translation is enabled, the MMU compares the logical address of the
access with the upper bits of the logical address fields of each descriptor in the BATC
and PATC. If there is a match with an descriptor in either ATe, then the contents of the
physical address field of that descriptor replace the most significant bits of the logical
address, and the resulting bit string forms the physical address for the access (see
Figure 6-6). The physical address and the attribute bits are then used by the cache. If
there is no logical address match in either ATe, the MMU retrieves a new descriptor by
performing a table search operation (if table searching is enabled).

•

MOTOROLA MC88110 USER'S MANUAL 6-5

BATC TRANSLATION
LOGICAL ADDRESS

I
o

____--a...-__I

I
31 26 25 19 18 12 11 0--I

~,,_"""""';";";";";'__---' } (8 ENTRIES)

~_I__~I TO CACHES

Y

PATC TRANSLATION
LOGICAL ADDRESS

I

I
ADDRESS TAG

PHYSICAL ADDRESS

~'

ENfR1~~ { ---..__---1'--_........ } (32 ENTRIES)

~TOCACHES
t

•

31 1211 0

1----__1'-_1
I

ADDRESS TAG

PHYSICAL ADDRESS

LEGEND:

mIT1 BITS WHICH MAY BE TRANSLATED BY BATC OR REMAIN UNCHANGED
l:lllJ FROM THE LOGICAL ADDRESS DEPENDING ON THE BLOCK SIZE

Figure 6-6. Physical Address Generation Using ATCs (ATe Hit)

6-6 MC88110 USER'S MANUAL MOTOROLA

When address translation is disabled, the logical address is the same as the physical
address, and the attribute bits are contained in the instruction supervisor area pointer
(ISAP) register, instruction user area pointer (IUAP) register, data supervisor area
pointer (DSAP) register, or data user area pointer (DUAP) register for each
corresponding memory area.

6.3.1 BATC Descriptors
Each BATC contains eight 34-bit descriptors that provide address translation, control,
and protection information for logical-to-physical block address translation. The format of
the BATC descriptors for both the instruction BATC and the data BATC is shown in
Figure 6-7.

ffi] IGNORED DEPENDING ON BATC SIZE. SIZE MASK WRITTEN VIA THE INSTRUCTION MMUICACHE CONTROL REGISTER OR DATA MMU/CACHE
CONTROL REGISTER

Figure 6-7. BATe Descriptor Format

UO,U1-User Page Attributes 0,1 •
These bits are not used by the MMU but are user definable from software. They are
driven on external signals during bus transactions mapped by this descriptor. They are
loaded into the BATC descriptor via the instruction or data index register (xIR) at the
time of a BATC write.

LBA-Logical Block Address
This field contains the logical address (tag) that is matched against the logical address
of a memory access. If an address match is found (including the supervisor mode bit
S) and the valid (V) bit is set, then the logical address is mapped to the physical
address as specified in the PBA field.

PBA-Physical Block Address
If the logical address hits with this descriptor, the 6-13 (depending on block size) most
significant bits of the logical address are replaced by the bits in this field to form the
translated physical address.

StU-Supervisor/User Mode
This bit is compared to the level of privilege for the memory access being translated. If
this bit matches the level of privilege, and the LBA field matches the logical address,
and this descriptor is valid (V=1), then this descriptor is used to map the logical
address to the physical address specified in the PBA field.

MOTOROLA MC88110 USER'S MANUAL 6-7

•

WT-Write-Through
If this bit is set, then cache memory updates to memory mapped by this descriptor are
performed using a write-through policy. If this bit is clear then cache memory updates
are performed using a write-back policy. Note: if the CI bit is set, WT has no effect.

G-Global
If this bit is set, then the memory space mapped by this descriptor is designated global
memory. The state of this bit is reflected on an external signal during the bus
transaction for the access and can be used by other devices on the bus to enable or
disable snooping for this address.

CI-Gache Inhibit
If this bit is set, then data in the block mapped by this descriptor is not cached. All
accesses to this block will go through to memory and no data is read from, written to,
ar allocated in, the cache. If this bit is clear then data mapped by this descriptor is
cached normally.

WP-Write Proted
If this bit is set, then memory mapped by this descriptor is write protected. Any write
access to this page causes a data access exception. If this bit is clear then memory
mapped by this descriptor can be written.

V-Valid
If this bit is set, then this descriptor is currently valid and if the logical address matches
the LBA, this descriptor is used to translate the address.

6.3.2 PATe Descriptors
The PATe contains thirty-two 64-bit descriptors that provide address translation, control,
and protection information for logical-to-physical page translation. The format of the
PATC descriptor for both the instruction PATC and the data PATC is shown in Figure 6-8.

63 44 43 42 41 40 39 38 37 36 35 34 33 32
I~-------LP-A--------

PATe UPPER·WORD

31 12 11 10 9 8 7 6 5 4 3 2 1 0Ir----------
PF

-
A
----------..,

PATe LOWER·WORD

E]I. UNDEFINED-RESERVED FOR FUTURE USE

Figure 6-8. PATe Descriptor Format

6-8 MC88110 USER'S MANUAL MOTOROLA

LPA-Logical Page Address
This field contains the logical address that is to be mapped to a physical address by
this ATC descriptor. The LPA is used as a tag which is matched against the logical
address of subsequent memory reference~. If an address match is found (hit) then this
descriptor is used to translate the logical address to a physical address as specified in
the PFA field.

S/U-Supervisor/User Bit
This bit is compared to the level of privilege for the memory access being translated. If
this bit matches the level of privilege, and the LPA matches the logical address, and
this descriptor is valid (V=1), then this descriptor is used to map the logical address to
the physical address specified in the PFA field.

PFA-Page Frame Address
This field contains the upper 20 bits of the physical address to which the logical
address is being mapped. If the upper 20 bits of the logical address of the access
match the LPA and access privileges are not violated, then the 20 most significant bits
of the logical address are replaced by the PFA to create the physical address.

UO,U1-User Page Attribute 0,1
These bits are not used by the MMU but are user definable via the page descriptors or
by a PATC control register write (using xIR). They are driven on external signals during
the bus transaction.

WT-Write-Through
If this bit is set, then cache memory updates are performed using a write-through
policy. If this bit is clear then cache memory updates are performed using a write-back
policy. Note: if the CI bit is set, this bit has no effect.

G-G.lobal
If this bit is set, then the memory space mapped by this descriptor is global memory.
The state of this bit is reflected on an external signal during the bus transaction for the
access and can be used by other devices on the bus to enable or disable snooping on
this address.

CI-Gache Inhibit
If this bit is set, then data in the page mapped by this descriptor is not cached. All
accesses to this page will go through to memory and no data is read from, written to, or
allocated in, the cache. If this bit is clear then data mapped by this descriptor is cached
normally.

WP-Write Protect
If this bit is set, then memory mapped by this descriptor is write protected. Any write
access to this page causes a data access exception. If this bit is clear then memory·
mapped by this descriptor can be written.

II

MOTOROLA MC88110 USER'S MANUAL 6-9

II

V-Valid

If this bit is set, then this descriptor is currently valid and if the logical address matches
the LPA, this descriptor it is used to translate the address.

6.4 MEMORY UPDATE POLICY

The MC8811 0 provides hardware support for three memory update modes: write-back,
write-through, and cache inhibit. Each page or block of memory is specified to be in one
of these mode~, with write-back mode being the default upon reset. The MC8811 0 also
has a store-through option which allows individual accesses to be performed in write
through mode, even if the page being written to is in write-back mode.

In write-back mode, external memory is not updated each time a corresponding cache
line is modified. In write-through mode, writes update external memory every time the
cache line is. modified. For cache inhibited accesses, reads and writes access main
memory, but data is never stored in the data cache. All three of these modes of operation
have specific advantages; therefore, the choice of which mode to use depends on the
system environment and the application.

When address translation is enabled, the cache memory update policy is determined on
a page-by-page (or block-by-block) basis by the WT and CI bits in the address
translation cache descriptor that was used to translate the corresponding logical
address. When address translation is disabled, the WT and CI bits in the ISAP, IUAP,
DSAP, or DUAP register control the ·memory update poUcy for each corresponding
memory area.

Two logical pages that map to the same physical page can have different memory
update policies. This can be useful as a user mode cache control feature to flush and
invalidate a line in the cache. To do this, one of the two logical pages should be marked
cache inhibited and the other should be marked either write-back or write-through. Any
hit on the cache-inhibited page will flush and invalidate the line. Then, for normal
accesses, an address on the write-back or write-through page can be specified. To flush
and invalidate a line, an address on the cache-inhibited page is specified.

6.4.1 Write-Back Mode

When storing to memory in write-back mode, store operations for cacheable data do not
necessarily cause an external bus cycle to update memory. Instead, memory updates
only occur when another bus master attempts to access a specific address for which the
corresponding cache descriptor has been modified (Le., the cache descriptor is "dirty") or
when the cache performs a replacement copyback due to a read or write miss. Memory
can also be updated if the location is declared to be cache inhibited or during the write
portion of an xmem transfer. For this reason, write-back mode may be preferred when
external bus bandwidth is a potential bottleneck-e.g., in a multiprocessor environment
without a secondary cache. Write-back mode is also well suited for high-use data that is
closely coupled to a processor, such as stacks and local variables. Reads to memory in

6-10 MC88110 USER'S MANUAL MOTOROLA

write-back mode that hit the on-chip data cache can complete in two clock cycles. Writes
that hit in the on-chip caches can complete in three clock cycles. A read or write can be
initiated on every clock.

In general, addresses at which data is to be used by only one processor and with no
other bus master should be mapped as local (G = 0) and write-back (WT = 0) for
maximum performance. The G bit is located in the same place that the corresponding
WT bit is located in (Le., in the same area pointer or BATC or PATC descriptor).

The MC8811 0 implements snooping hardware to prevent other devices from accessing
invalid data. If more than one processor uses data stored in a page or block which is in
write-back mode, snooping must be enabled to allow write-back operations and cache
invalidations of modified data. When snooping is enabled, the page should be marked
as global (G =1) and write-back (WT =0). When bus snooping is enabled, the MC88110
monitors the transactions of the other devices. For example, if another device accesses a
memory location that is cached and modified in an MC88110 and the global (G) bit
corresponding to that page is set, the MC88110 preempts the bus transaction, and
updates memory with the cached data. See Section 11 System Hardware Design
for complete information on bus snooping.

6.4.2 Write-Through Mode II
Write-through mode is used when external memory and internal cache images must
agree (e.g., video memory) or when there is shared (global) data that may be used
frequently. In write-through mode, store operations which hit the cache update external
memory as well as the data cache and do not change the state of the line. Store
operations in write-through mode which miss the cache update external memory only. In
write-through mode,- global transactions cause snoop logic to invalidate other
processors' cached images of updated memory. This mode of operation is normally
selected for systems employing an external secondary cache.

In write-back mode, the cache may contain data which is modified with respect to
memory. Therefore, a page marked as write-back may contain data in an exclusive state.
However, in write-through mode, reads and writes that hit the cache do not change the
status of the line. If a write-back page is changed to write-through mode, the data will not
change state even if a write hits the cache and the data is no longer exclusive.

One type of access, the store-through access, is determined on an access-by-access
basis. Store-through may be optionally specified for any store instruction using the
triadic register addressing mode. A store-through access operates in precisely the same
manner as an operation in write-through mode even if write-back mode is specified for
the page being accessed; however, if the page is specified as cache inhibited, the store
through option has no effect. For more information on selecting the store-through option,
refer to 6.9.1 User-Mode Cache Control Features.

If the force write-through (FWT) bit is set in the data MMU/data cache control register
(DCTL), all stores are forced to write-through the data cache regardless of the page or
block status.

MOTOROLA MC88110 USER'S MANUAL 6-11

6.4.3 Cache Inhibit

A memory location is cache inhibited if the CI bit in the corresponding ATC descriptor is
set. If a memory location is declared to be cache inhibited, data from this location will
never be stored in the data cache.

Certain transactions are cache inhibited regardless of the memory update policy. The
data cache is bypassed whenever the MC88110 executes a hardware table search; the
segment and page descriptors are not cached in the data cache. In addition, xmem
operations are always, performed as if cache inhibition is in effect regardless of the
memory update mode for the location being accessed.

A transaction that is translated as a cache inhibited access and hits a modified line in the
data cache causes the corresponding line to be copied back to memory and invalidated.

6.5 CACHE LOOKUP OPERATION

Each time the processor performs a memory access, the MC88110 initiates a cache
lookup operation in which, simultaneously, the cache se~ects the correct cache set, and
the memory management unit (MMU) performs the address translation (see Figure 6-9).
To ,achieve this concurrency, the MC8811 0 uses the fact that the low-order 12 bits of an
address are the same for both the logical and physical address. Thus, the high-order bits
of an 'address can be used by the MMU for the address translation while the low-order
bits are being used by the cache for the set selection. Figure 6-10 shows how the fields
of the logical address are used by the caches and MMUs.

6-12 MC88110 USER'S MANUAL MOTOROLA

LOGICAL ADDRESS RECEIVED
FROM DATA UNIT OR
INSTRUCTION UNIT

Figure 6·9. Cache Lookup Operation

When the data or instruction cache receives a logical address, the appropriate cache set
is selected based on bits 11-5 of the address. While the set is being selected, the 20
most significant bits (bits 31-12) of the logical address are translated to a physical
address by the MMU. The address tags from the fetched cache lines are then compared
against the translated physical address bits from the MMU. If the address tag from either
line matches the translated physical address bits, then a cache hit has occurred. If
neither of the address tags from the fetched set matches the translated physical address
bits, a cache miss has occurred.

As shown in Figure 6-10(a), for a data cache hit, the appropriate double word in the
cache line is accessed according to bits 4-3 of the address and forwarded to the
appropriate execution unit. As shown in Figure 6-10(b), for an instruction cache hit, bits
4-2 are used. The extra bit is needed because. the instruction cache address does not
necessarily fall on an evenly aligned double word boundary.

•

MOTOROLA MC88110 USER'S MANUAL 6-13

31

I

I
31

I

II

LOGICAL ADDRESS

1211 5 4 3 2 0

I o=J

LOGIC~LADDRESSBITSTOJ__. 'TBE TRANSLATED BY MMU

BITS USED TO SELECT
APPROPRIATE CACHE SET

BITS USED TO SELECT APPROPRIATE ----'
DOUBLE WORD IN CACHE LINE

BITS WHICH SPECIFY THE ALIGNMENT ---'
OF DATA WITHIN THE DOUBLE WORD

(a) Data Cache

LOGICAL ADDRESS

I
1211 5 4 2 1 0

I CD

LOGI~LADDRESSBITSTO _J 'TBE TRANSLATED BY MMU

BITS USED TOSELECT
APPROPRIATE CACHE SET

BITS USED TO SELECT APPROPRIATE ----'
DOUBLE WORD IN CACHE LINE

UNUSED ----------------'

(b) Instruction Cache

Figure 6·10. Logical Address Fields

For a cache miss, a line in the selected set must be chosen to hold the new data which
will be fetched from memory. If one of the lines is invalid, then it is chosen to receive the
data. If both lines are invalid, then line 0 is chosen. If both lines are valid then a
pseudorandom selection algorithm is used to select one of the two lines for replacement.
This replacement algorithm employs a one-bit counter which toggles the selection bias
from one bank to the other upon the successful completion of a burst read· or allocate.
The counter is cleared to zero by a reset operation or a cache invalidate operation.

6-14 MC88110 USER'S MANUAL MOTOROLA

6.6 INSTRUCTION CACHE ACCESSES
The following paragraphs describe the actions taken by the MC88110 due to an
instruction cache read (see Figure 6-11). It is assumed in Figure 6-11 that a physical
address has already been generated by the instruction MMU. Note that the timing for the
external signals in this section is only accurate to within a half-clock cycle and is
included for reference only.

INSTRUCTION
CACHE READ

__-- RETRY ---------.1

OK

ERROR OR RETRY-----.......

OK

Figure 6-11. Instruction Cache Read Flowchart

II

MOTOROLA MC88110 USER'S MANUAL 6-15

D

6.6.1 Instruction Cache Hit
If an instruction cache read results in a cache hit, the needed double word (indicated by
bits 4-2 of the address) is accessed from the cache line. There is no even or odd
alignment restriction on double words in the cache line. The instruction{s) from the
accessed word(s) are immediately transferred to the instruction unit, allowing two
instructions per clock cycle to be delivered to the instruction unit. If an access is to the
last word in a cache line, then only a single-word is retrieved. Figure 6-12 shows the
timing for instrucUon cache hits. Note that since instruction 2 is the last instruction in a
cache line,it is issued alone in clock cycle 2.

2 I add r4. r4. r5 Mt~ftm4.l!

51 addr7,r7, ra t.-mtM$S
6 I add fa, fa, f9 @i@6

LEGEND:

o INSTRUCTION FETCH

liE EXECUTE

• WRITE-BACK

~ INSTRUCTION FETCH PAST END OF CACHE UNE

7 I"-- S
81..... S

Figure 6..12. Instruction Cache Hit Timing

6.6.2 Instruction Cache Miss

On an instruction cache miss, the physical address of the missed instruction is sent to the
bus interface uni-t (BtU) with a request to retrieve the cache line from memory, and a
cache line is selected to receive the data which will be coming from the bus. If there is a
simultaneous data cache miss, the BIU gives priority to the instruction cache request
unless the data cache must perform a snoop copyback or an xmem transaction, or the
data cache requests the bus after being retried and forced off the bus.

The instruction cache line fill always begins with the evenly aligned double word
containing the missed instruction (Le., critical word first), followed by the subsequent
double word(s) in the line, if any. If the double word containing the missed instruction
was not the first double word in the line, the fill wraps around and fills the double word(s)
at the beginning of the line. As soon as the missed instruction is forwarded to the
instruction unit, instruction execution is allowed to resume and proceeds in parallel with
the remaining line fill. If there is no change in progra-m flow, and the instruction unit can
issue the following instructions, subsequent instructions are forwarded to the instruction

6-16 MC88110 USER'S MANUAL MOTOROLA

unit as they are received. This is referred to as streaming. If there is a change in program
flow during a line fill, instruction issue is stalled until the line fill is completed. Figure 6-13
shows the timing for an instruction cache miss, assuming an ideal memory system. Note
that, in this case, an instruction cache miss causes a three-cycle delay.

ADDRESS -<"-- --' "-- """"-- "-__--"

DATA

o I add '2, '2, r3

1 I add ,3, ,3. r4

2 INSTRUCTIONS

2 ~km=}.1¢§¢§¢§§im.mii·2i.l4;;;;;;;;;;;;;;E==;;;;3::Eaaijar~4.:Br4Q.r[:s:if4i••i;i~f,iiiii 3-CLOCK LATENCY

.~Em_~~~~~~~~iE~Ei:m.ii.iiiii DUETOCACHEMISS3.~ addrs.rs.r6 l %

LEGEND:

o INSTRUCTION FETCH

• EXECUTE

• WRITE-BACK

~ DELAYED

63 INSTRUCTION CACHE MISS

§ BUS TRANSACTIoN

4 I add '5, '6, r7 @ b

5 I add,7, r7, r8 , &%

Figure 6·13. Instruction Cache Miss Timing

If a bus error is encountered on a memory access for a missed instruction, then an
instruction access exception is taken (see Section 7 Exceptions). If a bus error
occurs on any other word in the transfer, then the fetched line is marked invalid. If no bus
error is encountered during the line fill, the line is marked valid.

6.7 DATA CACHE OECOUPLING

The data cache provides a decoupHng feature to improve cache performance. When the
decoupUng feature is enabled, the data unit can continue making cache accesses while
the data cache is waiting to receive data from the bus. These cache accesses are called
decoupled cache accesses. If a decoupled cache access hits the cache and does not
require an external bus transaction, the access is allowed to complete. If a decoupled
cache access requires an external bus transaction, no further decQupled accesses are
allowed, and the cache access is restarted when the cache is available. Decoupling is
enabled by setting the decoupled cache access enable (DEN) bit in the DCTl. Refer to
Section 11 System Hardware Design for more information on decoupled cache
accesses.

When the data cache determines that a line fill or single...beat read is necessary, there
will be at least one clock cycle during which the cache is idle while waiting for data. The

MOTOROLA MC88110 USER'S MANUAL 6-17

II

decoupling feature allows the data unit to access the cache during this time. The data
cache is decoupled from the first clock cycle of the memory access until the pretransfer
acknowledge (PTA) signalis asserted on the external bus (see Section 11 System
Hardware Design). If a line must be copied back to memory before the line fill, then
the cache will be decoupled for one clock cycle between the copyback and the line fill
(assuming ideal memory). If there is no copyback, the cache will be decoupled for two
clock cycles before the line fill begins.

Not all cache accesses can bypass other cache accesses during decoupled cycles. For
example, loads can bypass stores during decoupled cycles, but stores cannot pass
loads or other stores during decoupled cycles. Both loads and stores can bypass a touch
load (see 6.9.1.2 Touch Load). For example timings of decoupled cache accesses,
refer to Figures 6-20, 6-22 and 6-23.

If both the data cache and the instruction cache need the bus at the same time, the
instruction cache has priority unless the data cache must perform a snoop copyback or
an xmem transaction, or the data cache requests the bus after being retried and forced
off the bus. If the data cache is waiting to perform a line fill and decoupling is enabled,
the cache is available. If the cache needs to copyback a line to memory, the cache is
unavailable.

6.8 DATA CACHE ACCESSES

During a data cache access, the actions taken by the cache depend on the state of the
line. Each data cache line can be in one of four states. These states reflect the state of
the line with respect to memory, and whether or not the processor has exclusive
ownership of the cached data. The state of each data cache line is indicated by the three
state bits in each line. The following are the four possible data cache line states:

1. Invalid-The data in this line is no longer the most recent copy of the data and
should not be used. Refer to 6.9 Cache Control and Maintenance for more
information on invalidating the cache.

2. Shared Unmodified-The data in this line is shared among processors, so other
caches may have a copy of this line. However, this line is unmodified with respect
to memory.

3. Exclusive Modified-Only one processor has a copy of the data from this line in its
cache, and the line has been modified with respect to memory (dirty). Note that if
any word in the line is dirty, then the entire line is dirty.

4. Exclusive Unmodified-Only one processor has a copy of the data from this line in
its internal cache, and the line is unmodified with respect to memory.

During a data cache access, the line that contains the data being read or written by the
processor may change state. The state of the cache line after the access depends on the
type of access and whether the access resulted in a hit or a miss. For a complete
explanation of these states and how transitions between states occur, refer to Section
11 System Hardware Design.

6-18 MC88110 USER'S MANUAL MOTOROLA

When an exclusive modified line in the data cache is to be replaced because of a cache
miss, the line is flushed to memory before the access is completed. This process of
flushing a dirty cache line to update memory is called copyback.

Figure 6-14 shows the data cache actions due to a read. It is assumed in Figure 6-14
that a physical address has already been generated by address translation. Note that
the timing for the external signals in this section is only accurate to within a half-clock
cycle and is included for reference only.

The following paragraphs describe the actions taken by the MC8811 0 due to a data
cache read hit, read miss, write hit, and write miss.

II

MOTOROLA MC88110 USER'S MANUAL 6-19

II

CACHE INHIBITED

I.-.E~------+--------- ERROR

OK

OK

,.....---~
I ==r

SHARED DATA UNSHARED DATA

RETRY -----------'

NOTE: This retry will never be generated by an MC88110, since two MC8811Os will never contain modified data at the same physical
address in their caches. However, another device may generate a retry at this point.

Figure 6-14. Data Cache Read Flowchart

6-20 MC88110 USER'S MANUAL MOTOROLA

6.8.1 Data Cache Read Hit
If a read operation (not cache inhibited) results in a data cache hit, the appropriate
evenly aligned double word (indicated by bits 4-3 of the address) is accessed from the
cache line and no state transition occurs. The double word is transferred to the data unit.
Access time for the data cache on a read hit is one clock cycle. Figure 6-15 shows an
example of the timing for a read hit.

2 add r9, r7 r9 '/

3 add r10, r8, r10

LEGEND:

D INSTRUCTION FETCH

• EXECUTE

t FEED FORWARD

• WRITE-BACK

~ DELAYED

~ CACHE ACCESS

Figure 6-15. Data Cache Read Hit Timing

On a cache inhibited read hit, the cache line is invalidated and the new data is read from
memory but not placed in the cache. If the cache inhibited read hit is to an exclusive
modified line, the line is copied back to memory before being invalidated, and the new
data is read from memory but not placed in the cache.

6.8.2 Data Cache Read Miss

On a data cache read miss, a line in the cache is selected to hold the data which will be
fetched from memory. If the selected line is marked exclusive modified, the line is sent to
the BIU to be copied back to memory. When the copyback is complete, or if the selected
line has not been modified, then the line is marked invalid and the physical address of
the aligned double word containing the missed data is sent to the BIU along with a
request to retrieve the missed cache line. The BIU arbitrates for the bus and initiates an
a-word burst transfer read request to fill the line. If decoupling is enabled, cache
accesses can be performed while the cache is waiting for the line fill to begin.

The data cache line fill always begins with the evenly aligned double word containing
the missed data (Le., critical word first), followed by the subsequent double word(s) in the
line, if any. If the double word containing the missed data is not the first double word in
the line, the fill wraps around and fills the double word(s) at the beginning of the line..
When the missed word is received from the bus, it is simultaneously written to the cache

•

MOTOROLA MC88110 USER'S MANUAL 6-21

•

and forwarded to the data unit, which stores the word in the register file. If needed,
subsequent data from the line fill is forwarded (streamed) to the data unit as it is
received. The data cache remains busy and inaccessible to the processor until the line
fill is complete.

Figure 6-16 shows an example of the timing for a data cache read miss.. In Figure 6-16,
the address of the read ($700010) is determined by adding the offset found in r16 to the
base address in r4. The double word containing the missed data is not the first double
word on the line boundary. Therefore, the line fill wraps around and fill the double words
at the beginning of the line.. Note that there are two clock cycles in which the data cache
is decoupled. Since a write cannot run decoupled with a read, the data cache waits for
the read to write-back before it can perform the write access.

DATA

LEGEND:

o INSTRUCTION FETCH

• EXECUTE

t FEED FORWARD

• WRITE-BACK

~ DELAYED

E:ZJ DELAYED IN LOAD BUFFER OR STORE RESERVATION STATION

m CACHE ACCESS

[IT] CACHE BUSY AND NOT AVAILABLE

IQ{J CACHE READ FROM BIU

rz:j CACHE DECOUPLED (BUSY BUT AVAILABLE)

Figure 6-16. Data Cache Read Miss-No Copyback Timing

Figure 6-17 shows an example of the timing for a read miss when the line chosen for
replacement is marked exclusive modified; therefore, the line must be sent to the BIU to
be copied back to memory. There are six cycles of dirty line copyback and then the
cache is decoupled for one cycle. Since the following instruction is also a read, which
cannot run decoupled with the first read, the second instruction waits until the cache
performs the read from the BIU before it can execute the second read and write-back.

6-22 MC88110 USER'S MANUAL MOTOROLA

o Id r7,r4,rS :~-::. ~.. ~-=-=; ..

LEGEND:

INSTRUCTION FETCH

EXECUTE

FEED FORWARD

WRITE-BACK

DELAYED

DELAYED IN LOAD BUFFER OR STORE RESERVATION STATION

CACHE ACCESS

DIRTY LINE COPYBACK (CACHE BUSY AND UNAVAILABLE)

CACHE BUSY AND NOT AVAILABLE

CACHE READ FROM BIU

CACHE DECOUPLED (BUSY BUT AVAILABLE) •
Figure 6-17. Data Cache Read Miss with Copyback Timing

If, at the beginning of a line fill, a -snooping processor on the bus recognizes the address
of the missed word as global and has a modified copy of the data in its cache, it will
assert the retry signal, ARTRY. Upon receipt of the retry signal the BIU will abort the line
fill transaction and relinquish the bus. The snooping processor will acquire the bus and
update memory with its modified copy of the line. The initiating processor will then start
the read transaction over again from the logical address and cache lookup.

If a bus error is encountered during a copyback, then a data access exception is taken. A
data access exception is also taken if a bus error is encountered on the bus access to
the missed word. If the bus error occurs on any word other than the missed word in the
line transfer then the fetched line is simply marked invalid. If no bus error is encountered,
then the line is marked either shared unmodified (if the shared input signal (SHD) is
asserted for this access) or exclusive unmodified (if the SHD input signal is negated for
this access).

On a cache inhibited read access which misses the cache, data is read directly from
memory but not placed in the cache.

MOTOROLA MC88110 USER'S MANUAL 6-23

6.8.3 Data Cache Write Hit

Writes that hit the data cache are handled according to the memory update mode of the
data being accessed. Figure 6-18 shows the data cache actions due to a write hit. It is
assumed in Figure 6-18 that a physical address has already been generated as a result
of the address translation.

CACti: INHIITED

CACHEMSS

..-------'lI~--PE.TRY

ADDF£SSLOCAl..

RETRY -I-------+----I------+----~~
"---_..,..-_..... (SEE NJTE)

RETRY-------+---------------+------......

()4.-----!-----------t--EfR)R

•

NOTE: This retry will never be generated by an MC88110, since two MC88110s will never contain modified data at the same physical
address in their caches. However, another device may generate a retry at this point.

Figure 6-18. Data Cache Write Hit Flowchart

On a write hit to an exclusive line in write-back mode, data is simply written to the cache.
If the line is unmodified, then the state of the line is changed to exclusive modified.
Instruction 0 in Figure 6-19 is an example of a write hit to an exclusive modified or
unmodified line. After the execute cycle, there are two cycles for data alignment. Actually
only one cycle is used for data alignment. The other cycle is needed to guarantee a
precise exception model. For a detailed explanation of store instruction timing, refer to
Section 9 Instruction Timing and Code Scheduling Considerations. In this
example, the cache is only busy for one clock cycle.

6-24 MC88110 USER'S MANUAL MOTOROLA

If the address is local on a write hit to a shared line in write-back mode, then the data is
written into the cache and the line is marked exclusive modified. If the access is to a
global page, then an invalidation bus transaction is performed first. The invalidation
transaction notifies other caches on the bus that any local copy they may currently have
of the cache line is no longer valid. The invalidation cycle is similar to a write cycle but
the normal write cycle bus latency is avoided because data is not actually written.
Instruction 2 in Figure 6-19 is a best-case example of a write hit to an unmodified line in
write-back mode. In this case, the cache is unavailable for three clock cycles.

(r4)+(r5)ADDRESS

INVALIDATE SIGNAL (INV) ,"- --11

o I st r7, r4, rS

LEGEND:

D INSTRUCTION FETCH

1m EXECUTE

t FEED FORWARD

II WRITE-BACK

~ CACHE ACCESS

m CACHE BUSY AND NOT AVAILABLE

~ DATA ALIGNMENT

•
Figure 6-19. Data Cache Write Hit in Write-Back Mode Timing

On a write hit in write-through mode or on a store-through access, data is written to both
the cache and to memory, and no cache state transition occurs. The invalidate signal
(INV) is asserted during the write cycle so that any other cache on the bus which has a
copy of the line containing the data will invalidate its copy of the line. If the write cycle
experiences a bus error, the cache is still updated.

On a cache inhibited write hit, the ,line is flushed if it is modified, and the data is written to
memory but not written into the cache. Figure 6-20 shows examples of the timing for
write hits in write-through and cache inhibited mode with the cache decoupling feature
enabled. Instruction 0 in this example shows a typical write hit to a line in write-through
or cache inhibited mode. In this case, the cache is busy for four clock cycles; however,
during two of the cycles, the cache is available for other accesses since cache
decoupling is enabled. Thus, instruction 4 is allowed to access the cache during clock 6.
Instruction 6 illustrates the special case in which a cache inhibited access hits an
exclusive modified line in the cache. In this case, the cache line is copied back to

MOTOROLA MC88110 USER'S MANUAL 6-25

memory before the write access occurs, and the cache is busy for ten clock cycles.
Again, since cache decoupling is enabled, the cache is busy but available during clock
cycle 15.

ADDRESS --((r4)+(rS)

DATA

INVALIDATE SIGNAL (INY)

(r3)+(r9)

OUT J----
'--.--.11"---1_---'''_--'

~--- --II

•

o Istr7,r4,rSj W-~::::::t::::::I:;:;:;1

LEGEND:

D INSTRUCTION FETCH

E EXECUTE

t FEED FORWARD

II WRITE-BACK

E2J DELAYED IN LOAD BUFFER OR STORE RESERVATION STATION

1m CACHE ACCESS

Q DIRTY LINE COPYBACK (CACHE BUSY AND UNAVAILABLE)

Ba CACHE WRITE TO BIU

§ CACHE DECOUPlED (BUSY BUT AVAILABLE)

IITIl CACHE BUSY AND NOT AVAILABLE

~ DATAALIGNMENT

Figure 6-20. Write Hit in Write-Through or Cache Inhibited Mode Timing

6.8.4 Data Cache Write Miss

Writes that miss the data cache are handled according to the memory update mode of
the data being accessed. Figure 6-21 shows the data cache actions due to a write miss.
It is assumed in Figure 6-21 that a physical address has already been generated by
address translation.

6-26 MC88110 USER'S MANUAL MOTOROLA

DATA CACHE
WRITE MISS

WRITE-THROUGH OR
CACHE INHIBITED

RETRY
(SEE NOTE)

l.J"III~---ERROR

WRITE-BACK

OK

RETRY
(SEE NOTE)

II

NOTE: This retry will never be generated by an MC8811 0, since two MC8811 Os will never contain modified data at the same

physical address in their caches. However, another device may generate a retry at this point.

Figure 6-21. Data Cache Write Miss Flowchart

MOTOROLA MC88110 USER'S MANUAL 6-27

•

On a write miss in write-back mode, a cache line is first selected to receive data from
memory. If the selected line is marked exclusive modified, the line is sent to the BIU to be
copied back to memory. If the selected line is not modified or when the copyback is
complete, the physical address of the missed data is sent to the BIU along with a request
to retrieve the missed cache line. The BIU arbitrates for the bus and initiates an a-word
read-with-intent-to-modify burst transfer cycle. The data cache line fill always begins with
the evenly aligned double word containing the missed data (Le., critical word first) and is
followed by the subsequent double word(s) in the line. The write transaction occurs
simultaneously with the line fill, merging the write data with the current data read from
external memory. If the double word containing the missed data is not the first double
word in the line, the fill wraps around and fills the double word(s) at the beginning of the
Une. If a bus error is encountered on the dirty line flush or the line fill operation, a data
access exception is taken.

The special read-with-intent-to-modify cycle is like a normal read cycle but has the side
effect of broadcasting to other processors on the bus that the line being fetched will be
modified; thus, the other processors should invalidate any local copy of the line they may
have. If another processor on the bus recognizes the address as global and has an
exclusive modified copy of the data in its cache then it will assert the retry signal
(ARTRY). Upon receipt of the retry signal, the BIU will abort the line fill transaction and
relinquish the bus. The snooping processor will acquire the bus and update memory
with its copy of the line. The initiating processor will then start the write transaction over
again beginning with a cache lookup from the logical address. The write transaction will
occur simultaneously with the line fill, merging the write data with the current data read
from external memory. Once the merged write transaction and line fill are complete, the
line is marked exclusive-modified.

Instruction 0 in Figure 6-22 is an example of a write miss to an exclusive modified line in
the cache' with decoupling enabled. Since the line to be replaced is modified, the line is
copied back to memory and then a read-with-intent-to-modify transfer cycle is performed
to fill the cache line. Since decoupling is enabled, instruction 4 is allowed to access the
cache during clock 12; however, instruction 6 is forced wait until instruction 0 has
completed before being allowed access to the cache, since only one instruction can
access the cache during clock 12.

6-28 MC88110 USER'S MANUAL MOTOROLA

slldr4,r3,rt@

LEGEND:

o INSTRUCTION FETCH

&11 EXECUTE

t FEED FORWARD

II WRITE-BACK

fZJ DELAYED IN LOAD BUFFER OR STORE RESERVATION STATION

~ CACHE ACCESS

c:2J DIRTY LINE COPYBACK (CACHE BUSY AND UNAVAILABLE)

~ CACHE READ FROM BIU

r;:;:) CACHE OECOUPLED (BUSYBUf AVAILABLE)

~ DATA ALIGNMENT

[ill BUSY AND NOT AVAILABLE

Figure 6·22. Write Mlsswith Copyback Timing

•

MOTOROLA MC88110 USER'S MANUAL

•

Instruction 0 in Figure 6-23 is an example of a write miss when the line to be replaced is
exclusive or shared unmodified and decoupling is enabled. Since the line is unmodified,
no copyback is required, so the cache is busy for only 8 clock cycles. Also, because
decoupling is enabled, instruction 4 can access the cache during clock 7. Since the
cache cannot be accessed during the line fill, instruction 6 must wait for instruction 0 to
complete before being allowed access to the cache.

LEGEND:

o INSTRUCTION FETCH

• WRITE-BACK

~ DELAYED IN LOAD BUFFER OR STORE RESERVATION STATION

e CACHE ACCESS

&:J CACHE READ FROM BIU

E:3 CACHE DECOUPLED (BUSY BUT AVAILABLE)

~ DATA ALIGNMENT

(]]] CACHE BUSY AND NOT AVAILABLE

Figure 6·23. Write Miss-No Copyback Timing

On a write miss in write-through mode (or on a store-through access), data is written to
memory only-no line is allocated in the cache and no data is written to the cache. The
invalidate signal (INV) is asserted during the write cycle so that any other cache on the
bus which has a copy of the line containing the data will invalidate its copy.

On a cache-inhibited write access which misses the cache, data is written to memory but
no data is placed in the cache. No state transition occurs.

The timing for write misses in write-through or cache inhibited mode is the same as the
timing for write hits in write-through or cache inhibited mode, as long as the cache
inhibited write does not cause a copyback. Therefore, instruction 0 in Figure 6-20 shows
an example of a write miss to a line in write-through or cache inhibited mode.

6-30 MC88110 USER'S MANUAL MOTOROLA

6.8.5 Data Cache xmem Accesses

The MC8811 0 supports an exchange memory (xmem) instruction that is a combination
of a load and store instruction. The xmem instruction is normally a read access followed
by a write access. However, the xmem instruction can also function as a write access
followed by a read access if the XMEM bit is set in the DCTL. The xmem accesses are
cache inhibited, so if a cache hit occurs to a modified line, the line is first copied back to
memory and invalidated. Figure 6-24 shows a flowchart of how xmem operates.
Section 11 System Hardware Design provides functional timing for the xmem
instruction.

6.9 CACHE CONTROL AND MAINTENANCE

Software can either issue cache control instructions or set or clear bits in the cache
control registers to control and maintain the instruction and data caches of the MC88110.
This section describes the following cache control and maintenance topics: user-mode
cache control features, cache control registers, the invalidate command, the flush
command, and cache freezing.

6.9.1 User-Mode Cache Control Features

Four features are implemented in the MC88110 which provide explicit control over
caching behavior. These features allow performance to be improved in cases where the
programmer has some specific knowledge about how or when data will be used. These
new features include:

• Cache Bypassing on Stores (Store-Through)

• Cache Preloading (Touch Load)

• Forced Dirty Line Flush (Flush Load)

• Line Allocation Without Line Fill (Allocate Load)

Three of the cache control features are specified by performing signed loads of various
sizes with rO as the destination register: touch load, flush load, and allocate load. The
touch, flush, and allocate load accesses are visible on the external bus through the
transfer code (TC3-TCO) pins. These pins will read 0010 if the processor is in user mode
during a cache control access, and they will read 0110 if the processor is in supervisor
mode during a cache control access.

Past and future implementations which do not support these three cache control features
will still be compatible with 'code employing these features because they do not 'affect the
functionality of the user program. Whether or not the memory references specified by
these features are actually performed is irrelevant to the program; however, performance
may be affected.

•

MOTOROLA MC88110 USER'S MANUAL 6-31

RETRY

RETRY

OK

OK

RETRY------I~-----~...a

OK

OK

o...~---------ERROR

~f----------ERROR

()""'IE-----------------+-----ERROR

•

Figure 6·24. xmem Flowchart

6-32 MC88110 USER'S MANUAL MOTOROLA

6.9.1.1 STORE·THROUG H. When specified, the store-through option
unconditionally causes the 5t operation to write through the cache directly into memory.
If a store-through access hits in the cache, the data is written both to memory and the
cache, but the state of the cache line is not changed. When the store-through misses in
the cache, no line is allocated in the cache, and the access simply writes directly to
memory, bypassing the cache completely. Note that this operation is identical to the
cache accesses in write-through mode.

The store-through option serves two purposes. First, it provides a mechani-sm to force a
particular piece of data to write through the cache and into memory even.if the access is
toa write-back page. Second, it provides a way to prevent data that is being stored that
might miss the cache and that the program knows will not be reused soon from replacing
a potentially more useful line in the cache. This not only avoids the wasted time of
moving a line out of the cache and another back in, but also improves the hit rate of
subsequent Id operations to the cache lines which might have been replaced. StQre
through is specified by a .wt (for write-through) extension on any triadic register
addressing form of the 5t instruction.

6.9.1.2 TOUCH LOAD. The touch load option allows data to be loaded into the Cache
under user program control. Normally, data is brought into the cache only when it is
needed. This can lead to instruction execution stalls due to dependencies on data which •.... . ..
must be read from main memory. In many cases, however, the need for data can bee
predicted. By requesting data to be read into the cache ahead of its actual use, the
latency of the memory system can be overlapped with useful work, and stalls due to long
latency cache misses can be minimized.

A touch load is specified by a byte load to rO as shown in the following example Id
instructi0 ns:

Id.b rO,rS1,r82

Id.b rO,rS1 [rS2]

Id.b rO,rS1,IMM16

If the data specified by the effective address of the touch load operation is not already in
the cache, then it is brought into the cache and replaces an existing line if necessary
Oust as a normal load miss would). A touch load to a cache inhibited line is treated as a
normal cache inhibited Id operation.

A touch load is similar in most respects to normal loads except for two important
distinctions. First, a touch load never generates an exception, and, therefore, the
machine never needs to recover from one. This means that a touch load can be retired
from the history buffer as soon as it enters the data unit rather than waiting until the load'
completes execution. Second, although a touch load operation may bring data into the
cache, it does not write a result into the register files. Thus, load operations executing
during a touch load do not need to run in program sequence with the touch load and can
be allowed access to the cache while waiting for the touch load operation's line fiU to
begin.

MOTOROLA MC88110 USER'S MANUAL 6-33

II

6.9.1.3 FLUSH LOAD. The flush load option forces a dirty cache line out to memory.
Normally, dirty cache lines are copied back to memory only as a side effect of needing to
allocate a new cache line. However, it is sometimes convenient to be able to flush data
in the cache to immediately update the memory image. For example, the user may store
several data words to memory which get filtered by the cache and never actually update
memory. In this case, the flush load option could be used to flush the data words from the
cache out.to memory. Note that no actual load operation is performed, but the operation
is encoded as a load instruction.

A programmer may perform multiple store operations to the cache in write-back mode,
and then use the flush load option to write the data to memory in a single burst
transaction, all from user-mode code; thus, the flush load option provides performance
advantages over other methods of keeping memory coherent with the cache. Placing a
memory page in write-through mode or using the store-through option may have an
undesirable performance impact because of the multiple individual bus transactions
which would .occur. Also, the time required to flush a'line from supervisor mode may be
prohibitive.

A flush load is specified by a word load to rO as shown in the following example Id
instructions:

Id rO,rS1,rS2

Id rO,rSl[rS2]

Id rO,rS1,IMM16

When a flush load operation hits a dirty line in the data cache, the line is flushed out to
memory and the modified bit for the line is cleared. On a cache miss, the flush load is
treated as a Nap.

6.9.1.4 ALLOCATE LOAD. It is sometimes known in advance that an entire cache
line is going to be overwritten. In these cases, performance can be improved if the
overhead of fetching a new line from memory that is going to be overwritten can be
avoided. The allocate load option provides this capability. Allocate load allows the user
to allocate a line in the cache for a subsequent store operation while avoiding the
normal line fill memory transaction. Instead, this option allocates a line in the cache, as
any normal load does on a cache miss, but performs only a single-beat invalidation
transaction on the bus rather than a full line fill bus transaction.

The allocate load option should be used with this caution: if the sequence of stores
which is overwriting the allocated line is interrupted, it is possible that the partially valid
line could be pushed out to memory. However, upon returning from the interrupt, the
remaining stores in the sequence will be completed and the memory state will be
corrected. Thus the invalid version of the line in memory will only have been a transient
phenomenon.

6-34 MC88110 USER'S MANUAL MOTOROLA

An allocate load is specified by a half-word load to rO as shown in the following example
Id instructions:

Id.h rO,r81,r82

Id.h rO,r51 [r52]

Id.h rO,r81,IMM16

When allocate load is used on a cache inhibited access, no line is allocated but the
single-beat bus transaction is still performed. On a data cache hit, allocate load is simply
a NOP. An allocate load is also a NOP in the case of an exception.

6.9.2 Cache Control Registers
Many of the cache control features supported by the MC8811 0 are initiated by writing
information to the cache control registers. The cache control registers can be accessed
via the stcr and Idcr instructions, which are supervisor instructions. Note that, unlike
other control registers, the xcr instruction is not valid for the cache control registers.

The MC8811 0 has the following cache control registers: the instruction MMU/cachelTlC
command register (ICMD), the instruction MMU/cachelTlC control register (ICTL), the
instruction system address register (ISAR), the data MMU/cache command register 6
(DCMD), the data MMUlcache control register (DCTL), and the data system address
register (DSAR). These registers are described in detail in the following paragraphs.

6.9.2.1 INSTRUCTION MMU/CACHE/TIC COMMAND REGISTER CleMD).
The ICMD (see Figure 6-25) controls instruction cache flushing, instruction cache and
ATC invalidation, and instruction MMU probing. The desired action is initiated by writing
the appropriate command code to the ICMD using the stcr instruction. The command
code is contained in the four least significant bits (3-0) of the data written to the ICMD;
the other 28 bits should be zero. Reading the ICMD will return all zeros. Table 6-1 lists
the command codes defined for the ICMD.

31 4 3 0

EIl UNDEFINED-RESERVED FOR FUTURE USE

Figure 6·25. Instruction MMU/Cache COl11mand Register

MOTOROLA MC88110 USER'S MANUAL 6-35

•

Table 6-1. ICMD Command Codes

Code Command

0000 Reserved

0001 Invalidate Instruction Cache and TIC

0010 Invalidate TIC

0011 Reserved

0100 Reserved

0101 Invalidate Instruction Cache Line (see Note)

0110 Reserved

0111 Reserved

1000 MMU Probe Supervisor

1001 MMU Probe User

1010 Invalidate All Supervisor ATC Descriptors

1011 Invalidate All User ATe Descriptors

11 xx Reserved

Note: The cache line affected by this command is specified
in the instruction system address register (ISAR).

6.9.2.2 INSTRUCTION MMU/CACHE CONTROL REGISTER (ICTL). The ICTL
(see Figure 6-26) controls the operating modes for the instruction cache, TIC, and the
instruction MMU. The ICTL includes mask bits for specifying the BATC block size (512K
bytes--64M-bytes).

[ffi] UNDEFINED-RESERVED FOR FUTURE USE

Figure 6-26. Instruction MMU/Cache Control Register

M6-Mo-lnstruction MMU BATC Block Size Selection Bits

The block sizes mapped by the BATC can be programmed by setting bits M6-MO in
the ICTL according to Table 6-2.

6-36 MC88110 USER'S MANUAL MOTOROLA

Table 6-2. Instruction MMU BATe
Block Size Selection Settings

Instruction BATe Size Mask Bits Block Size

M6 M5 M4 M3 M2 M1 MO

1 1 1 1 1 1 1 84M-Byte

0 1 1 1 1 1 1 32M-Byte

0 0 1 1 1 1 1 16M-Byte

0 0 0 1 1 1 1 8M-Byte

0 0 0 0 1 1 1 4M-Byte

0 0 0 0 0 1 1 2M-Byte

a 0 0 a 0 a 1 1M-Byte

0 0 0 0 0 0 0 512K-Byte

Any Other Combination Undefined

DID-Double Instruction Issue Enable/Disable
When double instruction issue is.enabled, the instruction unit will attempt to issue two
instructions each clock cycle. When double instruction issue is disabled, the
instruction unit will attempt to issue only one instruction per clock. On reset, double
instruction issue is enabled.

PREN-Branch Prediction Enable/Disable
When branch prediction is disabled, the branch reservation station is disabled. In this
case, if a branch instruction with a data dependency is encountered, instruction issue
will stall. When branch prediction is enabled, branches with data dependencies issue
to the branch reservation station, and conditional instruction issue occurs in the
predicted direction. On reset, branch prediction is disabled.

Q-Sranch Prediction Disabled
1-Branch Prediction Enabled

FRZQ-Instruction Cache Freeze Bank 0 Enable/Disable
When instruction cache freeze bank 0 is enabled, the first line (line 0) in each set in
the instruction cache is frozen. On reset, instruction cache freeze bank 0 is disabled.

Q-Instruction Cache Freeze Bank 0 Disabled
1-lnstruction Cache Freeze Bank 0 Enabled

FRZ1-lnstruction Cache Freeze Bank 1 Enable/Disable
When instruction cache freeze bank 1 is enabled, the first line (line 1) in each set in
the instruction cache is frozen. On reset, instruction cache freeze bank 1 is disabled.

Q-Instruction Cache Freeze Bank 1 Disabled
1-lnstruction Cache Freeze Bank 1 Enabled

a

MOTOROLA MC88110 USER'S MANUAL 6-37

•

STEN-Instruction MMU Software Table Search Enable/Disable
When software table searches are disabled, a hardware table search is performed
when a ATC miss occurs. When software table searches are enabled, a trap to the
instruction MMU ATC miss vector occurs on an ATC miss, and no hardware table
search occurs. On reset, instruction MMU software table searches are disabled.

o-Instruction MMU Software Table Search Disabled
1-lnstruction MMU Software Table Search Enabled

MEN-Instruction MMU Enable/Disable
When the instruction MMU is enabled, address translations can occur via the
BATC/PATC or table searches. If the instruction MMU is disabled, then the logical
address for each memory location is the same as the physical address (identity
translation), and the access/protection information (e.g., memory update mode,
global/local page designations, etc.) is taken from the ISAP or IUAP. On reset the
instruction MMU is disabled.

o-Instruction MMU Disabled
1-lnstruction MMU Enabled

BEN-TIC Cache Enable/Disable
When the TIC is disabled, no instructions are fetched from the TIC cache and the TIC
is not accessed or updated.· On reset the TIC is disabled.
0-TIC Disabled
1-TIC Enabled

CEN-Instruction Cache Enable/Disable
When the instruction cache is disabled, instruction fetches pass directly to the bus
interface unit and the instruction cache is not accessed or updated. On reset the
instruction cache is disabled.

o-Instruction Cache Disabled
1-lnstruction Cache Enabled

6.9.2.3 INSTRUCTION SYSTEM ADDRESS REGISTER (ISAR). The ISAR (see
Figure 6-27) indicates the logical address for an instruction ATC probe or the physical
address of an instruction cache line to be invalidated during a lin~ invalidate operation.

31

I LO_G_ICA_L_AD_DR_E_SS_F_OR_A_TC_P_RO_BE_O_R_PH_YS_IC_AL_A_DD_R_ES_S_OF_C_AC_HE_L_IN_E _

Figure 6-27. Instruction System Address Register

6-38 MC88110 USER'S MANUAL MOTOROLA

6.9.2.4 DATA MMU/CACHE COMMAND REGISTER (DeMO). The DCMO (see
Figure 6-28) controls data cache flushing, data cache and ATe invalidation, and data
MMU probing. The desired action is initiated by writing the appropriate command code
to the DeMO using the stcr instruction. The command code is contained in the four least
significant bits (3-0) of the data written to the DCMO; the other 28 bits should be zeros.
Reading the OCMO will return all zeros. Table 6-3 lists the command codes defined for
the DCMD.

31 4 3 0

[ill] UNDEFINED-RESERVED FOR FUTURE USE

Figure 6-28. Data MMU/Cache Command Register

Table 6-3. DCMO Command Codes

Code Command

0000 Flush Data Cache Page (copyback) (see Note)

0001 Invalidate Data Cache All

0010 Flush Data Cache All (copyback)

0011 Flush Data Cache All (copyback & invalidate)

0100 Flush Data Cache Page (copyback & invalidate) (see Note)

0101 Invalidate Data Cache Line (see Note)

0110 Flush Data Cache Line (copyback) (see Note)

0111 Flush Data Cache Line (copyback & invalidate) (see Note)

1000 MMU Probe Supervisor (see Note)

1001 MMU Probe User (see Note)

1010 Invalidate All Supervisor ATC Descriptors

1011 Invalidate All User ATC Descriptors

11xx Reserved

Note: The cache line or page affected by this command is specified in the data
system address register· (DSAR).

II

MOTOROLA MC88110 USER'S MANUAL 6-39

•

6.9.2.5 DATA MMU/CACHE CONTROL REGISTER (DCTL). The DCTL (see
Figure 6-29) controls the operating modes for the data cache and the data MMU. The
DCTL includes the mask bits for specifying the BATC block size (512K-bytes-64M
bytes).

[ill] UNDEFINED-RESERVED FOR FUTURE USE

Figure 6-29. Data MMU/Cache Control Register

M6-MQ-Data Mrv1U BATC Block Size Selection Bits
The block sizes mapped by the BATC can be programmed by setting bits M6-MO
according to Table 6-4.

Table 6-4. Data MMU BATe Block Size
Selection Settings

Data BATe Size Mask Bits Block Size

M6 MS M4 M3 M2 M1 MO

1 1 1 1 1 1 1 64M-Byte

0 1 1 1 1 1 1 32M-Byte

0 0 1 1 1 1 1 16M-Byte

0 0 0 1 1 1 1 8M-Byte

0 0 0 0 1 1 1 4M-Byte

0 0 0 0 0 1 1 2M-Byte

0 0 0 0 0 0 1 1M-Byte

0 0 0 0 0 0 0 512K-Byte

Any Other Combination Undefined

XMEM-xmem Instruction Control bit
When this bit is cleared, the xmem instruction performs a locked bus sequence
consisting of a load followed by a store. When this bit is set, the xmem instruction
performs a locked bus sequence consisting of a store followed by a load-. On reset, the
XMEM bit is cleared.

6-40 MC88110 USER'S MANUAL MOTOROLA

DEN-Decoupled Cache Access Enable/Disable
When this bit is clear, decoupled accesses to the data cache are disabled regardless
of the type of bus transaction or the status of the PTA input signal. When this bit is set,
decoupled accesses are allowed under the control of the PTA signal (see 6.7 Data
Cache Decoupling). On reset, decoupled cache accesses are disabled.

Q-Decoupled Cache Accesses Disabled
1-Decoupled Cache Accesses Enabled

FWT-Force Write-Through
When this bit is set, all stores are forced to write-through the data cache regardless of
the page or block status or store-through instruction option: however, the FWT bit does
not affect the normal operation of the WT pin.

BPEN1-Breakpoint Enable/Disable 1
When breakpoint 1 is disabled, the breakpoint registers do not cause a data access
exception when a matching logical address is detected. When breakpoint 1 is
enabled, the breakpoint registers cause a data access exception upon detecting a
matching logical address. On reset, breakpoints are disabled. See Section 8
Memory Management Unit for detailed information on breakpoints.

Q-Sreakpoints Disabled •
1-Breakpoints Enabled

SPENO-Breakpoint Enable/Disable 0

When breakpoint 0 is disabled, the breakpoint registers do not cause a data access
exception when a matching logical address is detected. When breakpoint a is
enabled, the breakpoint registers cause a data access exception upon detecting a
matching logical address. On reset, breakpoints are disabled. See Section 8
Memory Management Unit for detailed information on breakpoints.

Q-Breakpoints Disabled
1-Breakpoints Enabled

FRZQ-Oata Cache Freeze Bank 0 Enable/Disable
When data cache freeze bank 0 is enabled, the first line (line 0) in each set in the data
cache is frozen. On reset, data cache freeze bank 0 is disabled.

Q-Data Cache Freeze Bank 0 Disabled
1-Data Cache Freeze Bank 0 Enabled

FRZ1-0ata Cache Freeze Bank 1 Enable/Disable
When data cache freeze bank 1 is enabled, the first line (line 1) in each set in the data
cache is frozen. On reset, data cache freeze bank 1 is disabled.

Q-Data Cache Freeze Bank 1 Disabled
1-0ata Cache Freeze Sank 1 Enabled

MOTOROLA MC88110 USER'S MANUAL 6-41

•

STEN-Data MMU Software Table Search Enable/Disable
When software table searches are disabled, a hardware table search is performed
when a ATC miss occurs. When software table searches are enabled, a trap to the
data MMU ATe miss vector occurs on an ATC miss, and no hardware table search
occurs. On reset, data MMU software table searches are disabled.

Q-Oata MMU Software Table Search Disabled
1-Data MMU Software Table Search Enabled

MEN-Data MMU Enable/Disable
When the data MMU is enabled, address translations can occur via the BATC/PATC or
table searches. If the data MMU is disabled, then the logical address for each memory
location is the same as the physical address (identity translation), and the
access/protection information (e.g., memory update mode, global/local variable
designations, etc.) is taken from the DSAP or DUAP. On reset, the data MMU is
disabled.

Q-Data MMU Disabled
1-Data MMU Enabled

SEN-Data Cache Snooping Enable/Disable
Snooping is disabled on reset.

Q-Data Cache Snooping Disabled
1-Data Cache Snooping Enabled

CEN-Data Cache Enable/Disable
When the data cache is disabled, loads and stores go directly to the BIU and the data
cache is not accessed or updated. On reset, the data cache is disabled. The timing for
memory· accesses with the cache disabled is identical to cache inhibited accesses.

Q-Data Cache Disabled
1-Data Cache Enabled

6.9.2.6 DATA SYSTEM ADDRESS REGISTER (DSAR). The DSAR (see Figure
6-30) indicates the logical address for a data ATe probe or the physical address of a
data cache line or page to be invalidated or flushed during a line invalidate operation.

31

I'-- LO_GI_CA_LA_D_DR_ES_S_FO_R_AT_C_PR_OB_E_OR_P_HY_S_ICA_L_AD_DR_E_SS_O_FC_AC_H_E_L1N_E _

Figure 6·30. Data System Address Register

6-42 MC88110 USER'S MANUAL MOTOROLA

6.9.3 The Invalidate Command
The invalidation operation marks the state of each line in the desired cache (data cache,
TIC, or instruction cachelTlC) as invalid without copying back any dirty lines to memory.
Supervisor code initiates this operation by writing the appropriate command code to the
ICMO or OCMO. The invalidation operation requires three clock cycles plus the time
required to serialize the machine. The stcr which was used to write the invalidate
command to the ICMO or DCMO causes the machine to serialize.

A more selective mechanism is also provided which allows any line in the instruction or
data cache to be invalidated. This mechanism is invoked by first writing the physical
address of the line to be invalidated into the OSAR or ISAR and then writing either an
invalidate data cache line command to the DCMD or an invalidate instruction cache line
command to the ICMD. Line invalidation requires two clocks plus serialization time.
Refer to Table 6-5 for the number of clock cycles required to invalidate the entire cache
or a single line in the cache.

6.9.4 The Flush Command
The flush operation causes all dirty lines in the data cache to be transferred out to
memory and marks the transferred lines as unmodified. The flush operation can also be ..
specified as a flush with invalidate command which causes all dirty lines in the data •
cache to be transferred out to memory and marks the transferred lines invalid.
Supervisor code initiates these operations by writing the appropriate command code to
the DCMD. No further instruction processing occurs during the flush (or flush and
invalidate) operation, but the cache will snoop global bus transactions.

More selective flush and invalidate mechanisms are also provided which allow any line
or page in the data cache to be flushed or flushed and invalidated. These mechanisms
are invoked by first writing the physical address of the line or page to be flushed into the
OSAR and then writing the appropriate command code to the DCMO. Table 6-5 lists the
number of clock cycles necessary to flush or flush and invalidate a line, a page, or the
entire cache.

MOTOROLA MC88110 USER'S MANUAL 6-43

•

Table 6·5. Clock Cycles for Data Cache Flush/Invalidate Commands

Command Clock Cycles

Invalidate Data or Instruction Cache

Line 5+SER

All 5+SER

Flush Data Cache

Line 8 + SEA + n(SCB) Where n - 0,1

Page 136 + SEA + n(SCB+2) Where n =0-128

All 136 + SER + n(SCB+2) Where n =0-256

Flush and Invalidate Data Cache

Line 8 + SEA + n(SCB) Where n =0,1

Page 136 + SEA + n(SCB+2) Where n = 0-128

All 136 + SEA + n(SCB+2) Where n = 0-256

NOTE: SEA = The time required to serialize the machine
SCB (simple copyback) = The time required to copyback a dirty line to memory
n = The number of lines marked exclusive modified

6.9.5 Cache Freezing

Supervisor code has the ability to freeze one or both banks of the instruction and/or data
caches. Setting the FRZ1 bit in the ICTL or DCTL freezes bank 1 in the instruction cache
or data cache, respectively, and setting the FRZO bit in either register freezes bank 0 in
the corresponding cache. When a bank is frozen, the data contained in that bank can be
read and modified, but not replaced. On reset, the FRZO and FRZ1 bits are cleared. The
flush and invalidate commands have priority over the cache freeze option; therefore, if a
flush or invalidate is specified for a frozen cache bank, the MC8811 0 will ignore the fact
that the bank is frozen and perform the specified function.

The cache freeze feature can be used to improve performance by allowing instructions
or data to be kept in the cache for quick access. For the instruction cache, the freeze
feature is useful for holding sections of code in the cache which need to be rapidly
executed many times (e.g., an inner loop of a routine or an interrupt handler). For the
data cache, the freeze feature is useful for keeping available frequently used data which
could possibly be overwritten during normal operation.

To use the cache freeze feature, first freeze one bank of the cache, then load the other
bank with the critical instructions or data, then unfreeze the first bank and freeze the
other. To freeze a bank in the instruction cache, set the appropriate FRZx bit in the ICTL.
To freeze a bank in the data cache, set the appropriate FRZx bit in the DCTL. To load the
critical code into the instruction cache, the code must be executed so that it will be read
into the free bank of the cache. To load data into the data cache, issue Id instructions.
Recall that only one word must be loaded for a cache line to cause the entire line to be
filled.

6-44 MC88110 USER'S MANUAL MOTOROLA

Data or instructions can be frozen into a bank 0 by using the invalidate command. First
invalidate the entire cache by writing the appropriate command code to the ICMD or
DeMO. Then, any code or data read into either cache will be read into bank O. After the
code or data has been read in, freeze bank O. This method is not as flexible as the first
because only bank 0 can be used and the entire cache is now invalidated.

It is possible to freeze both banks of the cache if there are two sections of code ,or data
that need to be executed rapidly. Since the cache locking feature is implemented as
bank selectable, when one bank is frozen (reducing the cache to a direct mapped
cache), the cache can still be mapped to access the entire address space.

•

MOTOROLA MC88110 USER'S MANUAL 6-45

•

6-46 MC88110 USER'S MANUAL MOTOROLA

SECTION 7
EXCEPTIONS

This section details the MC88110 exceptions and the steps which are taken to
recognize, process, and handle exceptions. This section also describes the exception
model implemented in the MC88110 and the execution latencies associated with
exceptions and interrupts.

7.1 EXCEPTION OVERVIEW

Exceptions are conditions that cause the processor to suspend execution of the current
instruction stream and perform exception processing. Exception processing provides an
efficient context switch so that system software can handle the exception condition while
maintaining the integrity of the hardware and other software. Exception conditions
include the following:

• External interrupts, signaled by the INT or NMI signals

• Memory access conditions, such as page faults and bus errors

• Internally recognized errors, such as divide-by-zero and arithmetic overflow •

• Trap instructions

• Illegal instructions and privilege violations

When an exception is recognized by the processor, the execution context is saved into
exception-time registers, and the machine is placed in supervisor mode. Control is then
passed to a designated exception handler routine. The exception handler routine is user
provided software which processes the condition that caused the exception. The handler
routine performs specific functions (e.g., fixing internal errors, aborting operations, or
servicing interrupts) based on the type of exception that has occurred. Once the
exception handler routine has finished, it returns control to the normal instruction stream.

The MC88110 implements a precise exception model. This means that the precise
address of the faulting instruction is provided to the exception handler and that neither
the faulting instruction nor any instructions logically following it in the code stream will
appear to have been issued. Because of the precise exception model, it is not necessary
for the internal pipeline states of the processor to be visible to the software handlers.

MOTOROLA MC88110 USER'S MANUAL 7-1

•

7.2 THE EXCEPTION MODEL

The following paragraphs give detailed descriptions of the history buffer, the vector table,
and the registers that are used in the exception model. The history buffer can be
visualized as a first-in-first-out (FIFO) queue which maintains the instruction issue order
and information about the machine state at the time each instruction was issued. The
vector table consists of 512 exception vectors in a 4K-byte memory page which is
pointed to by the vector base address in the vector base register (VBR).

7.2.1 The History Buffer
Instructions in the MC8811 0 execute in parallel and possibly out of order internally. This
out-of-order execution makes it possible for an instruction to cause an exception after
logically subsequent instructions have already been issued and completed.

To maintain a precise exception model, the MC88110 ensures that this out-of-order
execution is not apparent to the exception handler. When an exception is recognized, all
of the instructions issued before the excepting instruction finish execution, and then the
MC88110 restores the machine state to a point where neither the excepting instruction
nor any instructions logically following it in the instruction stream appear to have
executed. This machine state is the same state which would be present if all the
instructions had been executed in the order that they were fetched from memory; thus,
the exception handler knows exactly which instructions have completed execution,
which have not yet been issued, and which instruction caused the fault.

The information about the machine state and the order in which instructions were issued
is maintained in a history buffer. This buffer can be visualized as a FIFO queue which
records the relevant machine state at the time each instruction is issued. At the time of
issue, each instruction and the associated machine state is placed at the tail of the
queue. The instructions move through the FIFO until they reach the head of the queue.
An instruction reaches the head when all of the instructions in front of it have finished
execution; however, since instructions can be executed out of order, it is possible for an
instruction to have finished execution, but still be in the middle of the queue. An
instruction is removed from the queue when it reaches the head and has finished
execution. The information placed in the history buffer is sourced through the same
output ports from the register file as stores. This prevents writes to the history buffer from
contending with other traffic on the source and destination busses.

Figure 7-1 shows an example of the history buffer where an fmul.ddd instruction was
the first instruction issued by the MC88110, and a subu instruction was the last
instruction issued. If the fmul.ddd has stalled and has not yet finished execution, then
even if the and has finished execution, it cannot be retired from the buffer until the
fmul.ddd has finished.

7-2 MC88110 USER'S MANUAL MOTOROLA

HEAD OF HISTORY BUFFER

TAIL OF HISTORY BUFFER

-----. fmul.ddd r8, r6, r4

and r15, r16, r17

or r2, r11, r13

addu r3, r11, r12

-----. subu r10, r11, r10

Figure 7-1. History Buffer Example

7.2.2 Exception Vectors and Vector Base Register (VBR)
The MC88110 uses exception vectors to transfer contralto user exception handler
routines during exception processing. The MC8811 0 maintains a vector table consisting
of 512 exception vectors in a 4K-byte memory page which is pointed to by the vector
table base address in the VBR.

The VBR is loaded by supervisor software, normally as part of the system initialization
procedure. The VBR is control register 7 (cr7). The VBR has read/write access in
supervisor mode and may be modified by supervisor software to dynamically specify
which page in memory contains the vector table; however, it is recommended that this
register only be modified when exceptions are disabled (Le., EFRZ, SFD1, and INO in
the processor status register (PSR) are set) so that an exception does not occur while
the contents of the VBR are changing. The lower twelve bits of the VBR are unused, and
the VBR is initialized to zero on reset.

Each exception has a 9-bit exception number which either is generated by hardware
when that exception occurs or is specified as a 9-bit field in trap instructions. This
number is used to form the address of the corresponding exception vector in the vector
table. Exception vector addresses are formed by concatenating the 20 most significant
bits of the VBR with the 9-bit exception vector number and then appending three zeros to
this value. Figure 7-2 shows how exception vector addresses are formed.

•
31

VECTOR TABLE
BASE ADDRESS

Figure 7-2. Exception Vector Address Formation

The lower 128 vectors (numbers 0-127) in the vector table are reserved for hardware
and supervisor use. They are not accessible from user trap instructions. Attempting to
specify any of these vectors from a trap instruction from user mode will cause a privilege

MOTOROLA MC88110 USER'S MANUAL 7-3

•

violation exception to occur. The upper 384 vectors (numbers 128-511) are allocated for
software traps. Table 7-1 lists exception conditions and their respective exception
numbers.

Table 7·1. Exception Vectors

Vector Base
Number Address Exception

Offset

0 $00 Reset

1 $08 Maskable Interrupt

2 $10 Instruction Access

3 $18 Data Access

4 $20 Misaligned Address

5 $28 Unimplemented Opcode

6 $30 Privilege Violation

7 $38 Bounds Check Violation

8 $40 Integer Divide-by-Zero

9 $48 Integer Overflow

10 $50 Unrecoverable Error

11 $58 Nonmaskable Interrupt

12 $60 Data MMU Read Miss

13 $68 Data MMU Write Miss

14 $70 Instruction MMU ATe Miss

15-113 - Reserved

114 $390 SFU1-Floating-Point Exception

115 $398 Reserved

116 $3AO SFU2-Graphics Exception

117 $3A8 Reserved

118 $380 SFU3-Unimplemented Opcode

119 $388 Reserved

120 $3CO SFU4-Unimplemented Opcode

121 $3C8 Reserved

122 $300 SFU5-Unimplemented Opcode

123 $308 Reserved

124 $3EO SFU6-Unimplemented Opcode

125 $3E8 Reserved

126 $3FO SFU7-Unimplemented Opcode

127 $3F8 Reserved

128-511 - Reserved-User Trap Vectors

7-4 MC88110 USER'S MANUAL MOTOROLA

Each exception vector contains two instructions: typically, one instruction is a branch
instruction whose target address is the exception handler, and the other instruction is the
first instruction of the corresponding exception handler routine.

7.3 EXCEPTION RECOGNITION, PROCESSING, HANDLING AND
RETURN FROM EXCEPTIONS

The MC8811 0 treats all exceptions the same except the reset and error exceptions.
When an exception occurs, the following four interrelated phases are performed:

1. Exception recognition-the processor restores the machine state associated with
the faulting instruction.

2. Exception processing-the processor saves the execution context in exception
time registers, and changes program flow to the exception handler routine.

3. Exception handling-the exception handling software corrects the exception
condition or performs the function initiated by a trap instruction.

4. Return from exception-the processor restores the execution context which was in
effect before the exception occurred and resumes normal execution of program
instructions.

The following paragraphs describe these four phases in more detail.

7.3.1 Exception Recognition

This section describes in detail when and how the MC88110 internally reCOgnizes.
exceptions and interrupts, including the operation and states of the history buffer. Also .
discussed are the priorities associated with exceptions and interrupts.

7.3.1.1 INTERNAL OR BUS GENERATED EXCEPTIONS. When an instruction
generates an exception during execution, the history buffer entry containing the
associated instruction is marked as having a pending exception. The exception is not
recognized until that entry reaches the head of the history queue. At this point, any
instructions that are currently pending in execution unit pipelines or in data unit buffers
that have not yet written back are discarded. In other words, all instructions which were
issued after the excepting instruction are discarded. Any load instructions which have
been granted access to the cache or bus are allowed to complete, but the write-back of
their results is waived.

Figure 7-3 shows an example of instructions in the history buffer. In Figure 7-3(a), the
faddu instruction has caused an overflow condition. Figure 7-3(b) shows that the
exception will be recognized when the faddu instruction has reached the head of the
queue after the mul instruction has finished.

MOTOROLA MC88110 USER'S MANUAL 7-5

HEAD OF HISTORY BUFFER mul r15, r16, r17

or r2,r11,r13

FAULTING INSTRUCTION 'addu x3, x11, x12
(EXAMPLE: FLOATING-POINT OVERFLOW) •

••

(a) Exception Occurs

-~C""""~EXCEPTION RECOGNIZED 'addu x3, x11, x12 ~~~

•••

TAIL OF HISTORY BUFFER

subu r10, r11, r10

cmp r5, r10, rO

---. and r5, r5, r6

•
(b) Exception Recognized

Figure 7-3. Exception Recognition in the History Buffer

Next, the processor back tracks through the instructions and machine states stored in the
history buffer, and the current machine state is restored at a rate of two instructions per
clock cycle to its value at the time the excepting instruction was issued. The machine
states stored in the history buffer include the contents of any destination registers, so as
the processor restores the machine state, the destination registers for the instructions are
updated to their original values.

Memory never has to be restored during the machine state restoration process. Store
instructions are placed in the history buffer when they are issued to the load/store unit
but are not allowed to update memory until they reach the head of the queue. This
means that stores always complete in program order and never modify memory until all
previous instructions have completed.

7.3.1.2 EXTERNALLY GENERATED INTERRUPTS. An externally generated
interrupt will be taken when an instruction marked as causing an exception reaches the
head of the history buffer. To make sure that the interrupt will be handled as soon as
possible, all instructions issued after the interrupt is detected are issued as
unimplemented instructions. While a load or store that has already accessed the bus will
be allowed to complete, any additional instructions which write-back are marked as
causing an exception. As soon as one of these instructions, or the first unimplemented
instruction reaches the head of the history buffer, then the interrupt vector will be taken.

7-6 MC88110 USER'S MANUAL MOTOROLA

7.3.1.3 PRIORITIES. There is no priority associated with internally generated
exceptions. If two or more instructions in execution at the same time cause exceptions,
the exception caused by the instruction that was issued first will be recognized when it
reaches the head of the queue. When the machine state is recovered, all other
instructions in the queue will be discarded. After the exception has finished, these
instructions will be reissued, and the next one in the stream causing an exception will be
recognized when it reaches the head of the queue.

Externally generated interrupts have priority over all internally generated exceptions,
except for data access exceptions. Once an interrupt has been detected, the next
instruction to reach the head of the queue marked as having an exception will cause the
interrupt vector to be taken, unless the exception is a data access exception.

7.3.2 Exception Processing
Once an exception has been recognized, the following actions are taken by the
processor (see Figure 7-4):

1. The machine state is recovered.

2. The logical address of the excepting instruction is saved in the exception-time
executing instruction pointer register (EXIP) along with a bit indicating whether the
instruction was in the delay slot of a branch.

3. If the excepting instruction was in the delay slot of a branch, then the address of the
next instruction to execute is saved in the exception-time next instruction pointer
register (ENIP). •

4. The PSR is saved in the exception-time processor status register (EPSR). ·

5. The INO bit in the PSR is set in order to disable maskable external interrupts (see
7.5.1 Interrupts)

6. The EFRZ bit in the PSR is set in order to freeze the exception-time registers. If
another exception occurs while this bit is set, it will be directed to the error
exception vector.

7. The Mode bit in the PSR is set in order to place the machine into supervisor mode.

8. The exception vector address is computed using the VBR and the vector number
as shown in Figure 7-2

9. Execution is resumed with the two instructions found at the exception vector
address, causing program flow to be diverted to the exception handler.

MOTOROLA MC88110 USER'S MANUAL 7-7

EXCEPTION IS
RECOGNIZED

LOGICAL ADDRESS OF
FAULTING INSTRUCTION

PLACED IN EXIP

SAVE THE ADDRESS OF
THE NEXT INSTRUCTION
TO EXECUTE IN THE ENIP

YES

WAS THE INSTRUCTION IN
ADELAY SLOT OF ABRANCH?-----------.

•
THE IND BIT IN THE PSR IS

SET TO DISABLE INTERRUPTS
AND EXCEPTIONS

EXECUTION IS RESUMED
WITH INSTRUCTIONS AT
THE VECTOR ADDRESS

Figure 7·4. Exception Processing Flow Chart

The EPSR has exactly the same format as the PSR (see Section 2 Programming
Model). The format for the EXIP and ENIP are shown in Figures 7-5 and 7-6.

EXECUTING INSTRUCTION POINTER

31 1 0

~------------------------------
LEGEND:

Eill UNDEFINED-RESERVED FOR FUTURE USE

D-DELAY SLOT BIT

Figure 7·5. Exception-Time Executing Instruction Pointer CEXIP)

7-8 MC88110 USER'S MANUAL MOTOROLA

31

NEXT INSTRUCTION POINTER

EB UNDEFINED-RESERVED FOR FUTURE USE

1 0

Figure 7-6. Exception Time Next Instruction Pointer (ENIP)

7.3.3 Exception Handling
Typically, exception handlers first save the state of the processor, including the
exception-time registers (EPSR, EXIP, and ENIP), the floating-point status register
(FPSR), the floating-point control register (FPCR), as well as any of the general registers
or extended registers that may be used by the handler. Once the machine state has
been stored in memory, exception handlers may reenable exceptions and interrupts by
clearing the EFRZ and IND bits in the PSR. Doing so allows another exception (a nested
exception) to occur while the first exception is being handled. If exceptions and interrupts
are enabled before the state is saved and another interrupt occurs, the machine state
information would be lost when the second exception writes to the exception processing
registers.

If the required exception handling is simple and the system can tolerate execution of the
handler with interrupts and exceptions disabled, then the handler can avoid the
overhead of saving and restoring the processor state to memory. In this case, the
handler routine must guarantee that it will not generate any additional exceptions. If any
exceptions are generated, they will be referred to the error vector.

To simplify and speed up handling of exceptions, five control registers (cr16-cr20),
which are accessible only in supervisor mode, are provided. These registers can be
used to store the supervisor stack pointer or other operating system specific data. At
exception time, general registers can be exchanged (using the exchange control register
(xcr) instruction) with these registers to minimize the amount of memory traffic needed
by fast trap handlers. These registers may also be used as scratch storage by fast
exception handlers to avoid saving general registers to memory.

•

MOTOROLA MC88110 USER'S MANUAL 7-9

•

7.3.4 Return from Exceptions
If the machine state was saved at the start of the exception handler, then it must be
restored when the handler is finished. A return from exception (rte) instruction should be
the last instruction in the handler routine. The rte instruction is a privileged instruction
and is the mechanism provided by MC88110 for exiting exception handling routines.
When the rte instruction is executed, the following sequence of events is performed (see
Figure 7-7):

1. The machine is serialized to guarantee that all exception handler instructions
complete before control is returned to the program. Serialization means that
instruction issue is halted until all currently executing instructions have finished, at
which point all of the pipeline stages are empty and all outstanding memory
transactions have been completed.

2. The PSR is restored from the EPSR.

3. The machine is placed in the mode (user or supervisor) it was in at the time of the
exception (as indicated by the EPSR).

4. The instruction at the address indicated by the EXIP is fetched.

5. If the excepting instruction was in the delay slot of a branch, as indicated by the 0
bit in the EXIP (0=1), then the instruction at the 'address in the ENIP is fetched and
will be executed as the second instruction. Software changes to the ENIP have no
effect if rte is executed with 0=0.

6. Normal execution resumes with the instruction at the address in the EXIP. If the D
bit in the EXIP was set, then the instruction fetched in step 5 is the next instruction
which executes; otherwise, execution continues sequentially.

Since the address stored in the EXIP by the processor was the address of the faulting
instruction, the handler should determine if execution is to resume with that instruction or
the next instruction. If the handler does not want the faulting instruction to be reissued,
then it should increment the value in the EXIP so that it points to the next instruction in
the stream.

7-10 MC88110 USER'S MANUAL MOTOROLA

rte IS ISSUED

IS THE DBIT (BIT 0) IN
THE PSRSET?

RESUME EXECUTION WITH
INSTRUCTION AT THE

ADDRESS IN THE EXIP AND
THE NEXT SEQUENTIAL

INSTRUCTION

RESUME EXECUTION WITH
INSTRUCTION AT THE

ADDRESS IN THE EXIP AND
THE INSTRUCTION FETCHED

FROM THE VALUE IN THE ENIP •
Figure 7-7. Return From Exceptions Flow Chart

7.4 EXCEPTION TIMING
The following paragraphs describe the latencies associated with exceptions and
interrupts.

7.4.1 Latency for Internal or Bus Generated Exceptions
Figure 7-8 illustrates the latencies associated with exceptions other than interrupts.

MOTOROLA MC88110 USER'S MANUAL 7-11

A-At time A, an instruction which is destined to generate an exception is issued.

B-At time B, the instruction has reached the head of the history buffer implying that all
instructions preceding it in the code stream have finished execution without generating any
exceptions. -

e-By time C, the instruction has caused an exception while being executed, and the exception
has been recognized. At this time, exception processing begins. Note that if the instruction
had not generated an exception by this time, it would have been retired ~om the buffer.

D-By time 0, the state of the machine has been restored to the machine state at the time the
excepting instruction was issued.

E-At time E. the PSR and instruction pointer of the currently executing process have been
saved, and control has been transferred to the exception handler routine.

ALL PREVIOUS STATE
INSTRUCTIONS COMPLETE RESTORED

Ate t E
1~-I---1----+--1--~
t B t D t

NOTE: At time A. an instruction which is destined to generate an exception is issued•
EXCEPTING INSTRUCTION

ISSUES
EXCEPTION

RECOGNIZED
EXCEPTION HANDLER

RUNS

Figure 7-8. Exception Latency Time Line

At time A, the excepting instruction is issued and begins execution. The faulting
condition occurs sometime during the interval from A to C.

At time S, the excepting instruction has reached the head of the history buffer. The
interval B-C is the time required for the machine to complete execution of the excepting
instruction, and any load which is in progress on the external bus. Frequently, S-e will
be zero since most instructions finish execution before reaching the head of the queue.

At time C, the exception is recognized, and during C-D the machine state is restored to
the machine state at the time the excepting instruction was issued. The length of C-D
depends on the number of instructions issued after the excepting instruction was issued.
Since a maximum of 11 additional instructions could have been issued and the machine
state is restored at a rate of 2 instructions per clock, the interval C-D can be a maximum
of· 6 clocks.

At time 0, the machine state has been completely restored. During the interval D-E the
MC88110 performs all of the actions associated with transferring control to the exception
handler (exception processing). The interval D-E requires 2 clocks plus the time
required to fetch the target handler instructions (3 clocks for ideal memory).

7-12 MC88110 USER'S MANUAL MOTOROLA

7.4.2 Latency for Externally Generated Interrupts

The interrupt latency differs from the latency for other exceptions only in the time up to
when the exception is recognized. The latency after the exception is recognized (shown
as the interval from C to E in 7.4.1 Latency for Internal or Bus Generated
Exceptions) is the same for all exceptions and external interrupts.

As discussed in 7.3.1.2 Externally Generated Interrupts, the interrupts are
recognized when the first instruction which causes an exception- reaches the head of the
history buffer after the interrupt signal is asserted. Therefore, the latency can vary
depending on what instructions were issued just prior to the interrupt.

7.5 TYPES OF EXCEPTIONS
The following paragraphs describe the types and causes of interrupts and exceptions in
the MC8811 o.

7.5.1 Interrupts

The MC88110 provides two external interrupt signals-one maskable and the other
nonmaskable. Each interrupt has a unique vector in the exception vector table.

7.5.1.1 MASKABLE INTERRUPT (INT). INT is level sensitive (active low), not edge
triggered. The interrupting device should keep the INT signal asserted until it receives
explicit recognition. This recognition is normally generated by the interrupt handler. INT B.
is software maskable by the IND bit in the PSR. Upon recognition of any exception, INO
is automatically set by hardware to disable maskable interrupts. The maskable interrupt
is of lower priority than the nonmaskable interrupt, but higher than internal exceptions.

7.5.1.2 NON-MASKABLE INTERRUPT (NMI). The nonmaskable interrupt is not
masked by the INO interrupt disable bit in the PSR and is therefore useful as a high
priority system interrupt. The nonmaskable interrupt can, however, be masked by the
EFRZ bit in the PSR. Since the EFRZ bit is set during exception recognition, all exception
handlers are guaranteed to have a chance to save the previous machine state before a
nonmaskable interrupt is taken. A nonmaskable interrupt can be taken once the EFRZ bit
is cleared. This assures recoverability from a nonmaskable interrupt which is nested
within another exception or interrupt.

NMI is transition sensitive (falling edge) and should be held asserted until it is
acknowledged by the interrupt handler. Once it is recognized by the MC88110, NMI must
transition to a negated level and be reasserted before another nonmaskableinterrupt
will be taken. This requirement is illustrated in Figure 7-9.

MOTOROLA MC88110 USER'S MANUAL 7-13

REQUIRED TRANSITION

t
NMI ~ I'------" _

FIRST NMI VECTOR TAKEN SECOND NMI VECTOR TAKEN

•

Figure 7-9. NMT Signal Timing

7.5.2 Instruction Unit Exceptions

There are five types of instruction unit exceptions: misaligned access exceptions,
unimplemented opcode exceptions, privilege violation exceptions, trap instruction
exceptions, and integer overflow exceptions. Recall that the value stored in the EXIP at
the time any of these exceptions are processed is the address of the instruction which
caused the exception.

7.5.2.1 MISALIGNED ACCESS EXCEPTION (VECTOR OFFSET $20). A
misaligned access exception occurs when a load, store, or exchange is attempted to a
memory address that is not consistent with the size of the access. For example, this
exception occurs when a half-word access is attempted to an odd byte address. This
exception also occurs when a double-word access is attempted to an address that is an
odd-word boundary.

A misaligned access is detected before the memory access is dispatched to memory.
The exception handler can either emulate the memory access in software or discard the
instruction.

The misaligned access exception can be masked by setting the MXM bit in the PSR. If
this exception is masked and a misaligned access is attempted, the processor performs
the access to the next lower properly aligned boundary (e.g., a half-word read operation
attempted to address $401 returns the half word at location $400).

7.5.2.2 UNIMPLEMENTED OPCODE EXCEPTION (VECTOR OFFSET $28).
This exception occurs when an instruction with an unimplemented opcode is loaded into
the instruction pipeline. The exception handler can fetch, decode, and process the
instruction, thereby emulating unimplemented opcodes in software. If instruction
emulation is not needed, the handler can discard the instruction or perform other
appropriate processing. Unimplemented special function unit 1 (SFU1) or special
function unit 2 (SFU2) instructions do not cause this exception but generate the
corresponding SFU1 or SFU2 exception.

MC88110 USER'S MANUAL MOTOROLA

7.5.2.3 PRIVILEGE VIOLATION EXCEPTION (VECTOR OFFSET $30). A
privilege violation occurs when software attempts to perform a privileged operation while
in user mode. Privilege violations are caused by the following three conditions:

1. Accessing a control register other than the FPCR or FPSR while in user mode.

2. Using the .usr option while in user mode.

3. Specifying exception vectors 0-127 in a trap instruction while in user mode.

When a privilege violation occurs, the privileged operation is not performed.

7.5.2.4 TRAP INSTRUCTION EXCEPTIONS (VECTOR OFFSET $400-$7F8).
Trap instructions are MC8811 0 instructions that explicitly cause an exception.

The MC8811 0 instruction set includes four trap instructions: tend, tb1, tbO, and tbnd.
The tend, tb1, and tbO instructions can initiate any exception handler by specifying the
appropriate vector number (see Table 7-1); however, in user mode, a trap to vectors 0
127 will cause a privilege violation whether or not the trap condition is met. The tend,
tb1, and tbO instructions cause the MC88110 to serialize before the instruction is
issued.

A bounds-check violation exception (vector offset $38) occurs when tbnd detects a
value that is outside of the bounds specified by the instruction.

The value stored in the EXIP at the beginning of the exception handler is the address of
the trap instruction. The handler should change this value so that it points to the next 7
instruction after the trap in the program; otherwise, the trap instruction will be reissued
when normal processing begins. For the EXIP to point to the next instruction after the
trap, the value of the EXIP should be the original value of the EXIP at the beginning of
the handler plus four.

7.5.2.5 INTEGER OVERFLOW EXCEPTION (VECTOR OFFSET $48). The
integer overflow exception occurs when the result of a signed integer arithmetic
instruction cannot be represented as a 32-bit signed number. The EXIP points to the
instruction that caused the exception. The destination register and carry bit are
unchanged by an instruction that causes an integer overflow exception.

7.5.3 Memory Access Exceptio'ns
Memory access exceptions occur when a data memory access or an instruction prefetch
fails to complete normally. The following paragraphs describe the situations that cause
exceptions for instruction accesses and for data accesses.

7.5.3.1 INSTRUCTION ACCESS EXCEPTION (VECTOR OFFSET $10). An
instruction access exception can occur if an instruction fetch is terminated with a bus
error, or a hardware table search is terminated with a fault. A fault occurs during a table
search if a privileged descriptor is accessed in user mode (supervisor priVilege violation)
or an invalid segment or page descriptor is encountered. A bus error on any of the
accesses during the table search will also terminate the table search and cause an
instruction access exception.

MOTOROLA MC88110 USER'S MANUAL 7-15

•

When an instruction access exception occurs, the logical address of the original
instruction access is placed in the instruction access logical address register (ILAR). If
the exception was caused by a bus error on either the actual instruction access or an
access during a table search, then the physical address where the bus error occurred is
placed in the instruction access physical address register (IPAR). If the exception was
caused by either a supervisor privilege violation or an invalid segment or page
descriptor, then the physical address of the descriptor is placed in the IPAR. For more
information on the ILAR and IPAR, see Section 8 Memory Management Units.

Both the ILAR and IPAR are frozen when the EFRZ bit in the PSR is set during exception
processing. The exception handling software must clear the EFRZ bit to allow any future
updates to these registers.

The MC88110 sets individual bits in the instruction access status register (lSR) to
indicate the cause of the instruction access exception. This register is frozen when the
EFRZ bit in the PSR is set. The exception handler must clear the EFRZ and then clear the
ISR. The format of the ISR is shown in the following illustration:

EEl UNDEFINED-RESERVED FOR FUTURE USE

Figure 7-10. Instruction Access Status Register (ISR)

TBE-Table Search Bus Error

Indicates that a bus error was encountered during a table search.

SI-Segment Descriptor Invalid
Indicates that an invalid segment descriptor was encountered during a table search.

PI-Page Descriptor Invalid

Indicates that an invalid page descriptor was encountered during a table search.

SP-Supervisor Privilege Violation
Indicates that a hardware table search resulted in a supervisor privilege violation. The
physical address of the faulting descriptor is located in the IPAR. The logical address
of the original access is located in the ILAR.

PH-Page Address Translation Cache (PATC) Hit
1 =Probed address resulted in a PATe hit.
o=Probed address was not found in the PATC.

7-16 MC88110 USER'S MANUAL MOTOROLA

BH-Block Address Translation Cache (BATC) Hit
1 = Probed address resulted in a BATe hit.
o= Probed address was not found in the BATe.

S/U-Supervisor/User Status
Indicates the supervisor/user status of the instruction access in error.

BE-Bus Error
Indicates that a bus error occurred.

The exception handler must determine the cause of the exception and then optionally
retry the instruction fetch. For example, if the exception was caused by a page fault, the
requested memory page must be read in from memory by the exception handler. Upon
exiting, the EXIP will already point to the address of the faulting instruction so the
instruction can be reexecuted. If the exception was caused by a privilege violation or a
nonexistent memory fault, the exception handler may opt to abort the instruction fetch. In
this case, the handler should change the address in the EXIP to point to another
instruction.

7.5.3.2 DATA ACCESS EXCEPTION (VECTOR OFFSET $18). A data access
exception occurs in response to a bus error during a data transaction or in response to
one of several MMU conditions. A data transaction which misses in the data cache can
initiate a data copyback or a line read operation. A bus error (signaled by assertion of
the TEA signal) on either the copyback or the line read will cause a data access B..
exception.

If a write data access is attempted on a page or block which is designated as write
protected (the write protect (WP) bit is set in the descriptor) then a data access exception
is generated. A data access exception will occur if a supervisor violation, an invalid
segment or page descriptor, or a bus error is detected during a hardware table search. A
breakpoint exception wil.l also cause a data access exception. This is described further
in Section 8 Memory Management Units.

When a data access exception is generated by a bus error, the faulting physical address
is placed in the data access physical address register (DPAR). When an exception is
caused by a privilege violation or an invalid descriptor during a table search, the
physical address of the descriptor is placed in the DPAR. This register remains
undefined for write and for breakpoint exceptions.

For privilege and invalid descriptor violations during table searches, the logical address
of the original access is placed in the data access logical address register (DLAR). This
register is also updated with the address of the faulting access in the cases of breakpoint
and write exceptions. The DLAR remains undefined for exceptions caused by bus errors
during a copyback or a snoop copyback.

MOTOROLA MC88110 USER'S MANUAL 7-17

•

Both the DLAR and DPAR are frozen when the EFRZ bit in the PSR is set during
exception processing. The exception handling software must clear the EFRZ bit to allow
any updates to these registers. For more information on the DPAR and the DLAR, see
Section 8 Memory Management Units.

The MC88110 sets individual bits in the data access status register (DSR) to indicate the
cause of the instruction access exception. This register is frozen when the EFRZ bit in the
PSRis set. The exception handler must clear the EFRZ and then clear the DSR. The
format of the DSR is shown in the following Figure 7-11.

[ill] UNDEFINED-RESERVED FOR FUTURE USE

Figure 7·11. Data Access Status Register (DSR)

TBE-Probe Table Search Bus Error

Indicates that a buser-ror was encountered during a table search.

SI-Segment Descri.ptor Invalid

Indicates that an invalid segment descriptor was encountered during a hardware table
search.

PI-Page Descriptor Invalid

Indicates that an invalid page descriptor was encountered during a hardware table
search.

SP-Supervisor Privilege Violation

Indicates that a hardware table search resulted in a supervisor privilege violation. The
physical address of the faulting descriptor is located in the DPAR. The logical address
of the original access is located in the DLAR.

WE-Write ExcepUon

Indicates that the data access resulted in a write exception.

BPE-Breakpoint Exception

Indicates that a breakpoint exception occurred.

PH-Page Address Translation Cache (PATC) Hit
1 = Probed address resulted in a PATe hit.
o=Probed address was not found in the PATC.

7-18 MC88110 USER'S MANUAL MOTOROLA

BH-Block Address Translation Cache (BATC) Hit
1 =Probed address resulted in a BATe hit.
o= Probed address was not found in the BATC.

S/U-Supervisor/User Status
Indicates the supervisor/user status of the data access in error.

RIW-ReadlWrite Status
Indicates the read/write status of the data access in error.

CP-Copyback Error
Indicates that an error occurred during a cache copyback initiated by the normal
replacement of a dirty cache entry or that a cache flush was unsuccessful.

WA-Write-Allocate Bus Error
Indicates that a bus error occurred during the line read operation of a write cache miss
implementing the write allocation policy.

BE-Bus Error
Indicates that a bus error occurred during a data access.

Once the cause of the data access fault is determined, the exception handler may correct
the fault condition or may ignore the memory transaction. For example, if the exception •
was caused by a page fault, the requested memory page must be read in from memory .
by the exception handler. Upon exiting, the EXIP is pointing to the address of the faulting
instruction so the instruction will be reexecuted. If the exception was caused by a
privilege violation, a write protection, or a nonexistent memory fault, the exception
handler may opt to ignore the transaction. In this case, the handler should change the
address in the EXIP to point to another instruction (most likely the instruction after the
faulting one).

7.5.4 Floating-Point Unit Exceptions
There are 8 types of floating-point unit exceptions. Each of these exceptions cause the
SFU1 vector to be taken. Table 7-2 depicts a summary of all the floating-point
instructions of the MC88110 and the exceptions that each of these instructions can
cause. The exceptions are itemized by setting the corresponding bit in the floating-point
exception cause register (FPECR). There are no exceptions referenced for the FPRV bit
because this bit is only set when there is an attempt to access a privileged (implemented
or unimplemented) floating-point register from user mode and does not directly
correspond to a particular instruction. For more information on the floating-point
exceptions and how they conform to the ANSI! IEEE standard, refer to Section 4
Floating-Point Implementation.

MOTOROLA MC88110 USER'S MANUAL 7-19

•

Table 7-2. Exceptions Caused by Floating-Point Instructions

Exceptions

Inst ruet ion s FIOV FUNIMP FROP FDVZ FUNF FOVF FINX

fmul SFU1 NaN, Invalid, Underflow Overflow Inexact
Disabled Denorm, or

Unnorm

fadd SFU1 NaN, Invalid, Underflow Overflow Inexact
Disabled Denorm, or

Unnorm

fsub SFU1 NaN, Invalid, Underflow Overflow Inexact
Disabled Denorm, or

Unnorm

fcvt SFU1 NaN, Invalid, Underflow Overflow Inexact
Disabled Denorm, or

Unnorm

femp SFU1 NaN, Invalid,
Disabled Denorm, or

Unnorm

fcmpu SFU1 NaN, Invalid,
Disabled Denorm, or

Unnorm

fit SFU1 Inexact
Disabled

Int r52<-231 , 5FU1 NaN, Invalid, Inexact
r52> 231 _1 Disabled Denorm, or

Unnorm

nint r52<-231 , 5FU1 NaN, Invalid, Inexact
r52> 231 _1 Disabled Denorm, or

Unnorm

trne r52<-231 , 5FU1 NaN, Invalid, Inexact
r52> 231 _1 Disabled Denorm, or

Unnorm

fdlv 5FU1 NaN, Invalid, r52=0 Underflow Overflow Inexact
Disabled Denorm, or

Unnorm

fsqrt Always

mov SFU1
Disabled

7-20 MC88110 USER'S MANUAL MOTOROLA

7.5.4.1 FLOATING-POINT UNIMPLEMENTED. This exception occurs when one of
the following situations occurs:

1. If a floating-point operation is attempted when SFU1 is disabled

2. If there is an attempt to execute an unimplemented floating-point opcode (including
the fsqrt instruction)

3. If there is an attempt from supervisor mode to access an unimplemented floating
point control register

4. If there is an attempt to access a double-precision floating-point number which is
aligned on an odd-numbered register pair.

When this exception occurs, the FUNIMP bit (bit 6) of the FPECR is set by hardware. The
unimplemented instruction has no effect on the register scoreboard. When this exception
occurs, all other bits in the FPECR are undefined; therefore this bit should be checked
first.

7.5.4.2 FLOATING·POINT PRIVILEGE VIOLATION. This exception occurs when
an attempt is made to access any of the privileged floating-point control registers (fcrO
fer61) from user mode. The instructions which can cause this exception are flder, fxer
and Ister. This exception causes the FPRV bit (bit 5) of the FPECR to be set.

7.5.4.3 FLOATING·POINT TO INTEGER CONVERSION OVERFLOW. This
exception occurs when a source operand of a floating point to integer conversion
instruction is· too large to be represented as a signed 32-bit integer. The instructions 7
which can invoke this exception are int, nint, and trnc. This exception causes the FIOV
bit (bit 7) of the FPECR to be set.

7.5.4.4 FLOATING-POINT RESERVED OPERAND. This exception occurs when
either of the source operands of an instruction is a reserved operand, or the operation
being performed on the given operand is invalid according to the IEEE 754 standard.
This exception causes the FROP bit (bit 4) in the FPECR to be set.

7.5.4.5 FLOATING·POINT OVERFLOW. This exception occurs when the rounded
result of the operation is too large to be represented as a finite number in the destination
format (single-, double-, or double-extended). This exception causes the FOVF bit (bit 1)
as well as the FINX bit (bit 0) of the FPECR to be set.

7.5.4.6 FLOATING-POINT UNDERFLOW. This exception occurs when the rounded
result of the operation is too small to be represented as a finite normalized number in the
destination format (single-, double-, or double-extended). This exception causes the
FUNF bit (bit 2) in the FPECR to be set.

7.5.4.7 FLOATING-POINT DIVIDE-BY-ZERO. This exception occurs when the
denominator (rS2) operand of an fdiv instruction is a zero and the numerator is a
nonzero finite normalized number. This exception causes the FDVZ bit (bit 3) in the
FPECR to be set.

MOTOROLA MC88110 USER'S MANUAL 7-21

•

7.5.4.8 FLOATING-POINT INEXACT. This exception occurs when the rounding of a
result causes a loss of accuracy or when significance is lost by the occurrence of an
overflow condition. This exception causes the FINX bit (bit 0) in the FPECR to be set if
the EFINX bit in the FPCR is set. Otherwise, the hardware sets the AFINX bit in the FPSR
and does not take an exception.

7.5.5 Graphics Unit Exceptions (Vector Offset $3AO)

There are two types of graphics unit exceptions. Both of these exceptions cause the
same SFU2 exception vector to be taken. The causes of these exceptions are described
below.

7.5.5.1 SFU2 DISABLED. This exception occurs when SFU2 is disabled and a
graphics instruction attempts to issue. The unit is disabled when SFD2 (bit 4) bit of the
PSR is set.

7.5.5.2 SFU2 UNIMPLEMENTED. This exception occurs when an attempt is made
to execute an unimplemented instruction in the SFU2 opcode class. This exception will
also occur if an odd register is specified for a double word operand.

7.5.6 Error Exception
The error exception provides the means to terminate processing when catastrophic
situations are encountered. The error exception occurs if another exception occurs when
theEFRZ bit in the PSR is set. The EFRZ bit is only set during exception processing. In
other words, the error exception will be taken if the MC88110 is processing one
exception whose handler has not cleared the EFRZ bit and a second exception occurs.
The error exception will also be taken if the MC8811 0 encounters a fault while fetching
an exception handler.

The error handler routine can initialize the processor and resume execution at address
$0 or signal external hardware to perform a reset operation. If the error exception vector
cannot be fetched successfully (e.g., because of a memory error on_the vector table
page), then the error exception cannot be taken. This situation causes the MC8811 0 to
loop on fetching the error exception vector. This loop can only be exited by a processor
reset.

7.5.7 Reset
Processor reset is a special exception case that occurs when the RST signal is asserted.
The RST signal cannot be masked. Reset exception processing forces the MC88110 into
a predefined initial state. No pending exceptions or partially executed ·instructions are
retained, the VBR is cleared, and the PSR and bus signals enter predefined states.

The exception vector for reset is vector zero. Since the VBR is forced to zero, the reset
exception vector resides at logical memory address zero.

7-22 MC88110 USER'S MANUAL MOTOROLA

7.5.8 Address Translation Cache (ATC) Miss Exception

ATe miss exceptions are provided in support of software table searches. Software table
searches are enabled by setting the software table search enable (STEN) bit in the data
MMU/cache control register (DCTL) or the instruction MMU/cache control register (ICTL)
for data and instruction accesses, respectively. When the STEN bit is set, ATe misses
trap through either the instruction or data MMU ATe miss vectors and the handler routine
performs the table search. The virtual address of the faulting reference is stored in the
ILAR or the DLAR.

•

MOTOROLA MC88110 USER'S MANUAL 7-23

•

7-24 MC88110 USER'S MANUAL MOTOROLA

SECTION 8
MEMORY MANAGEMENT UNITS

This section provides a description of the MC88110 instruction and data memory
management units (MMUs). Features described in this section are implemented by both
MMUs unless explicitly stated otherwise.

The primary functions of each MMU are to translate logical to physical addresses for
memory accesses and to provide access protection on a page basis. Instruction
accesses are always read accesses generated by the instruction unit of the MC8811 0 to
fetch instructions for execution, and data accesses are generated by the load and store
instructions of the MC88110 programming model. The MC88110 does not support
instruction cache coherence with data accesses (load and store instructions can not
generate instruction accesses).

The MC88110 contains independent instruction and data MMUs that each provide
separate 4G-byte supervisor and user logical address spaces with a 4K-byte page size
and software selectable 512K-byte-64M-byte block size capability. Each MMU contains
a 32-entry fully associative page address translation cache (PATC) and an a-entry fully
associative block address translation cache (BATC). BATe entries are loaded by
software, and PATC entries may be loaded by the MC8811 0 hardware table search
algorithm or optionally by software. The hardware table search algorithm used by the 8
MC88110 supports two-level page tables with optional indirection. Additionally, the data
MMU contains two breakpoint registers that trap on selected data accesses.

This section describes the address translation mechanisms provided by the MMUs as
well as the various MMU condittons that cause MC8811 0 exceptions. In addition, the use
of data breakpoints and the probing of address translation cache (ATC) entries is
described. Refer to Section 7 Exceptions for more detailed information on exception
processing with the MC8811 O.

8.1 MMU OVERVIEW
Logical address spaces can be divided into large regions called blocks, small regions
called pages, or a combination of the two. For each block or page, the operating system
creates an address descriptor that is used by the appropriate MMU to generate the
physical address and the protection and other access control information when an
address within the block or page is accessed. Address descriptors reside in tables in
external physical memory; for faster accesses, the MMUs maintain on-chip copies of
recently used descriptors in AlCs.

MOTOROLA MC88110 USER'S MANUAL 8-1

•

The MC88110 MMUs and exception model support demand paged virtual memory.
Virtual memory management permits execution of programs larger than the size of
physical memory; demand paged implies that individual pages are loaded into physical
memory from backing storage only when they are first accessed by an executing
program.

The following paragraphs provide an overview of the high level organization and
operational concepts of the MC8811 0 MMUs. In addition, a summary of all MMU control
registers is provided. 8.2 Selection of Address Translation Mode through 8.10
MC88110 and MC88200 MMU Differences provide more detailed descriptions of
the spec'ific features of the MMUs and a detailed description of the MMU control
registers.

8.1.1 MMU Organization
Figure 8-1 shows the conceptual organization of the instruction and data memory
management units and their relationships to the other functional units in the MC8811 o.
The instruction memory management unit (IMMU) and the instruction cache comprise
the instruction memory unit (IMU). Similarly, the data memory unit (DMU) is comprised of
the data memory management unit (DMMU) and the data cache. The IMU supports
instruction fetches requested by the instruction unit, and the DMU supports data
accesses performed by the data unit. The arrows in Figure 8-1 represent address paths
within the MC8811 O.

Addresses generated under program control are called logical addresses. Physical
addresses are used to access external memory and to access the on-chip instruction
and data caches. The MMUs translate the higher order bits of logical addresses into the
higher order bits of the corresponding physical address. The logical address consists of
a 32-bit effective address plus a supervisor/user mode bit that corresponds to the
supervisor/user mode bit in the processor status register (PSR) when the access was
generated. Refer to Section 2 Programming Model for a detailed description of the
PSR and the supervisor/user mode bit.

The lower order bits of logical addresses are always untranslated (Le., logical equals
physical for -the lower order address bits). For cacheable accesses, the 12 lower order
address bits are immediately available to the instruction cache or data cache, so the
cache lookup begins concurrently with the address translation performed by the IMMU or
DMMU.

8-2 MC88110 USER'S MANUAL MOTOROLA

Figure 8·1. MC88110 MMU Block Diagram

Because the IMU and DMU each have their own MMU, address translations can be
performed concurrently for instruction fetches and data accesses. After performing an
address translation, the MMU passes the higher order bits of the physical address to the
appropriate cache, and the cache lookup completes. For noncacheable accesses or
accesses that miss in the instruction or data cache, the untranslated lower order address
bits are concatenated with the translated higher order address bits. The resulting 32-bit
physical address is then used by the bus interface unit (BIU), which performs an access
to external memory. If an MMU is disabled (see 8.9 MMU/Cache Control
Registers), the entire logical address is used untranslated to access the appropriate
cache or external memory.

•

MOTOROLA MC88110 USER'S MANUAL 8-3

•

8.1.2 Block and Page Translation Capability
The MC88110 supports two forms of address translation: Address Translation:block
address translation and page address translation. For block address translations, the
logical address space of a program and physical memory are subdivided into regions
called blocks. The size of a block is selectable by software, and can be in the range
512K-byte-64M-byte, varying by powers of two. Once a block size is selected, the same
size applies for all blocks. For page address translations, the logical and physical
memory spaces are subdivided into regions that are 4K-byte in size.

Within each MMU is a BATC and a PATC to support block and page address
translations, respectively. Each BATC maintains 8 entries called block descriptors, each
of which contains address translation information for a block. Each PATe maintains 32
page descriptors, which contain address translation information for each of 32 pages.
Both of the ATCs are fully associative caches providing maximum hit rates.

When a logical address for an instruction or data access is generated, it is used
concurrently by the BATe and PATC in the appropriate MMU. The ATCs compare the
higher order bits of the logical address with the equivalent logical address bits of blocks
or pages described within the ATe entries; if a comparison matches (ATC hit), then the
address translation information in the matched descriptor is used to generate the
corresponding physical address.

8.1.3 ATC Descriptor Concept
Figure 8-2 shows the page address descriptors located in PATe entries and how they
are used to generate physical addresses. The page address descriptors contain four
fields: a valid bit (V), a logical page address, a page frame address, and access control
bits. The valid bit qualifies the remaining fields. If it is set, the ATC compares the logical
page address field with the higher order bits of logical addresses generated by program
accesses. The logical page address field contains the higher order bits of the address of
a page in a program's logical address space. The page frame address contains the
higher order bits of the address where the page resides in physical memory.

If an address comparison results in a match, the physical address for the access is
formed by concatenating the contents of the page frame address field with the 12 lower
order logical address bits. Additionally, the access control bits regulate the types of
cache and external memory accesses that are performed to that page. For example,
there is a write protect access control bit which can be used to force the MMU to abort
write accesses to the described page.

BATC entries are conceptually identical to PATC entries. The only difference is that
blocks are larger; more than 12 lower order address bits are untranslated to form the
offset into a block. All blocks are 512K-byte-64M-byte in size and the block number
fields have correspondingly fewer bits. Also, whereas the MC8811 0 may automatically
load new PATC entries from memory, the system software is always responsible for
loading the required block descriptors into the BATes.

8-4 MC88110 USER'S MANUAL MOTOROLA

PAGE ADDRESS
DESCRIPTOR

PHYSICAL
ADDRESS

ACCESS
CONTROL BITS

Figure 8·2. Address Translation with Page Address Descriptors In PATe

8.1.4 Table Search Options
Since it is unlikely that all descriptors for all pages fit within the PATe at one time,
operating system software maintains tables of page descriptors in physical memory.
When the comparisons performed by its BATC and PATC do not result in a match (ATe
miss), an MMU cannot perform the address translation and access control with the
address descriptors it contains on-chip. The MMUs of the MC88110 have the ability to
automatically generate accesses to the page descriptor tables in physical memory
(perform a hardware table search operation), in an attempt to locate a page descriptor
for the logical address required by the program.

If the MC8811 0 locates a valid page descriptor when it is performing a hardware table
search operation, the MMU automatically loads it into the PATe and resumes the
address translation. However, if the operating system designer prefers a different
structure for the table hierarchy (such as more or fewer levels, a different number of
descriptors in tables at different levels, or compatibility with page descriptor tables
shared with a non88000 family processor), then software table searching can be used.

When software table searching is desired, then hardware table searching must be
disabled (see 8.4.4.1 Software Table Search Operations). When table searching
is enabled and the required descriptor is not resident in the ATCs, the MMU aborts the
access. Software in an exception handler must search through the page tables and
explicitly load the page descriptor into the PATC before restarting the aborted instruction.

•

MOTOROLA MC88110 USER'S MANUAL 8-5

•

8.1.5 Address Translation Modes
The MMUs of the MC88110 provide flexibility in controlling the mechanism for address
translation. There are four address translation modes available to an operating system:
the identity translation mode, the block-exclusive translation mode, the page-exclusive
translation mode, and the combined BATC/PATC translation mode. Each mode is
selected independently for the IMMU and DMMU. See 8.2 Selection of Address
Translation Mode for information on how the translation mode is selected.

In the identity translation mode, physical addresses are identical to logical addresses, so
the MMU passes logical addresses directly to the cache or BIU with no address
translation. Access control for accesses performed in this mode is regulated by the
appropriate bits in the MMU control registers (see 8.9 MMU/Cache Control
Registers). Identity translation is always selected if the DEBUG signal is asserted,
overriding software selection of other address translation modes.

In the block-exclusive translation mode, the MMU uses only the BATC to translate logical
addresses into physical addresses and to obtain access control bits. This mode is often
useful while executing programs that are permanently resident or completely swapped
into physical memory prior to being executed. If an appropriate entry is not found in the
BATC (BATe miss), then identity translation occurs, and no fault or exception is taken.

In the page-exclusive translation mode, the MMU translates logical addresses into
physical addresses and obtains access control bits using only the PATC. In the event of
a PATC miss, the MMU performs a hardware table search operation or causes the
appropriate ATC miss exception to be taken (see 8.4.4.1 Software Table Search
Operations), depending on whether hardware table searching is enabled. If the
hardware table search operation succeeds, the MMU automatically loads the necessary
page descriptor into the PATe and uses it to complete the address translation; if the
hardware table search operation fails, the MMU causes the instruction or data memory
access exception (see 8.7 MMU/Cache Faults) to be taken.

In combined block/page translation mode, the MMU attempts to translate logical
addresses and obtain access control bits simultaneously in the BATC and in the PATC.
This mode is often useful if a program executes in a demand paged virtual memory
environment, but needs to access some permanently resident instructions or data or
perform memory mapped I/O.

For example, an application with paged code/data may still need to access a frame
buffer or call functions in a large shared library. The register file within a memory
mapped I/O device, a frame buffer, or a shared library is permanently resident at a
known physical address and can be described permanently with a single block
descriptor, even if the remainder of the program's code and data are dynamically
allocated in physical memory. In the combined block/page translation mode, in the event
of a BATC hit, the MMU operates as in block-exclusive translation mode. In the event of a
BATC miss, the MMU operates as in page-exclusive translation mode. Therefore, if a
BATC hit and a PATC hit both occur for a logical address, the BATC entry is used.

8-6 MC88110 USER'S MANUAL MOTOROLA

8.1.6 General Flow of MMU Address Translation
Figure 8-3 shows the flow used by the MC88110 MMUs for address. translation. When an
instruction or data access is generated and the appropriate MMU is disabled, the logical
address is used untranslated as the physical address, and the access continues in the
instruction or data cache or on the external bus.

INSTRUCTION OR DATA
ACCESS BEGINS

MMUDISABLED MMU ENABLED

•

BATCHIT

~
ACCESS PROTECTED ACCESS PERMITIED

PATCHIT

~
ACCESS PROTECTED ACCESS PERMITTED

BATCMISS

PATCDISABl~
PATe ENABLED

~ATCMISS

HARDWARE TABLE SEARCH HARDWARE TABLE SEARCH -------
DISABLED ENABLED

PAGE DESCRIPTOR
FOUND

PAGE DESCRIPTOR
NOT FOUND

Figure 8-3. MMU Address Translation Flow

MOTOROLA MC88110 USER'S MANUAL 8-7

•

If the corresponding MMU is enabled and there is a hit in the BATC, a block address
translation is performed unless the access is protected by an access control bit.
Protected block accesses are faulted by causing the instruction or data memory access
exception to be taken. If an appropriate entry is not found in the BATC (BATC miss), then
identity translation occurs, and no fault or exception is taken. If the BATC misses, but the
PATe is enabled and hits, a page address translation is performed unless the access is
protected by an access control bit. If the access is protected, the access is faulted by
causing the instruction or data memory access exception to be taken.

If the PATC misses and hardware table searching is disabled, then the access causes
the instruction PATe miss, read data PATC miss, or write data PATC miss exception to
occur. If the PATe misses but hardware table searching is enabled, then the MMU
performs a search of the external page tables. If a valid page descriptor for the logical
address is found, the MMU hardware loads it into the PATC, replaces the oldest entry
(first-in-first-out (FIFO) replacement), and retries the PATe lookup. If the hardware table
search operation fails to find a valid page descriptor, the access is faulted and the
instruction or data memory access exception occurs.

8.1.7 MMU Exceptions and Faults Summary
Table 8-1 summarizes the exceptions caused by the MMUs. A more detailed description
of the conditions that cause the exceptions is provided in 8.7 MMU/Cache Faults.
Refer to Section 7 Exceptions for a more detailed description of exception
processing.

Table 8·1. MMU Exceptions Summary

Exception Vector Base Exception
Number Address Offset

2 $10 Read DMMU PATC Miss

3 $18 Write DMMU PATC Miss

12 $60 IMMU PATe Miss

13 $68 Instruction Access

14 $70 Data Access

As shown in Table 8-1 , the MMUs of the MC8811 0 can cause five exceptions. The PATe
miss exceptions occur when a PATe miss occurs and hardware table search operations
are disabled. These exceptions are used to vector to the exception handlers that perform
the software table searches for these three conditions.

8-8 MC88110 USER'S MANUAL MOTOROLA

There are 9 conditions that can cause an MMU/Cache fault to occur. The faults then map
to either the instruction or data access exception,depending on whether the access was
an instruction or data access, as shown in Table 8-2.

Table 8-2. MMU/Cache Fault/Exception Map~ing

Condition Class MC88110 Exception

Page Translations Enabled, No BATC Hit, and MMU PATC Miss Read DMMU PATC Miss
Hardware Table Searches Disabled -

Page Translations Enabled, No BATC Hit, and MMU PATC Miss Write DMMU PATC Miss
Hardware Table Searches Disabled

Page Translations Enabled, No BATC Hit, and MMU PATC Miss IMMU PATC Miss
Hardware Table Searches Disabled

Table Search Bus Error MMU Fault Instruction or Data Access

Segment Descriptor Invalid MMUFault Instruction or Data Access

Page Descriptor Invalid MMUFault Instruction or Data Access

Supervisor Protection Violation MMU Fault Instruction or Data Access

Write Protect Violation MMU Fault Instruction or Data Access

Data Breakpoint MMU Fault Data Access

Copyback Error Cache Fault Data Access

Write-Allocate Error Cache Fault Data Access

Bus Error (During Access) Cache Fault Instruction or Data Access

•

MOTOROLA MC88110 USER'S MANUAL 8-9

•

8.1.8 MMU Control Register Summary
Table 8-3 lists the control registers used by the IMMU. See 8.9 MMU/Cache Control
Registers for a detailed description of all the MMU control registers.

Table 8·3. Instruction MMU/Cache Control Register Summary

Register Mnemonic Description

cr25 ICMD Instruction MMU/CachelTlC Command Register
-Invalidates ATC, cache, and TIC entries; used for probe commands

cr26 IClL Instruction MMU/Cache Control Register
-Enables IMMU, cache, TIC, hardware table search, branch prediction,double
instruction issue; freezes cache; selects BATC block size

cr27 ISAR Instruction System Address Register
-Specifies physical address for invalidate or logical address for probe

cr28 ISAP IMMU Supervisor Area Pointer Register
-Contains current supervisor instruction area descriptor

cr29 IUAP IMMU User Area Pointer Register
-Contains current user instruction area descriptor

cr30 IIR IMMU ATC Index Register
-Entry number for ATC accesses; RJW user attribute bits

cr31 IBP IMMU BATC ANI Port
-BATe descriptor

cr32 IPPU IMMU PATe ANI Port - Upper
-Upper word of PATC entry

cr33 IPPL IMMU PATC ANI Port - Lower
----Lower word of PATe entry

cr34 ISR Instruction Access Status Register
-Indicates status information for IMMU fault

cr35 ILAR Instruction Access Logical Address Register
-Logical address for IMMU fault

cr36 IPAR Instruction Access Physical Address Register
----Physical address related to IMMU fault

8-10 MC88110 USER'S MANUAL MOTOROLA

Table 8-4 lists the control registers used by the DMMU. See 8.9 MMU/Cache Control
Registers for a detailed description of all the MMU control registers.

Table 8-4. Data MMU/Cache Control Register Summary

Register Mnemonic Description

cr40 [)CK) Data MMU/CachefTlC Command Register
-Invalidates ATC and cache entries; copyback cache lines; used for probe

commands

cr41 Dell Data MMU/Cache Control Register
-Enables MMU, cache, cache snooping, hardware table search, breakpoint

registers, decoupled cache accesses; freezes cache; forces write-through;
controls xmem order; selects BATC block size

cr42 DSAR Data System Address Register
-Specifies physical address for invalidate or logical address for probe

cr43 DSAP DMMU Supervisor Area Pointer Register
-Contains current supervisor data area descriptor

cr44 DUAP DMMU User Area Pointer Register
-Contains current user data area descriptor

cr45 DIR DMMU ATC Index Register
-Entry number for ATC accesses; Rm user attribute bits

cr46 DBP DMMU BATC RIW Port
-BATC descriptor

cr47 DPPU DMMU PATC Am Port-Upper
-Upper word of PATC entry

cr48 DPPl DMMU PATe Am Port-Lower
-Lower word of PATC entry

cr49 DSR Data Access Status Register
-Indicates status information for DMMU fault

cr50 DLAR Data Access Logical Address Register
-Logical address for DMMU fault

cr51 DPAR Data Access Physical Address Register
-Physical address related to DMMU fault

II

MOTOROLA MC88110 USER'S MANUAL 8-11

8.2 SELECTION OF ADDRESS TRANSLATION MODE

Figure 8-4 shows the decision-making flow used by the MMUs to select the address
translation mode.

TE =0 IN
ISAPIIUAPIDSAP/DUAP

MEN=1IN
ICTUDCTL

~

NO VALID
BATC ENTRIES

TE=1IN
ISAPIIUAP/DSAP/DUAP

~

MEN=OIN
ICTLIDCTL

ANY VALID
BATC ENTRIES

COMBINED
BLOCKIPAGE

TRANSLATIONS
SELECTED

•
Figure 8-4. Address Translation Mode Selection

Table 8-5 summarizes the address translation and access control rules used for the
various address translation modes.

Table 8-5. Address Mappings For Address Translation Modes

Translation MEN Bit In TE Bit in Valid BATC Access Control Address Mapping
Mode ICTL/DCTL Area Pointer Entry with Hit Source Source

Identity 0 x x Appropriate Area 1:1
Pointer

Block-Exclusive 1 0 Yes BATC Entry BATC Entry

Block-Exclusive 1 0 No Appropriate Area 1:1
Pointer

Page-Exclusive 1 1 No PATe Entry PATC Entry

Combined 1 1 x BATC Entry or .BATC Entry or
Block/Page PATC Entry PATC Entry

x: don't care

8-12 MC88110 USER'S MANUAL MOTOROLA

8.2.1 Identity Translation

For the identity translation mode, access control is regulated by the appropriate area
descriptor found in the supervisor and user area pointer registers (ISAP, DSAP, IUAP or
IUDP). The identity translation mode is selected if the MEN bit in the ICTL or DCTL is
clear. Identity translation mode is always selected if the DEBUG signal is asserted,
overriding software selection of other address translation modes.

8.2.2 Block-Exclusive Translation

The block-exclusive translation mode is selected if the MEN bit in the ICTL or DCTL is
set and the TE bit in the ISAP, IUAP, DSAP, or DUAP is clear. When this mode is
selected, logical to physical address translation and access control bits are located in
the BATC. Note that if a BATC miss occurs, the MMU generates an identity address
translation and uses the access control bits in the ISAP, DSAP, IUAP, or DUAP for the
access.

8.2.3 Page-Exclusive Translation
The page-exclusive translation mode is selected if the MEN bit in the ICTL or DCTL is
set, the TE bit in the ISAP, IUAP, DSAP, or DUAP is set, and all BATC entries are marked
as invalid. When this mode is selected and a PATe hit occurs, logical to physical
address translation and access control bits are located in page descriptors in PATC
entries. In the event of a PATe miss, the MMU performs a hardware table search
operation or causes the appropriate ATC miss exception to be taken, depending on the
value of the HTEN bit in the ICTL or DCTL.

8.2.4 Combined Block/Page Translation

The combined block/page translation mode is selected if the MEN bit in the ICTL or B:,
DCTL is set and the TE bit in the ISAP, IUAP, DSAP, or DUAP is set, and at least some
BATC entries are marked as valid.

8.3 BLOCK ADDRESS TRANSLATION

This section describes block address translation in detail, including organization of the
BATes, formats of the block address descriptors, and software manipulation of BATC
entries.

8.3.1 BATe Organization

The BATC in each MMU is an eight-entry fUlly associative cache. Figure 8-5 shows the
conceptual organization of the BATes for both the instruction and data MMUs. Each
BATC entry contains a block descriptor, and because the BATe is fully associative, each
entry is associated with a comparator. Each entry is shown as separated into a tag
portion and a data portion.

MOTOROLA MC88110 USER'S MANUAL 8-13

LOGICAL ADDRESS

DATA

•••

BLOCK SIZE

PHYSICAL ADDRESS

•
Figure 8-5. BATe Organization

The higher order logical address bits of an access, including the supervisor/user mode
bit (determined by the mode bit of the PSR-see Section 2 Programming Model),
comprise an input to each comparator. The other input to each comparator is comprised
of the supervisor/user mode bit (S/U) and the logical block address field (LBA) from the
tag of the associated entry. Comparators are enabled if the valid bit (V) for the
associated entry is set.

If a comparison matches the access address with its associated descriptor tag (BATC
hit), the data portion of the descriptor is multiplexed to obtain the higher order physical
address bits (PBA) and access control bits for the access. Lower order address bits are
not translated. For a block size of 512K-byte, bits 0-18 are untranslated and represent
the offset of the access into a 512K-byte block (since 219=512K). As the block size
increases by powers of two, additional lower order address bits are untranslated. For
example, for a block size of 1M-byte, 20 lower order bits are untranslated; for a block
size of 64M-byte, 26 lower order address bits are untranslated.

8-14 MC88110 USER'S MANUAL MOTOROLA

8.3.2 Block Address Translation Flow

Figure 8-6 shows the detailed flow used for block address translations. In identity
translation and page-exclusive translation modes, the BATC is unused. In block
exclusive and combined block/page translation modes, the logical address of the access
is compared with BATe entry tags, as described in 8.3.1 BATe Organization.

LOGICAL ADDRESS
GENERATED LA, SlU, RIW

MODE = BLOCK-EXCLUSIVE TRANSLATIONS
OR

MODE = COMBINED BLOCK/PAGE TRANSLATIONS

BLOCK ADDRESS
TRANSLATION

MODE =IDENTITY TRANSLATIONS
OR

MODE = PAGE-EXCLUSIVE TRANSLATIONS

NO BLOCK TRANSLATION
PERFORMED

TEMP" (BATC [PBA] &... xCTL [M6-MO))
II 00000000000000000000

PHYSICAL ADDRESS" TEMPV(LA[2S-20] & xCTL [M6-MO])
II LA [19-{)]

(PERFORM BLOCK
ADDRESS TRANSLATION)

OTHERWISE
(BATC MISS)

PERFORM PAGE ADDRESS
TRANSLATION (FIGURE 8-9)

BATC [LBA] & - xCTL[M6-MO]
=LA[31-19] &- xCTL [M6-MO]

AND
BATC[S] = StU OF ACCESS

(BATCHIT) /

OTHERWISE

CONTINUE ACCESS TO
CACHEORBIU

RIW=O
AND

BATC [WP] = 1

(WRITE TO WRITE
PROTECTED BLOCK)

(SIGNAL WRITE
PROTECT VIOLATION
FAULT)

•
Figure 8-6. Block Address Translation Flow

If the BATCmisses, page address translations may still be possible. If the BATC hits, but
the access is a write operation to a write protected block, the MMU aborts the access and
causes the data access exception to occur. Otherwise, the translated address is used to
access the cache and/or physical memory.

8.3.3 BATe Descriptor Format

Both the instruction and data BATes contain eight 34-bit entries each; each entry
contains a single block descriptor. The format of a BATe entry is shown in Figure 8-7. All·
bits in all BATe entries, including the valid (V) bits, are undefined after a processor reset.

MOTOROLA MC88110 USER'S MANUAL 8-15

•

[ill IGNORED DEPENDING ON BLOCK SIZE MASK. SIZE MASK WRITIEN VIA THE ICTL OR DCTL.

Figure 8-7. BATe Descriptor Format

U1 , Uo-User Attribute 1, 0
User attribute bits 0 and 1 are designated for use by the operating system. These bits
are broadcast externally as the user attribute signals during external bus cycles if the
physical address was generated by an MMU address translation. However, in some
situations such as copyback operations, the physical address driven externally is not
generated at that time by the MMU; thus, the user attribute signals are not driven to
match the access in this case. Also, the user attribute bits are not stored in cache lines
and are not checked by bus snooping logic. These two characteristics prevent their
use as additional physical address bits in many environments. However, because they
are driven externally on the first access to a block, it is possible for external hardware
to use these signals to fault external bus cycles if a user-defined access is not
permitted.
Note that the user attribute signals are active low, so a value of 1 for a user attribute bit
is driven externally as a low voltage.

LBA-Logical Block Address
This field contains the most significant bits of the logical address of the block within a
program's logical address space. The most significant bits of this field contain the most
significant 6-13 bits of the logical address that map to the corresponding physical
address, depending on the current block size selected via the ICTL or DCTL. Table
8-6 specifies the bits that are ignored for each possible block size.

Table 8-6. BATe LBA Bit Definition

Block Size LBA Bits
Ignored

512K-byte None

1M-byte Bit 19

2M-byte Bits 20-19

4M-byte Bits 21-19

8M-byte Bits 22-19

16M-byte Bits 23-19

32M-byte Bits 24-19

64M-byte Bits 25-19

8-16 MC88110 USER'S MANUAL MOTOROLA

PBA-Physical Block Address
This field describes the address of the block within the system's physical address
space. It contains the most significant 6-13 bits of the physical block address,
depending on the current block size selected via the ICTL or DCTL. Table 8-7
specifies which bits are ignored for each possible block size.

Table 8-7. BATe PBA Bit Definition

Block Size Bits Ignored

512K-byte None

1M-byte Bit 6

2M-byte Bits 7-6

4M-byte Bits 8-6

8M-byte Bits 9-6

16M-byte Bits 10-6

32M-byte Bits 11-6

64M-byte Bits 12-6

StU-Supervisor/User Mode
This bit is an extension to the LBA field.

1-LBA is for the supervisor logical address space
D-LBA is for the user logical address space

WT-Write-Through
This bit has no effect on the on-chip instruction cache; it is used only by the BATC in 8
the DMMU. If the WT bit is set, then accesses that use this ATC entry use the write- .
through memory update policy. If this bit is clear, then the write-back memory update
policy is used. The value of this bit is broadcast to the write-through signal of the
external bus during single-beat accesses and read line fills. This permits write-through
accesses to be extended to a secondary cache. Refer to Section 6 Instruction and
Data Caches for more information on the memory update policies for the data cache.

1-Write-through memory update policy
o-Write-back memory update policy

MOTOROLA MC88110 USER'S MANUAL 8-17

•

G-Global
This bit has no effect on the on-chip instruction cache; it is used only by the BATe in
the' DMMU. If the G bit is set, then the block described by this entry is marked as
containing globally shared data. The value of this bit is broadcast onto the global
signal of the external bus during single-beat accesses, line fills, and invalidate cycles.
This permits notification of global accesses to be broadcast to other caches in a
multiprocessor system. If this bit is set, other caches may perform cache coherency
checking (bus snooping). Refer to Section 11 System Hardware Design for
more information on bus snooping for global accesses.

1-Block contains globally shared data
Q-Slock contains only locally referenced data

CI-Cachelnhibit
If the CI bit is set, then accesses through this entry are forced to miss in the on-chip
cache and access external memory. The CI bit in the descriptor is broadcast onto the
cache inhibit signal of the external bus during single-beat accesses, touch loads, and
allocate loads. This permits cache inhibited accesses to be extended to a secondary
cache. Refer to Section 6 Instruction and Data Caches for more information on
cache inhibited accesses.

1-Block accesses are cache inhibited
o-Slock accesses are cacheable

WP-Write Protect
This bit has no effect on read accesses, including all instruction fetches. If the WP bit is
set, then the MMU aborts write accesses mapped through this entry by causing the
data access exception to occur. If the bit is clear, write accesses are permitted to this
block.

1-Write accesses are not allowed
o-Write accesses are allowed

V-Valid

This bit qualifies the validity of the BATC entry. If this bit is clear, then address
translation and access control is not performed by the BATC using this entry.

1-Entry is valid
Q-Entry is invalid

8.3.4 Sharing Blocks Between Programs

In order for multiple programs to share a block of physical memory, supervisor software
must load a descriptor entry into the BATC before dispatching any of the programs. If the
logical block address and access control bits are the same for all programs sharing the
block, only one block descriptor is needed.

Because the S/U bit is an extension of the logical block address, separate block
descriptors must be loaded in order for both a supervisor mode program and user mode

8-18 MC88110 USER'S MANUAL MOTOROLA

program to share a block of physical memory. Although both entries can specify the
same physical block address, one specifies the user logical block address and the other
specifies the supervisor logical block address.

8.3.5 Block Descriptor Maintenan,ce
The MC88110 hardware never automatically modifies block descriptors in the BATC. All
maintenance, including block descriptor invalidations, must be performed by supervisor
mode software using the IIR and the IBP or the DIR and the DBP as described in the
following paragraphs. Each of these registers is described in detail in 8.9 MMU/Cache
Control Registers.

It is considered a programming error if the system software loads more than one valid
block descriptor with different address translation or access control bits for the same
logical block address. It is unpredictable which BATC entry will be used when this
situation occurs.

After a processor reset, all fields (including the valid bit) of the BATe entries are
undefined. The system software' must initialize each BATC with eight valid or invalid
block descriptors before setting the MEN bit the ICTL or DCTL, enabling address
translation.

8.3.5.1 SELECTING THE BLOCK SIZE. The block size used by the IMMU BATe is
selected by programming the M6-MO bits of the ICTL. The block size used by the DMMU
BATC is selected by programming the M6-MO bits of the DCTL. Table 8-8 shows the
block sizes selected for the different encodings of these bits:

Table 8-8. Block Size Mask Bits in ICTL and DCTl

Block Size Mask Bits Block Size

M6 M5 M4 M3 M2 M1 MO

1 1 1 1 1 1 1 64M-byte

0 1 1 1 1 1 1 32M-byte

0 0 1 1 1 1 1 16M-byte

0 0 0 1 1 1 1 8M-byte

0 0 0 0 1 1 1 4M-byte

0 0 0 0 0 1 1 2M-byte

0 0 0 0 0 0 1 1M-byte

0 0 0 0 0 0 0 512K-byte

Any Other Combination Undefined

D

MOTOROLA MC88110 USER'S MANUAL 8-19

•

8.3.5.2 LOADING BATC ENTRIES. The following steps describe the actions
required for the system software to load a block descriptor into a BATe entry:

1. Select a BATC entry (0-7) to load with the new descriptor. If the block descriptor in
the BATC that is to be replaced must be saved, the content of the selected entry
can be read -as described in 8.3.5.3 Reading BATe Entries.

2. Create all 34 bits of the block descriptor, including the two user attribute access
control bits.

3. Write the selected entry number and user attribute bits to the BATC index and
BATC user attribute fields, respectively, in the IIR or DIR.

4. Write the remaining 32 descriptor bits to the IBP or DBP.

When the IIR or DIR is modified, the two user attribute bits are buffered and are not
written into the BATC until the remaining 32 bits of the entry are written into the IBP or
DBP.

8.3.5.3 READING BATe ENTRIES. The following steps describe the actions
required for the system software to read a block descriptor from an entry in a BATC:

1. Select the BATC entry (0-7) to be read.

2. Write the selected entry number to the BATC index field in the IIR or DIR.

3. Read the IBP or DBP to cause the selected entry to be read from the BATe.

4. (Optional) Read the IIR or DIR to receive the two user attribute access control bits of
the block descriptor.

8.3.5.4 INVALIDATING BATC ENTRIES. BATC entries are invalidated by loading a
block descriptor with V=O over the current contents of an entry, as described in 8.3.5.2
Loading BATC Entries.

8.4' PAGE ADDRESS TRANSLATION

The following paragraphs describe page address translation in detail, including
organization of the PATes, formats of the page address descriptors, and maintenance of
the PATes.

8-20 MC88110 USER'S MANUAL MOTOROLA

8.4.1 PATe Organization

The PATC in each MMU is a 32-entry fully associative cache. Figure 8-8 shows the
conceptual organization of the PATCs for both the instruction and data MMUs. Each
PATC entry contains a page descriptor, and because the PATC is fully associative, each
entry is associated with a comparator. Each entry is shown as separated into a tag
portion and a data portion.

•
•

Figure 8-8. PATe Organization

The higher order logical address bits of an access, including the StU bit (determined by
the mode bit of the PSR-see Section 2 Programming Model), comprise an input to
each comparator. The other input to each comparator is comprised of the StU bit and
LPA field from the tag of the associated entry. Comparators are enabled if the V bit for
the associated entry is set.

If a comparison matches the access address with its associated descriptor tag (PATC
hit), the data portion of the descriptor is multiplexed to obtain the higher order PFA bits
and access control bits for the access. Lower order address bits are not translated. With
a page size of 4K-byte, bits 0-11 are untranslated and represent the offset of the access
into a 4K-byte page.

8.4.2 Page Address Translation Flow

Figure 8-9 shows the flow used for page address translations. In identity translation and
block-exclusive translation modes, the PATC is unused. In combined block-page
translation mode, if the BATe hits, the PATe is ignored. Otherwise, the logical address of
the access is compared with PATC entry tags, as described in 8.4.1 PATe·
Organization.

•

MOTOROLA MC88110 USER'S MANUAL 8-21

MODE" PAGE-EXCLUSIVE TRANSLAnONS
OR

MOOE • 00II70CK1PAGE TRANSlATIONS

BATC HIT BATC MISS

MOOE" IDENTITY TRANSLATIONS
OR

MODE" BLOCK-EXCLUSIVE TRANSLATIONS

UNSl,K;CESSFUl

;....._...1_._......,
! INSTRUCTION OR DATA \ (SHOWN N

\..!..~:~~~~:~~~_ ../ FIGURE 8-17)

R/W.1

(READ)
FVW"O
(WRITE)

OTHERWISE

(P'TCM~S)~

xCTL (HTEN] " 0 (SOFTWARE xCTL (HTEN] =1 (HARDWARE
TABLE SEARCH SElECTED) TABLE SEARCH ENABLED)

r-:UCTIOO ACCESS

~TISS

(pAGE AOOf£SS TRANSLATION
SUCCESSFUL)

PATC llPA] "LA [31-12]
AND

PATCISJ-SN

(WRITE TO WRITE RIW ,, 0 < (pATC HIT)

PROTECTED PAGE) PATC~]" 1 OTHERWISE

(SIGNAL WRITE
PROTECT

VlOlATK>NFAUlT)

Figure 8-9. Page Address Translation Flow•
If the PATe hits, but the access is a write operation to a write-protected page, the MMU
aborts the access and causes the data access exception to occur. Otherwise, the
translated address is used to access the cache and/or physical memory.

If the PATC misses and hardware table searching is disabled (xCTL[HTEN]=O), the MMU
aborts the access and causes either the DMMU write miss exception, the DMMU read
miss exception, or the IMMU miss exception to occur. If the PATC misses and hardware
table searching is enabled (xCTL[HTEN]=1), the MMU performs a hardware table search
operation. If the table search operation succeeds in loading the required page descriptor
into the PATC, the address translation is retried. If the hardware table search operation
fails, the MMU aborts the access and causes either the data or instruction access
exception to occur.

8-22 MC88110 USER'S MANUAL MOTOROLA

8.4.3 PATe Descriptor Format
The instruction and data PATes each contain thirty-two page descriptor entries. The
format of a PATC entry is shown in Figure 8-10. All bits in all PATC entries, including the
valid (V) bits, are undefined after a processor reset.

63 44 43 42 41 40 39 38 37 36 35 34 33 32
,--------L-PA---------

UPPER WORD

31 12 11 10 9 8 7 6 5 4 3 2 1 0
I--------P-FA---------

LOWER WORD

[ill UNDEFINED-RESERVED FOR FUTURE USE

Figure 8-10. PATe Descriptor Format

LPA-Logical Page Address
This field describes the address of a page within a program's logical address space.
The most significant 20 bits of the logical address are in this field.

S/U-Supervisor Mode
This bit is an extension to the LPA field.

1-LPA is for the supervisor logical address space
o-LPA is for the user logical-address space

PFA-Page Frame Address
This field contains the most significant 20 bits of the page frame address.

U1, Uo-User Page Attribute 1, 0
UO and U1 are designated for use by the operating system. These bits are broadcast
externally as the user attribute signals during external bus cycles if the physical
address was generated by an MMU address translation. However, in some situations,
such as copyback operations, the physical address presented externally is not
generated at that time by the MMU; thus, the user attribute signals are negated in this
case. Also, the user page attribute bits are not stored in cache lines, and so are not
checked by bus snooping logic. These two characteristics prevent their use as
additional physical address bits in many environments. However, because they are
driven externally on the first access to a page, it is possible for external hardware to
use these signals to fault external bus cycles if a user-defined access is not permitted.

Note that the user attribute signals are active low, so a value of '1' for a user attribute
bit is driven externally as a low voltage.

•

MOTOROLA MC88110 USER'S MANUAL 8-23

•

WT-Write-Through
This bit has no effect on the on-chip instruction cache and it is used only, by the ·PATC
in the DMMU. If the WT bit is set, then accesses that use this ATC entry use the write
through memory update policy. If this bit is not set, then the write-back memory update
policy is used. The value of this bit is broadcast to the write-through signal of the
external bus for single-beat accesses and read line fills. This permits write-through
accesses to be extended to a secondary cache. Refer to Section 6 Instruction and
Data Caches for more information on the memory update policies for the data cache.

1-Write-through memory update policy
o-Write-back memory update policy

G-Global
This bit has no effect on the on-chip instruction cache and it is used only by the PATC
in the DMMU. If this bit is set, then the page described by this entry is marked as
containing globally shared data. The value of this bit is broadcast on the global signal
of the external bus during single-beat accesses, line fills, and invalidate cycles. This
permits notification of global accesses to be broadcast to other caches in a
multiprocessor system. If this 'bit is set, other caches may perform cache coherency
checking (bus snooping). Refer to Section 11 System Hardware Design for
more information on bus snooping for global accesses.

1-Page contains globally shared data
o-Page contains only locally referenced data

CI-eache Inhibit
If this bit is set, then accesses through this entry are forced to miss in the on-chip
cache and access external memory. The CI bit in the descriptor is broadcast on the
cache inhibit signal of the external bus during the bus transaction for this access for
single-beat accesses, touch loads, and allocate loads. This permits cache inhibited
accesses to be extended to a secondary cache. Refer to Section 6 Instruction and
Data Caches for more information on cache inhibited accesses.

1-Page accesses are cache inhibited
o-Page accesses are cacheable

WP-Write Protect
This bit has no effect on read accesses, including all instruction fetches. If the WP bit is
set, then the MMU aborts write accesses mapped through this entry by causing the
data access exception to occur. If the WP bit is clear, write accesses are permitted to
this page.

1-Write accesses are not allowed
o-Write accesses are allowed

V-Valid
This bit qualifies the validity of the PATC entry. If this bit is clear, then address
translation and access control is not performed by the PATC using this entry.

1-Entry is valid
o-Entry is invalid

8-24 MC88110 USER'S MANUAL MOTOROLA

8.4.4 Software Maintenance of PATe Entries
The MC88110 permits supervisor mode ·software to maintain PATC entries by loading
new .or updated page descriptors, reading existing entries, or invalidating entries.
Software maintenance of PATC entries is possible whether or not hardware table search
operation is selected.

Software maintenance is performed by supervisor mode software using the following
registers: ICMD, IIR, IPPU, IPPL, DCMD,DIR, DPPU, and DPPL. Each of these registers
is described in detail in 8.9 MMU/Cache Control Registers.

It is considered a programming error if system software loads more than one valid page
descriptor with different address translation or access control bits for the same logical
page address. It is unpredictable which PATC entry will be used when this situation
occurs.

After a processor reset, all fields (including the valid bit) of the PATe entries are
undefined. The system software must initialize all entries in each PATC (typically by
invalidating all entries) before enabling page address translations (see 8.2 Selection
of Address ·Translation Mode). Invalidation of all PATC entries can be performed
most efficiently with the invalidate supervisor PATC and invalidate user PATC
commands available through the ICMD and DCMD registers.

8.4.4.1 SOFTWARE TABLE SEARCH OPERATIONS. If a PATe miss occurs and
software table search operations are enabled (DCTL[HTEN] =0, or ICTL[HTEN] =0),
either the read data MMU PATC miss, write data MMU PATC miss, or instruction MMU
PATC miss exception occurs. The software table search operation should then be
performed by the corresponding PATC miss exception handler.

If the PATe miss occurred in the IMMU, the ILAR contains the upper 27 bits of the lOgiCal.;
address that could not be translated and the instruction MMU PATC miss exception is
taken. If the PATe miss occurred in the DMMU, the DLAR contains the 32-bit logical
address that could not be translated and either the read data MMU PATC miss or the
write data MMU PATe miss exception occurs. The EPSR (see Section 7 Exceptions)
and the ISR or DSR contain the supervisor/user indication for all PATC miss exceptions.

The MC88110 places no .restrictions on the page descriptor table structure or table
search algorithms to be used when software table search operation is selected (HTEN=O
in the ICTL or DCTL). The operating system designer is free to implement the translation
table structure that best fits the system environment. However, the table search flow
described in 8.5.3.2 Detailed F10w of Hardware Table Search Operation can
be used as a reference in order to ensure that the software table search process in the
exception handler returns appropriate results to the PATCs. Also refer to Section 7
Exceptions for more information on exception processing and returning fro,m
exceptions.

MOTOROLA MC88110 USER'S MANUAL 8-25

•

8.4.4.2 LOADING PATe ENTRIES. The following steps describe the actions
required for the system software to load a page descriptor into a PATC entry:

1. Select a PATe entry to load with the new descriptor. Possible entry numbers range
from 0-31. If the page descriptor that is to be replaced must be saved, the contents
of the selected entry can be read as described in 8.4.4.3 Reading PATC
Entries.

2. Create all 64 bits of the page descriptor, as described in 8.4.3 PATC
Descriptor Format.

3. Write the selected entry number to the PATC index field of the IIR or the
PATC/breakpoint index field of the DIR, depending on whether the page descriptor
is being written for the IMMU or DMMU.

4. Write the upper 32 descriptor bits to the IPPU or DPPU.

5. Write the lower 32 descriptor bits to the IPPL or DPPL.

Steps 3, 4, and 5 must occur in the sequence shown because the upper 32 descriptor
bits are buffered until the lower 32 descriptor bits are written.

Step 3 can be omitted when operating in software table search mode. Any time an MMU
causes a PATC miss exception, the MMU preloads the logical page address and S/U bit
into the IPPU or DPPU. Consequently, only the least significant 32 bits of the PATe entry
need to be written into the IPPL or DP'PL in order to load the new entry. Preloading the
PATe RIW port upper register occurs regardless of the setting of the HTEN bit in the ICTL
or the DCTL.

In order to successfully write a selected PATC entry while performing any software table
search operation, ATC probe commands must not be issued and PATC misses must not
be encountered between steps 3 through 5 described above. Either of these events can
cause the contents of the IIR, IPPU and IPPL, or the DIR, DPPU and DPPL registers to
change.

8.4.4.3 READING PATe ENTRIES. The following steps describe the actions
required for.the system software to read a page descriptor from an entry in a PATC:

1. Select the PATC entry to read. Possible entry numbers range from 0-31.

2. Write the selected entry number to the PATC index field of the IIR or the DIR,
depending on whether an instruction or data page descriptor is required.

3.' Read the lower 32 descriptor bits from the IPPL or DPPL.

4. Read the upper 32 descriptor bits from the IPPU or DPPU.

The steps outlined above must be performed in sequence. In order to successfully read
a selected PATC entry, an ATC probe command must not be issued and PATC misses
must not be encountered between steps 3 and 4 described above. Either of these events
can cause the contents of the IIR, IPPU and IPPL, or the DIR, DPPU and DPPL registers
to change.

8-26 MC88110 USER'S MANUAL MOTOROLA

8.4.4,,4 INVALIDATING PATC ENTRIES. There are two types of PATC invalidation:
invalidation of a single entry or invalidation of all PATC entries for the supervisor or user
logical address space.

Before allocating a new logical page to a page frame, it is necessary to mark the
appropriate page descriptor as invalid. It is also necessary to ensure that a copy of the
page descriptor no longer remains in the corresponding PATe. This is achieved with a
two step process:

1. Use the appropriate probe command to check whether the page descriptor is
resident in the PATC. See 8.8.1 ATC Probe Commands. If the probe operation
returns a PATC miss (PH=O) in the ISR or DSR, then the descriptor is not resident
in the PATC.

2. If the probe operation indicates that a PATC Hit (PH=1) occurred, then the PATC
entry number is returned in the IIR or DIR. To invalidate the entry, it is necessary to
clear the entry's valid bit by writing to the IPPL or DPPL (see 8.4.4.2 Loading
PATC Entries).

Following a task switch, if it is necessary to establish a new set of address descriptors,
invalidation of all page descriptors in the PATCs that are associated with the previous
task can be performed most efficiently by initiating the invalidate supervisor PATC or
invalidate user PATC commands via the ICMD and DCMD (see 8.9.1.1 Instruction
MMU/Cache/TIC Command Register (ICMD) and 8.9.2.1 Data MMU/Cache
Command Register (DCMO»).

8.5 PAGE DESCRIPTOR TABLES

The following paragraphs describe the structure of the page descriptor tables and the
format of the descriptors that are used by the MC8811 0 when hardware table search •
operation is selected (HTEN = 1 in ICTL orDCTL).:

8.5.1 Page Translation Table Structure

If hardware table search operation is selected while operating in either page-exclusive
or combined page/block translation mode and an MMU miss occurs, the MMU
automatically creates a new PATC entry by performing a page table search operation in
physical memory. The tables are partitioned into two levels: segment and page, with the
area pointers to the two segment tables residing on-chip. Figure 8-11 shows the address
translation table hierarchy used by the MC8811 O.

MOTOROLA MC88110 USER'S MANUAL 8-27

I....<~--------RESIDENT IN MEMORV-----------:>.".I~ RESIDENT IN MMUs~

AREA DESCRIPTORS USER AREA SEGMENT TABLE USER PAGE TABLE 0

.-:1' 4K-BYTE PAGE FRAME

',A 4K-BYTE PAGE FRAME

7' 4K-BYTE PAGE FRAME

•·•
4K-BYTE PAGE FRAME

'/ ••·
I

~

4K-BYTE PAGE FRAME

.~ 4K-BYTE PAGE FRAME

.~ 4K-BYTE PAGE FRAME

•••
.4 4K-BYTE PAGE FRAME

~ •·•
\

\
\
\

\ 4K-BYTE PAGE FRAME

'=1' 4K-BYTE PAGE FRAME

~ 4K-BYTE PAGE FRAME

\,' •1\ ·\1 ·
.... 4K-BYTE PAGE FRAME

•••

4- 4K-BYTE PAGE FRAME

4K-BYTE PAGE FRAME

~ 4K-BYTE PAGE FRAME

•••
.., 4K-BYTE PAGE FRAME

I'
:/
1\

\

\

,/

1>- USER INST. AREA DESCRIPTOR U SEGMENT DESCRIPTOR 0 f--> PAGE DESCRIPTOR 0

USER DATA AREA DESCRIPTOR SEGMENT DESCRIPTOR 1 PAGE DESCRIPTOR 1

SUPERVISOR INST. AREA DESCPTR.I- SEGMENT DESCRIPTOR 2 PAGE DESCRIPTOR 2

SUPERVISOR DATA AREA DESCPTR.I- · ·· ·• •
SEGMENT DESCRIPTOR 1023 I-- PAGE DESCRIPTOR 1023

--- S/U BIT FROM PSR
•••

USER PAGE TABLE 1023

~ PAGE DESCRIPTOR 0

PAGE DESCRIPTOR 1

PAGE DESCRIPTOR 2

•··
PAGE DESCRIPTOR 1023

"

SUPERVISOR AREA SEGMENT TABLE SUPERVISOR PAGE TABLE 0

~ ~ PAGE DESCRIPTOR 0
I

SEGMENT DESCRIPTOR 0

SEGMENT DESCRIPTOR 1 PAGE DESCRIPTOR 1

SEGMENT DESCRIPTOR 2 PAGE DESCRIPTOR 2

· ·· ·· ·
SEGMENT DESCRIPTOR 1023 I-- PAGE DESCRIPTOR 1023

••·
SUPERVISOR PAGE TABLE 1023

~ PAGE DESCRIPTOR 0

PAGE DESCRIPTOR 1

PAGE DESCRIPTOR 2

•••
PAGE DESCRIPTOR 1023

•
Figure 8-11. Page Translation Table Structure

At the top of the table hierarchy are area descriptors. Area descriptors comprise the root
of the translation tables and are kept in on-chip registers. Four area descriptors are
maintained, one each for user instruction, user data, supervisor instruction and
sup~rvisor data logical address spaces. Each area descriptor points to a table of 1024
segment descriptors in memory. Each valid segment descriptor then points to a table of
1024 page descriptors. Each valid page descriptor describes either the physical address
for a page or points (via indirection) to another page descriptor.

8-28 MC88110 USER'S MANUAL MOTOROLA

Figure 8-12 illustrates how logical addresses are used to select address translation
descriptors at each level of the table hierarchy. Within the MMUs, the S/U bit of the
logical address of the access selects between the supervisor and user area descriptors.
Refer to 8.5.3 Hardware Table Search Algorithm for ,a detailed description of the
flow used by the MC8811 0 for hardware table search operations.

Area descriptors contain a 20-bit segment table base address (STBA) field. The STBA
field is concatenated with bits 31-22 of the logical address of the access to form the
word-aligned physical address of the segment descriptor needed to continue the table
search operation. Valid segment descriptors contain a 20-bit page table base address
(PTBA) field. The PTBA field is concatenated with bits 21-12 of the logical access
address to form the word-aligned physical address of the page descriptor needed to
continue the table search.

A valid page descriptor contains a 20-bit page frame address (PFA) field, which is
concatenated with bits 11-0 of the logical address of the access to form the translated
physical address. Indirection descriptors are defined as descriptors at the page
descriptor level of the translation tables that contain a 3D-bit page descriptor address
field, which is the word-aligned physical address of the actual page descriptor used to
form the translated physical address.

In addition to address information, area, segment, and page descriptors contain access
control bits. As the MMU performs the table search operation, it accumulates the access
control bits by logically ORing them in order to create a PATe entry. If the table search
completes successfully, the accumulated information is loaded automatically into a
PATe entry.

Invalid descriptors (see 8.5.2 Translation Table Descriptor Formats) can be used
at any level of the hierarchy, except at the area descriptor level. When a hardware table B:
search operation encounters an invalid segment or page descriptor, the MMU causes
the corresponding instruction or data access exception to occur.

MOTOROLA MC88110 USER'S MANUAL 8-29

32 31

LOGICAL ADDRESS

22 21 12 11

,..-----------t:SlUI SEGMENT NUMBER I PAGE NUMBER PAGE OFFSET I
AREA DESCRIPTORS

USER INST. AREA DESCPTR.

-. SUPVR. INST. AREA DESCPTR.

,. USER DATA AREA DESCPTR.

SUPVR. DATA AREA DESCPTR.

v20 10
I PHYSICAL ADDRESS ;'

31 W 12 11 " 2 1 0

SEGMENT TABLE BASE ADDR. SEGMENT NUMBER 100

I II I
/ 12

:,.-20
SEGMENT TABLE

-- SEGMENT DESCRIPTOR 0-
SEGMENT DESCRIPTOR 1

··.----- SEGMENT DESCRIPTOR N ~

··SEGMENT DESCRIPTOR 1023

20 PHYSICAL ADDRESS ;' 10

31 12 11 W 2 1 0

PAGE TABLE BASE ADDRESS PAGE NUMBER I00 I
I II I

/12I

PAGE TABLE

PAGE DESCRIPTOR 0

PAGE DESCRIPTOR 1
-I---------~

11'20.,

• PAGE DESCRIPTOR N ~

PAGE DESCRIPTOR 1023

INDIRECTION NO INDIRECTION

INDIRECTION

20 12
/

PHYSICAL ADDRESS OF ACCESS

12 11 " 0

J~
20

PAGE FRAME ADDRESS I PAGE OFFSET I

L-- ---I~

31

31 W 2 1 0

I PAGE DESCRIPTOR ADDRESS 100 I
I I

~ PAGE DESCRIPTOR

Figure 8-12. Page Table Lookup

8-30 MC88110 USER'S MANUAL MOTOROLA

8.5.2 Translation Table Descriptor Formats

The following paragraphs describe the formats for area, segment, page, and indirection
descriptors to be used by system software when creating and maintaining the translation
tables in memory in order to ensure correct searching of the tables and correct
interpretation of status bits by the MC8811 0 hardware.

8.5.2.1 AREA DESCRIPTOR FORMAT. Area descriptors are maintained in on-chip
registers (ISAP, IUAP, DSAP and DUAP). An area descriptor contains the physical base
address of a segment table and access control bits for all pages within the area.

The TE bit of the area descriptors can be used to enable or disable the page address
translation mechanism for an area, regardless of whether hardware or software table
searching is selected. However, if hardware table searching is enabled, the TE bit of the
area descriptor must not be set until a segment table has been created for the area. The
access control bits of the area descriptor have no effect during a software table search.

Area descriptors have no effect on block address translations.

In identity translation mode, the access control bits in the area descriptor are used to
control all accesses to the entire area.

The format of an area descriptor is shown in Figure 8-13.

EIJ UNDEFINED-RESERVED FOR FUTURE USE

Figure 8-13. Area Descriptor Format

STBA-Segment Table Base Address
This field contains the most significant 20 bits of the segment table base address for a
program's logical address space.

U1 , Uo-User Attribute 1, 0
UO and U1 are designated for use by the operating system. They are driven onto the
external bus during all bus cycles that comprise a hardware table search operation.
Note that the user attribute signals are active low, so a value of 1 for a user attribute bit
is driven externally as a low voltage.

•

MOTOROLA MC88110 USER'S MANUAL 8-31

•

WT-Write-Through
If the WT bit is set, then cacheable accesses to pages that map through this area
descriptor use the write-through memory update policy. This bit is an access control bit
and is therefore accumulated (logically ORed) by the MC88110 with other WT bits
encountered during a table search operation as the MMUs create PATC entries. Refer
to Section 6 Instruction and Data Caches for more information on the memory
update policies for the data cache.

1-Write-through memory update policy in effect for the entire area
o-Write-through versus write-back memory update policy controlled by the WT bit

of the segment and page descriptors

G-Global
If this bit is set, the entire area contains globally shared data requiring bus snooping to
maintain data cache coherency. This bit is an access control bit and is therefore
accumulated (logically ORed) by the MC8811 0 with other G bits encountered during a
table search operation as the MMUs create PATC entries. Refer to Section 11
System Hardware Design for more information on bus snooping for global
accesses.

1-Area contains globally shared data
Q-Global indication controlled by G bit of segment and page descriptors

CI-Cache Inhibit
If the CI bit is set, then accesses for the entire area are designated as noncacheable.
Therefore, all accesses to the area are forced to miss in the on-chip cache and access
external memory. This bit is an access control bit and is therefore accumulated
(logically ORed) by the MC8811 0 with other CI bits encountered during a table search
operation as the MMUs create PATC entries. Refer to Section 6 Instruction and
Data Caches for more information on cache inhibited accesses.

1-Entire area is cache inhibited
Q-Cache inhibit controlled by CI bit of segment and page descriptors.

TE-Translation Enable
The TE bit enables the page address translation mechanism. If TE is clear, then
address translation and access control are not performed by the PATC for this area.
This bit has no effect on the BATC.

1-PATC enabled
o-PATC disabled

8.5.2.2 SEGMENT DESCRIPTOR FORMAT. Each segment descriptor contains the
physical base address of a page table. In addition, a segment descriptor contains access
control bits, which are logically ORed with the access control bits from area descriptors. If
a segment descriptor is valid when it is encountered by a hardware table search
operation, then the table search continues to the page descriptor. If the segment
descriptor is not valid, the table search operation is aborted and the appropriate
instruction or data access exception occurs. The format of a segment descriptor is shown
in Figure 8-14.

8-32 MC88110 USER'S MANUAL MOTOROLA

CJ UNDEFINED-RESERVED FOR FUTURE USE

Figure 8-14. Segment Descriptor Format

PTBA-Page Table Base Address

This field contains the most significant 20 bits of the page table base address for a
program's logical address space.

WT-Write-Through

If this bit is set, then all cacheable accesses to pages that map through this segment
descriptor use the write-through memory update policy. This bit is an access control bit
and is therefore accumulated (logically ORed) by the MC88110 with other WT bits
encountered during a table search operation as the MMUs create PATe entries. Refer
to Section 6 Instruction and Data Caches for more information on the memory
update policies for the data cache.

1-Write-through memory update policy in effect for the entire segment
o-Write-back memory update policy selected unless overridden by the WT bit of

the area or page descriptors

SP-Supervisor Protection

If this bit is set, then hardware table search operations for user logical addresses
within this segment are faulted by causing the instruction or data access exception to
occur. If this bit is clear, the table search operation for a user access continues. This bit
has no effect on supervisor logical address translations. When this bit is encountered
during a table search operation, its value is saved for exception purposes, but it is not
used to create the S/U bit in PATe entries.

1-Translations can be performed only for supervisor accesses
0-Translations continue for supervisor or user accesses

G-Global

If this bit is set, the entire segment contains globally shared data requIring bus
snooping to maintain data cache coherency. This bit is an access control bit and is
therefore accumulated (logically ORed) by the MC8811 0 with other G bits encountered
during a table search operation as the MMUs create PATC entries. Refer to Section
11 System Hardware Design for more information on bus snooping for global
accesses.

1-Area contains globally shared data
o-Segment contains only locally referenced data unless overridden by the G bit of

the area or page descriptors

•

MOTOROLA MC88110 USER'S MANUAL 8-33

•

CI-Gache Inhibit
If the CI bit is set, then accesses for the entire segment are designated as
noncacheable. Therefore, all accesses to the segment are forced to miss in the on
chip cache and access external memory. This bit is an access control bit and is
therefore accumulated (logically ORed) by the MC88110 with other CI bits
encountered during a table search operation as the MMUs create PATe entries. Refer
to Section 6 Instruction and Data Caches for more information on cache
inhibited accesses.

1-En~ire segment is cache inhibited
o-Segment accesses are cacheable unless overridden by the CI bit of the area or

page descriptors

WP-Write Protect
The WP bit selects whether write accesses to the segment are allowed. This bit is an
access control bit and is therefore accumulated (logically ORed) by the MC88110 with
the page WP bit encountered during a table search operation as the MMUs create
PATC entries.

1-Entire segment is write protected
o-Segment write accesses are allowed unless overridden by the WP bit of the

page descriptors

V-Valid
This bit indicates the validity of the segment descriptor. If clear, then address
translation is not possible for the segment and the instruction or data access exception
occurs when it is encountered in a table search operation.

1-Segment descriptor is valid
o-Segment descriptor is invalid and hardware table search is aborted

8.5.2.3 PAGE DESCRIPTOR FORMAT. A valid page descriptor contains the
physical address of a page frame and access control bits that are logically ORed with the
access control bits from area and segment descriptors. If an invalid page descriptor is
encountered during a table search operation, the appropriate instruction or data access
exception occurs. If the page descriptor is an indirect page descriptor, as specified by the
DT field, the hardware table search continues by fetching another page descriptor. The
format of valid and invalid page descriptors is shown in Figure 8-15. See 8.5.2.4
Indirection Descriptor Format for a complete description of indirection descriptors.

8-34 MC88110 USER'S MANUAL MOTOROLA

31 12 11 10 9 8 7 6 5 4 3 2 1 0
----PA-G-EF-RA-M-E-AD-DR-ESS-------, DT

IEJ UNDEFINED-RESERVED FOR FUTURE USE

Figure 8-15. Page Descriptor Format

PFA-Page Frame Address
This field contains the most significant 20 bits of the page frame address within a
program's physical address space.

U1, Uo-User Page Attribute 1,0
UO and U1 are designated for use by the operating system. They are driven onto the
external bus for bus cycles that are mapped through this page descriptor.
Note that the user page attribute signals are active low, so a value of '1' for a user
page attribute bit is driven externally as a low voltage.

WT-Write-Through
If the WT bit is set, then cacheable accesses to the page use the write-through memory
update policy.This bit is an access control bit and is therefore accumulated (logically
ORed) by the MC88110 with other WT bits encountered during a table search
operation as the MMUs create PATC entries. Refer to Section 6 Instruction and
Data Caches for more information on the memory update policies for the data cache.

1-Write-through memory update policy in effect for the page
o-Write-back memory update policy selected unless overridden by the WT bits of

the area or segment descriptors

SP-Supervisor Protection
If this bit is set, then hardware table search operations for user logical addresses
within this page are faulted by causing the instruction or data access exception to
occur. If this bit is clear, the table search operation for a user access continues. This bit
has no effect on supervisor logical address translations.

1-Translations can be performed only for supervisor accesses
(}-Translations continue for supervisor or user accesses

G-Global
If this bit is set, the page contains globally shared data requiring bus snooping to
maintain data cache coherency. This bit is an access control bit and is therefore
accumulated (logically ORed) by the MC8811 0 with other G bits encountered during a
table search operation as the MMUs create PATe entries. Refer to Section 11
System Hardware Design for more information on bus snooping for global
accesses.

1-Page contains globally shared data
o-Page contains only locally referenced data unless overridden by the G bit of the

area or segment descriptors

•

MOTOROLA MC88110 USER'S MANUAL 8-35

•

CI-eache Inhibit
If the CI bit is set, then accesses for the page are designated as noncacheable.
Therefore, all accesses to the page are forced to miss in the on-chip cache and access
external memory. This bit is an access control bit and is therefore accumulated
(logically ORed) by the MC8811 0 with other CI bits encountered during a table search
operation as the MMUs create PATC entries. Refer to Section 6 Instruction and
Data Caches for more information on cache inhibited accesses.

1-Page is cache inhibited
o-Page accesses are cacheable unless overridden by the CI bit of the area or

segment descriptors

M-Modified
This bit indicates that write accesses have occurred within the page. This bit is
maintained by supervisor software. See 8.5.4.2 Maintaining Modified Status for
more information on possible uses for the M bit.

1-Page has been modified
o-Page has not been modified

U-Used
This bit indicates that an access (read or write) has occurred to the page. This bit is
maintained by supervisor software. See 8.5.4.1 Maintaining Used Status for
more information on possible uses for the U bit.

1-Page has been accessed
o-Page has not been accessed

WP-Write Protect
The WP bit selects whether write accesses to the page are allowed. This bit is an
access control bit and is therefore accumulated (logically ORed) by the MC8811 0 with
the segment WP bits encountered during a table search operation as the MMUs create
PATC entries. '

1-Page is write protected
o-Page write accesses are allowed unless overridden by the WP bit of the

segment descriptor

DT-Descriptor Type
This field indicates the validity of the page descriptor and identifies the page descriptor
type. If this field is clear, then address translation is not possible for the page and the
instruction or data access exception occurs when it is encountered in a table search
operation. For more information on indirection descriptors, see 8.5.2.4 Indirection.
Descriptor Format.

Oo-Oescriptor is invalid and hardware table search fails
01-0escriptor is a valid page descriptor with the format shown above
1o-0escriptor is a masked protection indirection descriptor
11-Descriptor is a nonmasked protection indirection descriptor

8-36 MC88110 USER'S MANUAL MOTOROLA

8.5.2.4 INDIRECTION DESCRIPTOR FORMAT. Indirection descriptors (with or
without masked protection) indicate that the hardware table search operation should
perform another read operation to fetch another page descriptor. The indirection
descriptor contains the physical address for the actual page descriptor. If the page
descriptor is valid, it is used to obtain the physical address of the page frame. If it is
another type of page descriptor, including another indirection descriptor, then an
address translation is not possible for this access and the instruction or data access
exception occurs.

The difference between the two types of indirection descriptors (with or without masked
protection) lies in the location of the access control bits used to access the page. For
nonmasked protection indirection descriptors (DT=11), the logical OR of the access
control bits in the area, segment, and page descriptors are used in creating the PATe
entries for the page. For masked protection indirection descriptors (DT=10), the access
control bits in the page descriptor are ignored, and only the access control bits found in
area and segment descriptors are used in creating the PATe entries for the page.

Figure 8-16 shows the format of an indirection descriptor.

31

PAGE DESCRIPTOR ADDRESS

Figure 8-16. Indirection Descriptor Format

DT

PDA-Page Descriptor Address
This field contains the most significant 30 bits of the physical address of the actual
page descriptor address. •

DT-Descriptor Type
This field indicates the validity of the page descriptor and identifies the page descriptor
type. If this field is clear, then address translation is not possible for the page and the
instruction or data access exception occurs when it is encountered in a table search
operation. For more information on validity, see 8.5.2.3 Page Descriptor Format.

aD-Oescriptor is invalid and hardware table search fails
01-Descriptor is a valid page descriptor with the format shown above
1D-Oescriptor is a masked protection indirection descriptor
11-Descriptor is a nonmasked protection indirection descriptor

MOTOROLA MC88110 USER'S MANUAL 8-37

•

8.5.3 Hardware Table Search Algorithm

The following paragraphs describe in detail the table search algorithm used by the
MC88110 when hardware table searching is enabled (HTEN bit of ICTL or DCTL is·set).
The faults caused by table search operations and some timings for table search
operations are also described.

8..5 ..3..1 TABLE SEARCH FAULTS. When a table search operation causes an MMU
fau:lt, state information is saved in MMU/cache control registers and either the instruction
or data access exception occurs.

The state information saved for the possible table search fault conditions is summarized
in Table 8..9. The fault state information can then be used by the appropriate exception
handler in order to determine the corrective action to be taken for each fault condition.
Refer to 8.9 MMU/Cache Control Registers for a detailed description of the bits in
the MMUlcache control registers. Note that Table 8-9 is a subset of Table 8..14 provided
in 8.7 MMUICache Faults that describes the state information saved for all
MMU/Cache fault conditions.

Ta·ble 8-9. Table Search Fault Saved State Summary

Status
Table Search Fault Register Bit ILAR/DLAR IPAR/DPAR

(ISR, DSR)

Table Search Bus Error TBE= 1 Logical address of initial Physical address of faulted
instruction or data access bus cycle

Segment Descriptor Invalid 51 = 1 Logical address of initial Physical address of invalid
instruction or data access segment descriptor

Page Descriptor Invalid PI = 1 Logical address of initial Physical address of invalid
instruction or data access page descriptor

Supervisor Protection 5P= 1 Logical address of initial Physical address of violation
Violation instruction or data access segment or page descriptor

Write Protect Violation WE=1 Logical address of initial data DPAR and IPAR undefined
(DSR only) write access

The following paragraphs describe the faults that are signaled by the MMUs of the
instruction and data memory units and that cause instruction or data access exceptions
to occur.

8.5.3.1.1 Table Search Bus Error. If a bus error occurs during an external memory
access fora hardware table search operation, the MMU aborts the table search
operation and saves state information for the table search bus error fault by setting the
TBE bit in the ISR or DSR. The logical address of the initial instruction fetch or data
access is automatically saved in the ILAR or DLAR. The physical address that was driven
onto the external bus for the faulted bus cycle is automatically saved in the IPAR or
DPAR.

8-38 MC88110 USER'S MANUAL MOTOROLA

8.5.3.1.2 Segment Descriptor Invalid. If a hardware table search operation
fetches a segment descriptor which is marked as invalid (V=O in the segment descriptor),
the MMU aborts the table search and saves state information for the segment descriptor
invalid fault by setting the 81 bit in the ISR or DSR. The logical address of the initial
instruction fetch or data access is automatically saved in the ILAR or DLAR. In addition,
the physical address of the fetched invalid segment descriptor is automatically saved in
the IPARor.DPAR.

8.5.3.1.3 Page Descriptor Invalid. If a hardware table search operation fetches a
page descriptor which is marked as invalid (DT=00) or a second indirect page descriptor
(DT=10 or DT=11), the MMU aborts the table search and saves state information for the
page descriptor invalid fault by setting the PI bit in thelSR or DSR. The logical address
of the. initial instruction fetch or data access is automatically saved in the ILAR or DLAR.
In addition, the physical address of the fetched invalid or second indirect page descriptor
is automatically saved in thelPAR or DPAR.

This condition is often used by the system software as an indication that a page fault has
occurred and that a new page frame must be created in physical memory for the
accessed page. Refer to 8.5.4 Page Descriptor Table Considerations for more
information on possible uses for the invalid page descriptor condition.

8.5.3.1.4 Supervisor Protection Violation. If a hardware table search operation for
a user logical address fetches a segment or page descriptor marked as supervisor
protected (SP=1 in either descriptor), the MMU aborts the table search and saves state
information for the supervisor protection violation fault by setting the SP bit in the ISR or
DSR. The logical address of the initial instruction fetch or data access is automatically
saved in the ILAR or DLAR. In addition, the physical address of the fetched segment or
page descriptor is automatically saved in the IPARor DPAR.

8.5.3.1.5 Write Protect Violation. If a write access is attempted to a memory
location marked as write protected (WP=1 in the ATe entry mapping the logical
address), the. DMMUfaults the access and saves state information for the write protect
violation fault by setting the WE bit in the DSR. The logical address of the initial data
write is automatically saved in the DLAR. The contents of the DPAR are undefined after
this fault occurs. Write protection violation faults are not applicable for the IMMU.

8.5.3.2 DETAILED- FLOW OF HARDWARE TABLE SEARCH OPERATION.
Figure 8-17 shows the logical flow used by the MMUs to perform hardware table search
operations. The table search operation begins with the selection of the appropriate area
descriptor according to the value of the S/U· bit that is part of the logical address. A
pointer to the required seg.ment descriptor is created by concatenating the STBA field of
the area descriptor with bits 31-22 of the logical address for the access. Access control
bit accumulation begins by initializing a temporary status accumulator with the values of
the access control bits in the selected area descriptor.

•

MOTOROLA MC88110 USER'S MANUAL 8-39

(SUPERVISOR ACCESS)

SlU=l

(USER ACCESS)

S1U=O

(GET SEGMENT
DESCRIPTOR ADDRESS
AND ACCESS CONTRa.

BITS FROM SUPERVISOR
AREA DESCRIPTOR)

TEMPPTR - xSAP [STBA] liLA [31-22]1100
TEMPUA - xSAP [Ul] II xSAP [UO]

TEMPSTAT [WT] - xSAP [WT]
TEMPSTAT[G]- xSAP[G]
TEMPSTAT [CI] - xSAP [Cij

TEMPPTR - xUAP [STBA] II LA [31-22]11 00
TEMPUA - xUAP [Ul] II xUAP [UO]

TEMPSTAT [WT] - xUAP [WT]
TEMPSTAT [G) - xUAP [G]
TEMPSTAT [cg - xUAP [eg

(GET SEGMENT
DESCRIPTOR ADDRESS
AND ACCESS CONTRa.
BITS FROM USER AREA
DESCRIPTOR)

(HARDWARE TABLE
SEARCH FAILS)

(SAVE STATE FOR TABLE
SEARCH BUS
ERROR FAULT)

(SAVE STATE FOR
SEGMENT DESCRIPTOR
INVALID FAULT)

(READ SEGMENT
DESCRIPTOR)

xSR - 0
xSR[fBE] -1
xSR[SU]- StU
xSR [RW) - RIW

xlAR- LA
xPAR - TEMPPTR

xSR - 0
xSR[Sg - 1

xSR[SU]- S1U

xSR [RW) - RIW

xlAR - LA
xPAR - TEMPPTR

(SEGMENT DESCRIPTOR
INVALID)

TEMPSTAT M=0

SUCCESS

SEGDESC - MEMORY [fEMPPTR]
TEMPSTAT [WPJ - SEGDESC [WP]
TEMPSTAT [SP] - SEGDESC [SP]

TEMPSTAT M- SEGDESC M

(USER ACCESS
TO SUPERVISOR
PROTECTED SEGMENT)

xSR-O
xSR[SP]- 1

xSR[SU]- S1U

xSR [RW] - RIW
xLAR - LA

xPAR - TEMPPTR

RETRY

(EXTRACT ACCESS
COOTROL BrTS FROM

SEGMENT DESCRIPTOR)

(HARDWARE TABLE
SEARCH FAILS)

(SAVE STATE FOR
SUPERVISOR PROTECTION

VIOLATION FAULT)

OTHERWISE

~[SPJ=l
OTHERWISE AND

S1U=O
(SEGMENT

ACCESS
PERMITTED)

•
Figure 8-17. Hardware Table Search Flow (Sheet 1 of 3)

8-40 MC88110 USER'S MANUAL MOTOROLA

(GET PAGE DESCRIPTOR
ADDRESS, ACCUMULATE
ACCESS CONTROl BITS)

TEMPPTR - SEGDESC [PTBA) liLA [22-11)11 00
TEMPSTAT [W1] - TEMPSTAT [Wl] YSEGDESC [W1]

TEMPSTAT [Gj .. TEMPSTAT [G) VSEGDESC [G]
TEMPSTAT[Clj- TEMPSTAT[CqYSEGDESC[Cq

INDIRECT-FLAG - "NO"

(READ
DESCRIPTOR

AGAIN)

RETRY

(EXTRACT ACCESS
CONTROl BITS

FROM PAGE
DESCRIPTOR)

PAGEDESC - MEMORY [TEMPPTR)
TEMPSTAT [WP] - PAGEDESC [WP)
TEMPSTAT [SPj - PAGEDESC [SP)
TEMPSTAT [DT] - PAGEDESC [DT]

ERROR

(READ PAGE
DESCRIPTOR)

xSR- 0
xSR[TBE]-l
xSR[SUj- &U

xSR [RW) .. RM

xlAR - LA
xPAR .. TEMPPTR

(HARDWARE TABLE
SEARCH FAILS)

(SAVE STATE FOR
TABLE SEARCH BUS
ERROR FAULl)

(MASKED PROTECTION
INDIRECTION)

•
(SAVE STATE FOR
PAGE DESCRIPTOR
INVALlDFAUl1)

(HARDWARE TABLE
SEARCH FAILS)

xSR" 0

xSR[Pq -1
xSR[SU)- &U

xSR [RW) .. RIW
xlAR" LA

xPAR .. TEMPPTR

(PAGE DESCRIPTOR (PAGE DESCRIPTOR
VALID) INVALID)

TEMPSTAT [DT] = 01 TEMPSTAT [DT] 0: 01 TEMPSTAT [OT] 0: 00

OR
TEMPSTAT[DT]= 11

INDIRECT RAG ='NO"~ (SECOND INDIRECTION)
- INDIRECT_RAG ="YES·

Figure 8-17. Hardware Table Search Flow (Sheet 2 of 3)

MOTOROLA MC88110 USER'S MANUAL 8-41

r-----...L..-..-----, (USE ACCESS
CONTROL BITS FROM
AREA AND SEGMENT

L.....- ----' DESCRIPTORS ONLY)

(USER ACCESS TO SUPERVISOR
PROTECTED PAGE)

TEMPSTAT [SP] " 1
AND

StU"o

~DIRECULAG.~:~IRECT_~
INDIRECT_TYPE = INDIRECT lYPE" 'MASKED'

'NONMASKED' -

OTHERWISE

(PAGE ACCESS
PERMITTED)

(USE ACCESS CONTRa.. BITS OR'ED
FROM THE AREA, SEGMENT AND

PAGE DESCRIPTORS)

PATC [lPA] - LA [31-12]
PATC [PFA]- PAGEDESC [31-12] (Fill Fiaos OF

PATC [SU] • StU PATC ENTRY)
PATC[Wl] - TEMPSTAT[WTj

PATC [G] - TEMPSTAT [G]
PATC (cg - TEMPSTAT [cg

PATC [Ul] • PAGEDESC [Ul)
PATC (UO] • PAGEDESC [UO)

PATC [WP] • TEMPSTAT [WP)
PATC[V]- 1

xSR· 0
xSR [SP] -1

xSR[SU] - StU
x1..AR· LA

xPAR - TEMPPTR

(HARDWARE TABlE
SEARCH FAILS)

(SAVE STATE FOR
SUPERVISOR PROTECTI()II
VIOlATION FAULT)

•
(WRITE TO WRITE
PROTECTED PAGE)

OSR - 0 (HARDWARE TABLE
DSR [WE] _ 1 SEARCH FAilS)

DSR [SU] - StU (SAVE STATE FOR
DSR [RW] • 0 WRITE PROTECT

'--_D_LA_Rr---_LA_~ VIQATION FAULT)

Figure 8-17. Hardware Table Search Flow (Sheet 3 of 3)

The table search operation continues as the BIU arbitrates for mastership of the external
bus and fetches the required segment descriptor. If a bus error occurs during the bus
transaction, the MMU saves state information related to the bus error and causes the
instruction or data access exception to occur with the status bits in the ISR or DSR
indicating a table search bus error fault.

If the bus cycle terminates with a retry, the segment descriptor fetch is repeated. If the
segment descriptor fetch succeeds but the valid bit of the segment descriptor is clear, the
MMU saves state information for the segment descriptor invalid fault, and the table
search is aborted (instruction or data access exception occurs). If the access is a write
access and the segment is marked as write protected, the MMU completes the table
search and loads the new PATe descriptor; upon reissue of the logical address, a write
protection violation fault occurs.

8-42 MC88110 USER'S MANUAL MOTOROLA

If the original access is made by a user mode program but the segment is marked as
supervisor protected, the MMU saves state information for the supervisor protection
violation fault, and the table search is aborted (instruction or data access exception
occurs). Otherwise, the segment descriptor is valid and access to the segment is
permitted. A pointer to the required page descriptor is created by concatenating the
PTBA field of the segment descriptor with bits 21-12 of the logical address of the access.
Access control bits are accumulated by logical ORing the temporary status accumulator
with the values of the access control bits from the segment descriptor.

The table search operation continues as the BIU arbitrates for mastership of the external
bus again and fetches the required page descriptor. If a bus error occurs during the bus
transaction, the MMU saves state information related to the bus error and causes the
instruction or data access exception to occur with the status bits in the ISR or DSR
indicating a table search bus error fault.

If the bus cycle terminates with a retry request, the page descriptor fetch is repeated. If
the page descriptor fetch succeeds, but its type is invalid, the MMU saves state
information for the page descriptor invalid fault, and the table search is aborted
(instruction or data access exception occurs).

If the descriptor type is one of the indirection types and this is the first indirection
descriptor encountered during this table search operation, an internal indirection flag is
set. However, if another indirection descriptor has already been encountered in this
table search operation (the internal indirection flag was set prior to this bus access), the
MMU saves state information for the page descriptor invalid fault, and the table search is
aborted (instruction or data access exception occurs). If this is the first indirection
descriptor within this table search operation, the address of the required page descriptor
is extracted from the indirection descriptor. An internal flag is set to indicate whether the
indirection descriptor is a masked protection indirection descriptor or a nonmasked ._
indirection descriptor, and the steps described for fetching a page descriptor are
repeated.

At this point in the table search operation, the descriptor type must be valid page
descriptor (DT = 01). Access control bits are accumulated by logically ORing the
temporary status accumulator with the values of the access control bits from the valid
page descriptor if there has been no indirection or if there has been nonmasked
indirection. If a masked protection indirection descriptor has been encountered, the
access control bits from the page descriptor are ignored.

If the access is a write access and the page is marked as write protected, the MMU
completes the table search and loads the new PATe descriptor; upon reissue of the
logical address, a write protection violation fault occurs. If the access is made by a user
mode program but the page is marked as supervisor protected, the MMU saves state
information for the supervisor protection violation fault, and the table search is aborted
(instruction or data access exception occurs). Otherwise, access to the page is permitted,
and a PATe entry can be created. The S/U bit and LPA field of the selected PATe entry
are overwritten (FIFO replacement) with the 21 higher order bits of the logical address-

MOTOROLA MC88110 USER'S MANUAL 8-43

•

(including the S/U bit) of the access. The PFA field of the PATe entry is filled from the
PFA field of the valid page descriptor. The access control bits are filled from the
temporary status accumulator and the page descriptor User Page Attribute bits. The
PATe entry is marked as valid, and the table search operation completes successfully.

8.5.3.3. HARDWARE TABLE SEARCH OPERATION TIMING. Table 8-10
summarizes the clock cycle counts for a hardware table search operation. The table
assumes bus availability (the bus is available when the arbitration occurs) and no-wait
state external memory.

Table 8-10. Hardware Table
Search Operation Timing

Table Search Type Clocks

No Indirection 9

Indirection 13

8.5.4 Page Descriptor Table Considerations
The following paragraphs describe the sharing of pages between programs, the paging
of page descriptors, and some of the actions required by the system software to maintain
current status bits in the page descriptor tables.

To prevent coherency problems with used and modified bits in multiprocessor
environments, it is advised that exception handlers perform the updates to these bits in
page descriptors as indivisible bus transactions through the use of the xmem instruction
as described in 8.5.4.3 Sharing Pages.

8.5.4.1 MAINTAINING USED STATUS. The U bit in the page descriptor tables can
be used to indicate that the page has been referenced since it was loaded from backing
storage. If the U bit is clear, the page has not been accessed. This bit is not maintained
automatically by MC8811 0 MMU hardware; if its use is required, it must be maintained
by operating system software.

Existing exception mechanisms can be used to maintain the used bit in software. This
can be accomplished by encoding the U and V bits of the page descriptor as shown in
Table 8-11.

Table 8-11. Used/Valid Bit Interpretations

Used Bit Valid Bit Interpretation

0 0 Not Used; Invalid

0 1 Does Not Apply

1 0 Not Used; Valid

1 1 Used; Valid

8-44 MC88110 USER'S MANUAL MOTOROLA

When the U and V bits are both zero, the descriptor is invalid. However when these bits
are U = 1 and V = 0, the descriptor is valid but not used. Thus, when the descriptor is first
encountered during a hardware table search operation, it is detected as an invalid
descriptor and the instruction or data access exception occurs. The exception handler
can then set both the U and V bits (U = 1 and V = 1) to designate the descriptor as valid
and used. Note that when using the U and V bits in this way, the encoding of U = 0 and V
= 1 is not used and should be avoided.

8.5.4.2 MAINTAINING MODIFIED STATUS. The M bit in a page descriptor can be
used to indicate whether or not the page has been modified (dirtied) since it was loaded
from backing storage. This bit is not maintained automatically by MC88110 MMU
hardware.

The M bit can be maintained by software to update the status of a page descriptor when
a write operation occurs to a page. Existing exception mechanisms can be used to
maintain the modified status by using the M and WP bits of the page descriptor as shown
in Table 8-12.

Table 8-12. Modified/Write Protect Bit Interpretations

Modified Bit Write Protect Bit Interpretation

0 0 Unmodified; Writeable
(Causes Exception on Write)

0 1 Write Protected

1 0 Modified; Writeable

1 1 Does Not Apply

When the M and WP bits are encoded in this way, the page is designated as unmodified Bi
and writeable when the bits are M =0 and WP = O. When the page descriptor is loaded
into the PATC, the WP bit in the PATe is automatically set by the DMMU (PATC WP =1).
Therefore, when the first write operation to this page occurs. the data access exception
occurs. The exception handler can then set the M bit in the page descriptor (M = 1 and
WP = 0) to indicate that the page has been modified and is writeable. When these bits
are M = 0 and WP = 1, the page is write protected. Note that when using the M and WP
bits in this way, the encoding of M = 1 and WP = 1 is not used and should be avoided.

8.5.4.3 SHARING PAGES. It is sometimes desirable for two or more program tasks
to share the same physical page, perhaps with different logical addresses and/or access
control bits for each task. In order to simplify maintenance of the M and U bits, it may be
desirable to have only one valid page descriptor for a shared page. Additionally, many
operating systems prefer to describe shared regions of memory in shared memory
tables, rather than in distinct page descriptor tables.

The MC88110 supports page sharing using a single page descriptor with indirection
descriptors (DT=11) and masked protection indirection descriptors (DT=10). Figure 8-18
shows a possible use of indirection to support a shared page of physical memory.

MOTOROLA MC88110 USER'S MANUAL 8-45

•

TASK A'S DESCRIPTORS

I AREA DESCRIPTOR~

~SEGMENT INDIRECTION
I---

DESCRIPTOR PAGE DESCRIPTOR

SEGMENT TABLE PAGE TABLE

~
SHARED

PAGE

TASK B'S DESCRIPTORS

IAREA DESCRIPTOR~

~ MASKED
SEGMENT PROTECTION

t---
DESCRIPTOR INDIRECTION PAGE

DESCRIPTOR

SEGMENT TABLE PAGE TABLE

~ VALID PAGE
~ DESCRIPTOR

SHARED MEMORY
TABLE

Figure 8-18. Shared Pages with Indirection Descriptors

For sharing pages of physical memory, the operating system can maintain a shared
memory table, which includes a valid page descriptor. The PFA field of the valid page
descriptor points to the physical address of the page shared by program tasks A and B.

Elsewhere in physical memory, the operating system has built segment and page
descriptor tables describing the logical to physical mappings and access control bits for
each task's address space that are used while the task is executing. The page
descriptors in these tables for the logical addresses of the shared page are indirection or
masked protection indirection descriptors. These indirection descriptors point to the
actual address mapping located in the page descriptor of the shared memory table.

Note that the logical addresses of the shared page may be different for each task, since
each task has its own indirection descriptor in the appropriate position in its descriptor
table hierarchy for the desired logical address.

The difference between indirection and masked protection indirection lies in the access
control bits used for the access. With indirection descriptors, the access control bits used
are accumulated during a hardware table search operation in the same way as valid

8-46 MC88110 USER'S MANUAL MOTOROLA

page descriptors: by logically GRing access control bit values for the area, segment, and
valid page descriptors. With masked protection indirection descriptors, the access
control bits in the valid page descriptor are ignored. Use of indirection descriptors
permits each program sharing the physical page to have unique access restrictions
selected via its area and segment descriptors.

It is not uncommon in multiprocessor systems for processors in the same physical
address space to share a common set of page tables. In this case, it is necessary that the
page descriptors be kept in a consistent state for each processor. Inconsistent page
descriptors can arise when U or M bits are updated for a shared task. For example, if two
processors were to attempt to read a page descriptor simultaneously, one could
immediately set the M bit while the second processor is attempting to clear the M bit. In
this case, the modified status of the page would be lost. To prevent this situation,
exception handlers should perform the update to the U and M bits in the page descriptor
as indivisible bus transactions through the use of the xmem instruction.

8.5.4.4 PAGING SETS OF PAGE DESCRIPTORS. It is not necessary to keep all
valid page descriptors resident in physical memory for an executing program, just as it is
not necessary for all pages of program code or data to be resident in physical memory at
one time. In other words, it is possible to dynamically load page tables into physical
memory as demanded by program execution.

The paging of page tables may be performed by interpreting an invalid segment
descriptor (V=O for the segment descriptor) in two ways: first, as an indication that the
segment cannot be accessed by the program, and second, as an indication that the
segment is temporarily inaccessible because its subordinate page descriptor table is not
currently resident in physical memory. If a hardware table search operation encounters
an invalid segment descriptor, then the instruction or data access exception occurs. If the
exception handler software determines that the faulted access lies within a segment that .•:
should be accessible, it can load the corresponding page descriptor table into physical
memory, load the base address of the page descriptor table into the segment descriptor,
mark the segment descriptor as valid (V=1), and retry the original access.

8.6 DATA BREAKPOINTS

The MC8811 0 DMMU contains two data breakpoint registers that can be used to transfer
program control to a debugger program when accesses are made to specified logical
addresses. If data breakpoints are enabled, the DMMU compares logical addresses of
accesses to logical breakpoint addresses in the data breakpoint registers. When a
comparison results in a match, the DMMU causes the Data Access exception to occur,
and sets the BPE bit in the DSR.

Figure 8-19 shows the algorithm used by the DMMU to check for data breakpoints.

MOTOROLA MC88110 USER'S MANUAL 8-47

CHECK
DATA BREAKPOINT

REGISTER

(DATA BREAKPOINT
REGISTER ENABLED)

DCTL[BPENx] =1

(DATA BREAKPOINT
REGISTER DISABLED)

DCTL[BPENx] =0

NO BREAKPOINT
OCCURS

OTHERWISE

OTHERWISE

(IGNORE Rm BIT) DBRx~::~~WMl =0S:Tl

OTHERWISE

DBRx[63-44] II (DBRx[43-32] &
DBRx[12-1]) = LA[31-13] II (LA[11-{)] &

DBRx[12-1])

(LOGICAL ADDRESS OF b
ACCESS MATCHES DATA
BREAKPOINT ADDRESS)

DBRx[SUM] =0 (MUST CHECK S/U BIT)

(IGNORE SlU BIT) DBRx[SUM] =1 ~

(DATA BREAKPOINT
FAULT, SAVE STATE)

•
Figure 8-19. Data Breakpoint Algorithm

8-48 MC88110 USER'S MANUAL MOTOROLA

8.6.1 Data Breakpoint Descriptors
Data breakpoint registers contain entries that describe data breakpoints. The format of a
data breakpoint descriptor is shown in Figure 8-20.

1'-- 3_2-_BIT_L_OG_IC_A_LB_R_EAK_P_O_INT_A_DD_R_ES_S I
UPPER WORD

[]ill UNDEFINED-RESERVED FOR FUTURE USE

Figure 8-20. Data Breakpoint Descriptor Format

LBA-Logical Breakpoint Address

This field contains the 32-bit logical address of the data breakpoint.

S/U-Supervisor/User
This bit determines whether the breakpoint descriptor should be used to compare with
user or supervisor accesses.

1-Qnly supervisor logical addresses are compared
D-Only user logical addresses 'are compared

SUM-Supervisor/User Mask
This bit is used to enable masking of the S/U bit.

1-LBA resides in either the supervisor or user logical address map
o-LBA resides in the address map specified by the S/U bit

RIW-ReadlWrite

This bit determines whether the breakpoint descriptor should be used to compare with
read or write accesses.

1-Qnly read accesses are compared
o-Only write accesses are compared

RWM-ReadlWrite Mask

This bit is used to enable masking of the RIW bit.

1-Both read and write accesses are compared
o-Oata breakpoint is compared for read or write accesses as specified by the R!W

bit

•

MOTOROLA MC88110 USER'S MANUAL 8-49

•

MB11-MBQ-Address Mask Sits
The MB11-MBO bits can be used to specify the size of logical address comparisons
that cause data breakpoints to occur. These bits determine the bits of the LBAfield that
are ignored for breakpoint address comparisons as described in Table 8-13.

1-lgnore corresponding LBA bit in data breakpoint address comparisons
o-Use corresponding LBA bit in data breakpoint address comparisons

Table 8-13. Example Address Mask Bits and Corresponding LBA Bits

MB11-MBO Compare Address Bits Address Size

000000000000 31-0 Byte Addresses

000000000001 31-1 Half-Word Addresses

000000000011 31-2 Word Addresses

000000000111 31-3 Double Word Addresses

000000001111 31-4 Quad Word Addresses

111111111111 31-12 Page Addresses

8.6.2 Enabling Data Breakpoints
Each data breakpoint register is enabled separately by setting SPENO or BPEN1 in the
DCTL. It is not necessary to enable DMMU address translations in order to enable the
operation of data breakpoints.

8.6.3 Loading Data Breakpoint Registers
Data breakpoint registers 0 and 1 are accessed as entries 32 and 33, respectively, in the
DMMU PATe. Data breakpoint descriptors are loaded into the two data breakpoint
registers in the same manner as software loads page descriptors into PATC entries.
Refer to 8.4.4.2 Loading PATe Entries for more detailed information on loading
PATC entries and 8.9 MMU/Cache Control Registers for a complete description of
the data breakpoint registers.

To load the data breakpoint registers, the following steps should be performed
sequentially:

1. Save the original contents of the DIR.

2. Store the number 32 or 33 into the PATe/breakpoint index field of the DIR,
depending on which data breakpoint register is to be modified.

3. Store the upper word of the data breakpoint descriptor into the DPPU.

4. Store the lower word of the data breakpoint descriptor into the DPPL.

5. Restore the original contents of DIR.

8-50 MC88110 USER'S MANUAL MOTOROLA

8.6.4 Reading Data Breakpoint Registers

Data breakpoint descriptors are read from the two data breakpoint registers in the same
manner as page descriptors are read from PATe entries. The data breakpoint registers
are accessed as entries 32 and 33, respectively, in the DMMU PATC. Refer to 8.4.4.3
Reading PATe Entries for more detailed information on reading PATC entries and
8.9 MMU/Cache Control Registers for a complete description of the data
breakpoint registers.

To read the data breakpoint registers, the following steps must be performed
sequentially:

1. Save the original contents of the DIR.

2. Store the number 32 or 33 into the PATC/breakpoint index field of the DIR,
depending on which data breakpoint register must be read.

3. Load the lower word of the data breakpoint descriptor from the DPPL.

4. Load the upper word of the data breakpoint descriptor from the DPPU.

5. Restore the original contents of DIR.

8.6.5 Data Breakpoint Fault

If data breakpoints are enabled and a data access matches a data breakpoint described
by either of the data breakpoint registers, the DMMU signals the data breakpoint fault by
setting the BPE bit in the DSR and causing the data access exception to occur. The
logical address of the data access is automatically saved in the DLAR. The contents of
the DPAR are undefined after this fault occurs. Data breakpoint faults do not occur in the
IMMU.

•

MOTOROLA MC88110 USER'S MANUAL 8-51

•

8.7 MMU/CACHE FAULTS

Table 8-14 provides a complete listing of the state information saved for all of the
MMU/cache faults that cause the instruction or data access exception to occur.

Table 8-14. Saved State For All MMU/Cache Faults

Status
Fault Register Bit ILAR/DLAR IPAR/DPAR

(ISR, DSR)

Table Search Bus Error TBE= 1 Logical Address of Initial Physical Address of Faulted
Instruction or Data Access Bus Cycle

Segment Descriptor Invalid SI= 1 Logical Address of Initial Physical Address of In~alid

Instruction or Data Access Segment Descriptor

Page Descriptor Invalid PI = 1 Logical Address of Initial Physical Address of Invalid
Instruction or Data Access Page Descriptor

Supervisor Protection SP=1 Logical Address of Initial Physical Address of Violation
Violation Instruction or Data Access Segment or Page Descriptor

Write Protect Violation WE=1 Logical Address of Initial DPAR and IPAR Undefined
(DSR only) Data Write Access

Data Breakpoint BPE= 1 Logical Address of Initial DPAR and IPAR Undefined
(DSR only) Data Access

Copyback Error CP=1 Logical Address of Initial Physical Address of Faulted
(DSR only) Data Access That Missed Bus Cycle (DPAR); Bits 4-0

in Cache Undefined.

Write-Allocate Error WA=1 Logical Address of Initial Physical Address of Faulted
(DSR only) Data Write Access Bus Cycle (DPAR); Bits 4-0

Undefined

Bus Error BE= 1 Logical Address of Initial Physical Address of Faulted
Instruction or Data Access Bus Cycle

Refer to 8.5.3.1 Table Search Faults for detailed information about the saved state
and conditions that cause the first five faults listed in Table 8-14. Refer to 8.6.5 Data
Breakpoint Fault for detailed information about the saved state and the conditions that
cause the data breakpoint fault to occur. Refer to 8.9 MMU/Cache Control
Registers for a detailed description of the bits in the MMU/cache control registers.

The following paragraphs describe the last three faults listed in Table 8-14 and the
conditions that cause them to occur. These faults are detected by the caches of the
instruction and data memory units or the BIU in processing instruction and data
accesses. The cache-detected faults cause either the instruction or data access
exception to occur and the saved state resides in the ISR/DSR, ILAR/DLAR, and
IPAR/OPAR registers.

8-52 MC88110 USER'S MANUAL MOTOROLA

8.7.1 Copyback Error

If external memory returns a bus error in response to a copyback operation before the
MC88110 attempts an external memory access to satisfy a data cache miss, the data
cache causes state information to be saved for the copyback error fault by setting the CP
bit in the DSR and causes the data access exception to occur. The logical address of the
initial data access that missed in the data cache is automatically saved in the DLAR. The
physical address of the copyback operation that was faulted by the external memory
system is automatically saved in the DPAR. Bits 4-0 of the DPAR are undefined when
this fault occurs. Copyback error faults do not occur in the IMU. Refer to Section 6
Instruction and Data Caches for more information on data cache copyback
operations.

8.7.2 Write-Allocate Error
If the write-allocate policy is selected (WT=O and CI=O in the ATe entry mapping the
access) and a read from main memory to satisfy a write miss in the data cache results in
a fault, the data cache causes state information to be saved for the cache write-allocate
bus error fault by setting the WA bit in the DSR and causing the data access exception to
occur. The logical address of the initial data write access is automatically saved in the
DLAR. The physical address that was driven onto the external bus for the faulted bus
cycle is automatically saved in the DPAR. Cache write-allocate bus error faults do not
occur in the IMU. Refer to Section 6 Instruction and Data Caches for more
information on the write-allocate data cache policy.

Write-allocate errors can occur in the case of uncorrectable memory errors.

8.7.3 Bus Error
If an access to external memory results in a bus error, the BIU signals the bus error fault
by setting the BE bit in the ISR or DSR. The logical address of the initial instruction fetch
or data access is saved automatically in the ILAR or DLAR. The physical address that
was driven onto the external bus for the faulted bus cycle is automatically saved in the
IPAR or DPAR.

8.8 ATC PROBE CAPABILITY

ATC probe commands in the MC8811 0 allow operating system software to determine
whether a descriptor for a specific logical address is present within the ATC. If so, the
MC88110 returns the index for the correct ATC entry. This simplifies the steps required if
the operating system modifies a descriptor in the descriptor tables in main memory and
must make the same changes to the image of the descriptor on-chip.

For example, if a page frame is re-allocated for a different logical page, the operating
system must mark its page descriptor as invalid in the page descriptor tables. The ATe
probe command can determine if the page descriptor is resident in the PATe. If so, the
MC88110 locates which PATC entry contains the descriptor, so that the operating
system can also mark the page descriptor as invalid within the PATC.

•

MOTOROLA MC88110 USER'S MANUAL 8-53

•

The ATC probe commands may be used even if the MMU is currently disabled (MEN =0
in ICTUDCTL). ATe probe commands in the MC88110 never cause hardware table
search operations to occur, even if hardware table searching is enabled.

8.8.1 ATC Probe Commands
The ATC probe commands occur when the system software performs the following steps
sequentially:

1. Store the logical address of interest into the ISAR or DSAR.

2. Store the command code value for MMU probe supervisor or MMU probe user
(depending on whether the specified logical address is within the supervisor or
user logical address map) into the command code field of the ICMD or DeMD.

The ATe probe command codes are listed in Table 8-15.

Table 8-15. ATe Probe Command Codes

Code Command

1000 MMU Probe Supervisor (see Note)

1001 MMU Probe User (see Note)

NOTE: The logical address probed by the MMU probe supervisor or
MMU probe user command is specified in the ISARIDSAR.

8-54 MC88110 USER'S MANUAL MOTOROLA

8.8.2 ATe Probe Results

After an ATC probe command is invoked, the MMU compares the logical address
specified with the logical addresses of all valid ATC entries as shown in Figure 8-21.

PROBE COMMAND

(BATC MISS) OTHERWISE

BATC[LBA] & xCTL[M6-MO]
=xSAR[31-1 9] & xCTL[M6-MO} (BATC HIT)

AND
BATC[S];;; S/U

(PATC MISS) OTHERWISE
PATC[LPA];;; xSAR[31-12]

AND (PATC HIT)
PATC[S];;; S/U

RETURN

Figure 8-21. ATe Probe Algorithm

If a comparison results in a match in the BATe, the MMU sets the BH bit in the ISR or
DSR and loads the index of the entry into the BATC index field of the IIR or DIR.
Similarly, if a comparison results in a match in the PATC, the MMU sets the PH bit in the
ISR or DSR and loads the index of the entry into the PATC index field of the IIR or the
PATC/breakpoint index field of the DIR.

The ATC probe commands always check both the BATC and PATe, so it is possible for
both PH and BH to be set and both ATC index fields to be updated following a probe
operation. The ATe entry may then be accessed as described in 8.3.5 Block
Descriptor Maintenance or 8.4.4 Software Maintenance of PATe Entries.

If the comparisons fail to find an ATC entry matching the logical address, then the MMU
clears both the BH and PH bits in the ISR or DSR, and the IIR and DIR index fields are
undefined.

•

MOTOROLA MC88110 USER'S MANUAL 8-55

8.9 MMU/CACHE CONTROL REGISTERS

The following paragraphs describe the control registers within the IMU and DMU. All of
these registers are read/write registers within the general control register file, and access
to all of these control registers is privileged. Note that these registers can only be
accessed by the Idcr and stcr instructions and not by the xcr instruction.

8.9.1 Instruction MMU/CacheRegisters

The following paragraphs describe the general control registers which permit supervisor
mode software to control the operation of the IMU.

8.9.1.1 INSTRUCTION MMU/CACHE/TIC COMMAND REGISTER (ICMD). The
ICMD, cr25, permits the system software to issue commands to invalidate IMMU PATe
entries, lines in the instruction cache and the TIC, and to probe the IMMU. Writing to the
4-bit command code field in the ICMD with the stcr instruction initiates the requested
command. Figure 8-22 illustrates the format of the ICMD. Table 8-16 lists the command
codes defined for the ICMD. Reading the ICMD always returns all ones.

cr25

•
EB UNDEFINED-RESERVED FOR FUTURE USE

Figure 8-22. ICMD Format

8-56 MC88110 USER'S MANUAL MOTOROLA

Table 8-16. ICMD Command Codes

Code Command

0000 Reserved

0001 Invalidate Instruction Cache and TIC

0010 Invalidate TIC

0011 Reserved

0100 Reserved

0101 Invalidate Instruction Cache Line (see Note 1)

0110 Reserved

0111 Reserved

1000 MMU Probe Supervisor (see Note 2)

1001 MMU probe User (see Note 2)

1010 Invalidate All Supervisor PATe Entries

1011 Invalidate All User PATC Entries

11xx Reserved

NOTES:
1. The physical address of the cache line affected by

the invalidate instruction cache line command is
specified in the ISAR.

2. The logical address probed by the MMU probe
supervisor or MMU probe user command is
specified in the ISAR.

8.9.1.2 INSTRUCTION MMU/CACHE CONTROL REGISTER (ICTL). The ICTL,
cr26, selects the different possible operating modes of the instruction cache, TIC, and
the IMMU. Figure 8-23 illustrates the format of the ICTL. The default state after reset is...
denoted in the following paragraphs with an asterisk (*). .:

cr26

EEl UNDEFINED-RESERVED FOR FUTURE USE

Figure 8-23. leTl Format

M6-MQ-IMMU BATe Block Size Selection Bits

The block sizes mapped by the BATe can be programmed by setting bits M6-MO
according to Table 8-17. Note that this table is the same as Table 8-8. After a
processor reset, the selected block size is undefined.

MOTOROLA MC88110 USER'S MANUAL 8-57

•

Table 8-17. IMMU BATe B.lock Size Selection Settings

Block Size Mask Bits Block Size

M6 M5 M4 M3 M2 M1 MO

1 1 1 1 1 1 1 84M-byte

0 1 1 1 1 1 1 32M-byte

0 0 1 1 1 1 1 16M-byte

0 0 0 1 1 1 1 8M-byte

0 0 0 0 1 1 1 4M-byte

0 0 0 0 0 1 1 2M-byte

0 0 0 0 a 0 1 1M-byte

0 0 0 a 0 0 0 512K-byte

Any Other Combination Undefined

DID-Double Issue Disable
When double issue mode is enabled, the instruction unit attempts to issue two
instructions in each clock cycle. When double issue is disabled, the instruction unit
attempts to issue only one instruction per clock.

o-Double instruction issue enabled*
1-Double instruction issue disabled

PREN-Branch Prediction Enable
When branch prediction is disabled, the branch reservation station is disabled. In this
case, if a branch instruction with a data dependency is encountered, instruction issue
stalls until the data dependency is resolved. When branch prediction is enabled,
branches with data dependencies issue to the branch reservation station, and
conditional instruction issue occurs in the predicted direction.

Q-Sranch prediction disabled*
1-Branch prediction enabled

FRZo-lnstruction Cache Freeze Bank 0 Enable
When instruction cache freeze bank 0 is enabled, the first line (line 0) in each set in
the instruction cache is frozen.

Q-Instruction cache freeze bank 0 disabled*
1-lnstruction cache freeze bank 0 enabled

FRZ1-lnstruction Cache Freeze Bank 1 Enable
When instruction cache freeze bank 1 is enabled, the first line (line 1) in each set in
the instruction cache is frozen.

Q-Instruction cache freeze bank 1 disabled*
1-lnstruction cache freeze bank 1 enabled

8-58 MC88110 USER'S MANUAL MOTOROLA

HTEN-IMMU Hardware Table Search Enable
When hardware table search operations are enabled, a hardware table search
operation is performed when a PATC miss occurs. When software table search
operations are selected, the IMMU PATC miss exception occurs on an PATe miss,
and no hardware table search operation occurs.

Q-IMMU hardware table search operation is disabled; software table search
operations are selected

1-IMMU hardware table search operation is enabled*

MEN-IMMU Enable
When the IMMU is enabled, address translations can occur via the BATe or PATC. If
the IMMU is disabled, then the logical address for each memory location is the same
as the physical address (identity translation), and the access control information (e.g.,
memory update mode, global/local page designations, etc.) is taken from the ISAP or
IUAP.

o-Instruction MMU disabled*
1-lnstruction MMU enabled

BEN-TIC Enable
When the TIC is disabled, no instructions are fetched from the TIC and the TIC is not
accessed or updated.

0-TIC disabled*
1-TIC enabled

CEN-Instruction Cache Enable
When the instruction cache is disabled, all instruction fetches pass directly to the BIU
and the instruction cache is not accessed or updated.

o-Instruction cache disabled*
1-lnstruction cache enabled

8.9.1.3 INSTRUCTION SYSTEM ADDRESS REGISTER (ISAR). The ISAR,
cr27, indicates the logical address for an ATe probe command or the physical address
of an instruction cache line to be invalidated during a line invalidate operation. The tSAR
must be written before the ICTL for correct operation of these commands. Figure 8-24
shows the format of the ISAR.

•
31 o

cr27 1 L_O_G'C_A_LA_DD_R_ESS_FO_R_AT_CP_R_OB_E_OR_P_HY_SI_CA_LA_D_DR_ES_S_OF_C_AC_H_El_IN_E ---'

Figure 8-24. ISAR Format

MOTOROLA MC88110 USER'S MANUAL 8-59

•

8.9.1.4 IMMU SUPERVISOR AREA POINTER REGISTER (ISAP). The ISAP.
cr28, contains the currently active area descriptor for supervisor logical instruction
addresses. Figure 8-25 illustrates the contents of the ISAP register. For the complete
format of an area descriptor, refer to 8.5.2.1 Area Descriptor Format.

31

cr28 I INS_T_RU_CT_IO_NS_U_PE_RV_ISO_R_A_RE_A_DE_SC_R_IPT_O_R _

Figure 8-25. ISAP Format

8.9.1.5 IMMU USER AREA POINTER REGISTER (IUAP). The IUAP, cr29,
contains the currently active area descriptor for user logical instruction addresses. Figure
8-26 illustrates the contents of the IUAP register. For the complete format of an area
descriptor, refer to 8.5.2.1 Area Descriptor Format.

31

cr29 II...- IN_S_TR_UC_TI_ON_U_SE_R_AR_EA_D_ES_C_RIP_TO_R _

Figure 8-26. IUAP Format

8.9.1.6 IMMU ATe INDEX REGISTER (IIR). The IIR, cr30, is a read/write control
register. It is used to specify the entry number of BATC and PATC entries to be written
into or read out of the IMMU ATCs through the IBP, IPPU, and IPPL registers. It is also
used to read and write the user attribute. bits in BATe entries. Figure 8-27 illustrates the
format of the IIR.

31 16 15 14 13 10 9 5 4 3 2 0

cr30 I:iii~iii~i~i~i;i:i:i;. mrmrrr ~~~~j~~~~~~~~i~i~ij~i~~~j:~~i~~~~~~~~~~iii~~~~~~~~~~~i~i~~~~~~~~~~~~~~i~iji~~i~~~i~H~I~~~Ji~i ;:::::::::.:.:::.:., ~~~j~ij~~ii~jj~ti~j~d PATC INDEX Iji~~j~iji~jjijj~ji~~j~j~ji~jj~ijjjj!j] BATe INDEX I
Gill UNDEFINED-RESERVED FOR FUTURE USE

Figure 8-27. IIR Format

Uo-User Attribute 0
The value of UO in the BATe entry specified by the BATC index field.

U1-User Attribute 1

The value of U1 in the BATe entry specified by the BATC index field.

PATe Index
The number (0-31) of the PATe entry accessible through the IPPU and IPPL.

BATe Index
The number (0-7) of the PATC entry accessible through the ISP.

8-60 MC88110 USER'S MANUAL MOTOROLA

8.9.1.7 IMMU BATe R/W PORT REGISTER (IBP). The IBP, cr31, permits
read/write accesses to the instruction BATe entry selected via the IIR. When the IBP is
written, the block descriptor (including the user attribute bits in the IIR) is stored into the
instruction BATe. When the IBP is read, the block descriptor is read out of the instruction
BATe into the IIR and IBP. Figure 8-28 illustrates the contents of the IBP. Refer to 8.3.3
BATe Descriptor Format for the format of a block descriptor.

31

cr31 IL...- IN_ST_RU_CT_IO_N_BL_OC_K_DE_SC_R_IPT_OR _

Figure 8-28. IBP Format

8.9.1.8 IMMU PATC R/W PORT UPPER REGISTER (IPPU). The IPPU, cr32,
permits read/write accesses to the upper 32 bits of the instruction PATe entry selected
via the IIR. When the IPPU is written, the upper word of the page descriptor is buffered
until the IPPL is written. When the IPPU is read, the page descriptor is read out of the
instruction PATC into the IPPU and IPPL. Figure 8-29 illustrates the contents of the IPPU.
The format of a PATe entry is described in 8.4.3 PATe Descriptor Format.

31

cr32 IL...- U_P_PE_RW_O_RD_O_F_PA_GE_D_ES_CR_IP_TO_R _

Figure 8-29. IPPU Format

8.9.1.9 IMMU PATC R/W PORT LOWER REGISTER (IPPL). The IPPL, cr33,
permits read/write accesses to the lower 32 bits of the instruction PATe entry selected
via the IIR. When the IPPL is written, it and the upper word of the page descriptor ••.•
buffered in the IPPU are written into the instruction PATe. When the IPPL is read, the
lower 32 bits of the page descriptor buffered by the last read of the IPPU are received.
Figure 8-30 illustrates the contents of the IPPL. The format of a PATC entry is described
in 8.4.3 PATe Descriptor Format.

31

cr33 I'-- L_OW_E_RW_O_RD_O_F_PA_GE_D_ES_CR_'P_TO_R _

Figure 8-30. IPPL Format

MOTOROLA MC88110 USER'S MANUAL 8-61

•

8.9.1.10 INSTRUCTION ACCESS STATUS REGISTER (ISR). The IMMU loads
the ISR,cr34, with state information for instruction access exceptions or IMMU ATe
probe commands. This register is not updated while EFRZ=1 in the PSR (cr1). All bits in
the ISR are undefined after a processor reset. Figure 8-31 illustrates the format of the
ISR. See Section 2 Programming Model for a detailed description of the PSR. Refer
to 8.7 MMU/Cache Faults for more information on specific Instruction Access
exceptions, and refer to 8.8 ATe Probe Capability for more information about probe
commands.

EillJ UNDEFINED-RESERVED FOR FUTURE USE

Figure 8-31. ISR Format

TBE-Table Search Bus Error
The MC8811 a sets this bit if a bus cycle to external memory results in a bus error
during a hardware table search operation.

Q-Bus error did not occur during a hardware table search operation
1-Bus error occurred during a hardware table search operation

SI-Segment Descriptor Invalid
The IMMU sets this bit if a hardware table search operation fetches an invalid segment
descriptor.

Q-Hardware table search operation did not fetch an invalid segment descriptor
1-Hardware table search operation fetched an invalid segment descriptor

PI-Page Descriptor Invalid
The IMMU sets this bit if a hardware table search operation fetches an invalid page,
second indirection, or masked protection indirection descriptor.

Q-Hardware table search operation did not fetch an invalid page descriptor
1-Hardware table search operation fetched an invalid page descriptor

SP-Supervisor Protection Violation
The IMMU sets this bit if a hardware table search operation for a user logical address
fetches a segment or page descriptor with the supervisor protection bit set.

a-Supervisor protected descriptor not fetched
1-Supervisor protected descriptor fetched

PH-PATe Hit
This bit is updated by instruction ATC probe commands to indicate whether the probed
logical address is described by the PATC.

o-Probe command did not hit in the PATC
1-Probe command hit in the PATC

8-62 MC88110 USER'S MANUAL MOTOROLA

BH-BATC Hit
This bit is updated by instruction ATC probe commands to indicate whether the probed
logical address is described by the BATC.

o-Probe command did not hit in the BATe
1-Probe command hit in the BATe

StU-Supervisor/User Address
This bit indicates if the logical address saved by the MC8811 0 in the ILAR is a user or
supervisor logical address.

o-Address is a user logical address
1-Address is a supervisor logical address

BE-Bus Error
The MC88110 sets this bit if a bus cycle to external memory is faulted during an
instruction fetch.

o-Bus error has not occurred
1-Bus error has occurred

8.9.1.11 INSTRUCTION ACCESS LOGICAL ADDRESS REGISTER (ILAR).
For instruction access and instruction PATC miss exception conditions, the IMMU loads
the upper 27 bits (the lower order 5 bits are undefined) of the logical address of the
failed access into the ILAR, cr35. The supervisor/user mode bit for the access is located
in the ISR. This register is not updated while EFRZ=1 in the PSR (cr1). See Section 2
Programming Model for a detailed description of the PSR. Figure 8-32 illustrates the
format of the ILAR.

31

cr35 1....... lO_G_IC_AL_AD_D_RE_SS_O_FF_AI_LE_DA_C_CE_SS ----.j

Figure 8-32. ILAR Format

8.9.1.12 INSTRUCTION ACCESS PHYSICAL ADDRESS REGISTER (IPAR).
For instruction access exceptions, the IMMU loads a physical address related to the
exception into the IPAR, cr36. Figure 8-33 illustrates the format of the IPAR.

Table 8-18 summarizes the contents of the IPAR for the different types of Instruction
Access exceptions. This register is not updated while EFRZ=1 in the PSR (cr1). See
Section 2 Programming Model for a detailed description of the PSR.

31

cr36 , P_HY_S_ICA_L_AD_DR_ES_S_FO_R_FA_UL_T _

Figure 8-33 IPAR Format

•

MOTOROLA MC88110 USER'S MANUAL 8-63

•

Table 8-18. IPAR Contents for MMU/Cache Faults

Fault That Caused IPAR Contents
Instruction Access Exception

Table Search· Bus Error Physical Address of Faulted Bus Cycle

Segment Descriptor Invalid Physical Address of Invalid Segment Descriptor

Page Descriptor Invalid Physical Address of Invalid Page Descriptor

Supervisor Protection Violation Address of Violation Segment or Page Descriptor
(with SP=1)

Bus Error Address of Faulted Bus Cycle

8.9.2 Data MMU/Cache Registers

The following paragraphs describe the general control registers which permit supervisor
mode software to control the operation of the DMU.

8.9.2.1 DATA MMU/CACHE COMMAND REGISTER (DeMO). The DeMO, cr40,
is used to invalidate DMMU PATe entries and lines in the data cache. In addition, it
provides commands that copyback dirty lines in the data cache and probe the DMMU.
Writing to the 4-bit command code field in the DCMD with the stcr instruction initiates the
requested command. Figure 8-34 illustrates the format of the DeMO. Table 8-19 lists the
command codes defined for the DeMD. Reading the DCMO always returns all ones.

cr40

[8J UNDEFINED-RESERVED FOR FUTURE USE

Figure 8-34. DeMO Format

8-64 MC88110 USER'S MANUAL MOTOROLA

Table 8-19. DeMO Command Codes

Code Command

0000 Flush Data Cache Page (Copyback Operation) (see Note 1)

0001 Invalidate Entire Data Cache

0010 Flush Entire Data Cache (Copyback Operation Only)

0011 Flush and Invalidate Entire Data Cache (Copyback and Invalidate Operation)

0100 Flush Data Cache Page (Copyback and Invalidate Operation) (see Note 1)

0101 Invalidate Data Cache Line (see Note 1)

0110 Flush Data Cache Line (Copyback Operation Only) (see Note 1)

0111 Flush Data Cache Line (Copyback and Invalidate Operation) (see Note 1)

1000 MMU Probe Supervisor (see Note 2)

1001 MMU Probe User (see Note 2)

1010 Invalidate All Supervisor PATe Entries

1011 Invalidate All User PATC Entries

llxx Reserved

NOTES:
1. The physical address of the cache line affected by the invalidate data cache line

command is specified in the DSAR.
2. The logical address probed by the MMU probe supervisor or MMU probe user

command is specified in the DSAR.

8.9.2.2 DATA MMU/CACHE CONTROL REGISTER (DCTL). The DCTL, cr41,
selects the different possible operating modes of the data cache and the DMMU. Figure
8-35 illustrates the format of the DCTL. In the following paragraphs, the default state after
reset is indicated by an asterisk (*).

cr41

EJ) UNDEFINED·RESERVED FOR FUTURE USE

Figure 8-35. OCTL Format

M6-MO~DMMUBATe Block Size Selection Bits

The block sizes mapped by the BATC can be programmed by setting bits M6-MO
according to Table 8-20. Note that this table is the same as Table 8-8.' After a
processor reset, the selected block size is undefined.

•

MOTOROLA MC88110 USER'S MANUAL 8-65

•

Table 8-20. DMMU BATe Block Size Selection Settings

Block Size Mask Bits Block Size

M6 M5 M4 M3 M2 M1 MO

1 1 1 1 1 1 1 64M-byte

0 1 1 1 1 1 1 32M-byte

0 0 1 1 1 1 1 16M-byte

0 0 a 1 1 1 1 8M-byte

0 0 0 0 1 1 1 4M-byte

0 0 a a 0 1 1 2M-byte

0 0 0 a a 0 1 1M-byte

0 0 0 a 0 0 0 512K-byte

Any Other Combination Undefined

XMEM-xmem Instruction Control Bit
When this bit is cleared, the MC88110 xmem instruction performs a locked bus
sequence consisting of a load followed by a store operation. When· this bit is set, the
xmem instruction performs a locked bus sequence consisting of a store followed by a
load operation (see Section 11 System Hardware Design).

o-xmem causes load followed by store locked bus sequence*
1-xmem causes store followed by load locked bus sequence

DEN-Decoupled Cache Access Enable
When this bit is clear, decoupled accesses to the data cache are disabled, regardless
of the type of bus transaction in progress or the status of the PTA input signal. When
this bit is set, decoupled accesses are allowed under the control of the PTA signal
(see Section 11 System Hardware Design).

Q-Oecoupled cache accesses disabled*
1-0ecoupled cache accesses enabled

FWT-Force Write-Through

When this bit is set, all store operations are forced to write through the data cache,
regardless of the page ~block status; however, the FWT bit does not have any affect
on the operation of the WT signal.

o-Write-through vs. write-back mode selected by page or block descriptors·
1-Force write-through mode for write accesses

BPEN1-Data Breakpoint Register 1 Enable
When data breakpoint register 1 is disabled, a data access exception does not occur
when a matching logical address is detected. When data breakpoint register 1 is
enabled, it causes a data access exception upon detecting a matching logical
address.

Q-Data breakpoint register 1 disabled*
1-0ata breakpoint register 1 enabled

8-66 MC88110 USER'S MANUAL MOTOROLA

SPENO-Data Breakpoint Register 0 Enable
When data breakpoint register 0 is disabled, a data access exception does not occur
when a matching logical address is detected. When data breakpoint register 0 is
enabled, it causes a data access exception upon detecting a matching logical
address.

Q-Oata breakpoint register 0 disabled*
1-Data breakpoint register 0 enabled

FRZQ-Data Cache Freeze Bank 0 Enable
When data cache freeze bank 0 is enabled, the first line (line 0) in each set in the data
cache is frozen.

Q-Data cache freeze bank 0 disabled*
1-Data cache freeze bank 0 enabled

FRZ1-Data Cache Freeze Bank 1 Enable
When data cache freeze bank 1 is enabled, the first line (line 1) in each set in the data
cache is frozen.

Q-Oata cache freeze bank 1 disabled*
1-Data cache freeze bank 1 enabled

HTEN-DMMU Hardware Table Search Enable
When hardware table search operations are enabled, a hardware table search
operation is performed when a PATe miss occurs. When software table search
operations are selected, the DMMU PATC read or write miss exception occurs on a
PATe miss, and no hardware table search operation occurs.

Q-DMMU hardware table search operation is disabled; software table search
operations are selected

1-DMMU hardware table search operation is enabled*

MEN-OMMU Enable
When the DMMU is enabled, -address translations can occur via the SATC or PATe. If
the DMMU is disabled, then the physical address for each memory location is the
same as the logical address (identity translation), and the access control information
(e.g., memory update mode, global/local designations, etc.) is taken from the OSAP or
OUAP.

Q-Oata MMU disabled*
1-0ata MMU enabled

SEN-Data Cache Snooping Enable
When data cache snooping is enabled, the BIU will monitor external global accesses
to ensure that all local copies of data are consistent.

O-Data cache snooping disabled*
1-Data cache snooping enabled

•

MOTOROLA MC8811Q USER'S MANUAL 8-67

•

CEN-Oata Cache Enable

When the data cache is disabled, load and store operations pass directly to the BIU
and the data cache is not accessed or updated.

Q-Oata cache disabled*
1-0ata cache enabled

8.9.2.3 DATA SYSTEM ADDRESS REGISTER (DSAR). The DSAR, cr42, is
used to indicate the logical address for an ATe probe or the physical address of a data
cache line or page to be invalidated and/or copied back during an invalidate, copyback,
or copyback and invalidate operation. The DSAR must be written before the DCTL for
correct operation of these commands. Figure 8..36 shows the format of the DSAR.

31

cr42 IL....- LO_G_ICA_L_AD_D_RE_SS_F_OR_A_TC_P_RO_B_EO_R_PH_Y_SIC_A_LA_DD_R_ES_S_OF_C_AC_H_EL_IN_E _

Figure 8-36. DSAR Format

8.9.2.4 DMMU SUPERVISOR AREA POINTER REGISTER (DSAP). The DSAP,
cr43, contains the currently active area descriptor for supervisor logical data addresses.
Figure 8-37 illustrates the contents of the DSAP register. For the complete format of an
area descriptor, refer to 8.5.2.1 Area Descriptor Format.

31

cr43 IL....- DA_TA_S_UP_E_RV_IS_OR_A_REA_DE_SC_R_IPT_O_R _

Figure 8-37. DSAP Format

8.9.2.5 DMMU USER AREA POINTER REGISTER (DUAP). The DUAP, cr44,
contains the currently active area descriptor for user logical data addresses. Figure 8-38
illustrates the contents of the DUAP register. For the complete format of an area
descriptor, refer to 8.5.2.1 Area Descriptor Format.

31

cr44 Il...- D_AT_A_US_E_RA_R_EA_D_ES_CR_IP_TO_R _

Figure 8-38. DUAP Format

8-68 MC88110 USER'S MANUAL MOTOROLA

8.9.2.6 DMMU ATCINDEX REGISTER (DIR). The DIR, cr45, is a read/write
control register. It is used to specify the entry number of BATC and PATC entries to be
written into or read out of the DMMU ATCs through theDBP, DPPU and DPPL registers.
Data breakpoint register 0 is accessed as if it was PATe entry 32 and data breakpoint
register 1 is accessed as if it was PATC entry 33. The DIR is also used to read and write
the user attribute bits in BATe entries.

PATC entries 34-63 are unimplemented; attempts to access them may result in
unexpectedPATC behavior. Figure 8-39 illustrates the format of the DIR.

31 16 15 14 13 11 10 5 4 3 2 0

cr45 1~1i:)~)~)~)i) ~;~;~~:::;;:;;:;~;~;~ :!~~~~ "':-:';':':-:'::::::::::.:.:.:.;.: ~:::I:I~IiI:~:j:~: :::t:::::::~jijj::~::~::::::::[~~J~11i:f:il~:::I :::::::::::: i:::i[~:jj~:i::1 PATe/BREAKPOINT INDEX RIJ BATe INDEX I
[ill] UNDEFINED-RESERVED FOR FUTURE USE

Figure 8-39. DIR Format

Uo-User Attribute 0
The value of UO in the BATC entry specified by the BATe index field.

U1-User Attribute 1
The value of U1 in the BATC entry specified by the BATe index field.

PATC/Breakpoint Index
The number (0-33) of the PATe entry accessible through the DPPU and DPPL.

BATC Index

The number (0-7) of the PATC entry accessible through the DBP.

8.9.2.7 DMMU BATe R/W PORT REGISTER (DBP). The DBP, cr46, permits
read/write accesses to the data BATe entry selected via the DIR. When the DBP is
written, the block descriptor (including user attribute bits defined in the DIR) is stored into
the d~ta BATe. When the DBP is read, the block descriptor is read out of the data BATC
into the DIR andDBP. Figure 8-40 illustrates the contents of the DBP. Refer to 8.3.3
BATe Descriptor Format for the format of a block descriptor.

31

cr46 1. DA_TA_BL_OC_K_D_ES_CR_IP_TO_R _

Figure 8-40. DBP Format

•

MOTOROLA MC88110 USER'S MANUAL 8-69

•

8.9.2.8 DMMU PATe R/W PORT UPPER REGISTER (DPPU). The DPPU, cr47,
permits read/write accesses to the upper 32 bits of the data PATe entry selected via the
DIR. When the DPPU is written, the upper word of the page descriptor is buffered until
the DPPL is written. When the DPPU is read, the block descriptor is read out of the data
PATe into the DPPU and DPPL. Figure 8-41 illustrates the contents of the DPPU. The
format of a PATe entry is described in 8.4.3 PATC Descriptor Format.

31

cr47 I'-- U_P_PE_RW_O_RD_O_F_PA_GE_D_ES_CR_IP_TO_R _

Figure 8-41. DPPU Format

8.9.2.9 DMMU PATe R/W PORT LOWER REGISTER (DPPL). The DPPL, cr48,
permits read/write accesses to the lower 32 bits of the data PATC entry selected via the
DIR. When the DPPL is written, it and the upper word of the page descriptor buffered in
the DPPU are written into the data PATC. When the DPPL is read, the lower 32 bits of
the page descriptor buffered by the last read of the DPPU are received. Figure 8-42
illustrates the contents of the DPPL. The format of a PATe entry is described in 8.4.3
PATC Descriptor Format.

31

cr48 I'--- L_OW_E_RW_O_R_DO_F_PA_GE_D_ES_CR_IP_TO_R _

Figure 8-42. DPPL Format

8.9.2.10 DATA ACCESS STATUS REGISTER (DSR). The DMMU loads the
DSR with state information for data access exceptions or DMMU ATe probe commands.
This register is not updated while EFRZ=1 in the PSR (cr1). All bits in the ISR are
undefined after a processor reset. Figure 8-43 illustrates the format of the ISR. See
Section 2 Programming Model for a detailed description of the PSR. Refer to 8.7
MMU/Cache Faults for more information on specific data access exceptions, and refer
to 8.8 ATC Probe Capability for more information about probe commands.

8-70 MC88110 USER'S MANUAL MOTOROLA

ED UNDEFINED-RESERVED FOR FUTURE USE

Figure 8-43. DSR Format

TBE-Table Search Bus Error
The MC88110 sets this bit if a bus error occurs for a bus cycle to external memory
during a hardware table search operation.

Q-Sus error did not occur during a hardware table search operation
1-Bus error occurred during a hardware table search operation

SI-Segment Descriptor Invalid
The DMMU sets this bit if a hardware table search operation fetches an invalid
segment descriptor.

Q-Hardware table search operation did not fetch an invalid segment descriptor
1-Hardware table search operation fetched an invalid segment descriptor

PI-Page Descriptor Invalid
The DMMU sets this bit if a hardware table search operation fetches an invalid page
descriptor or second indirection descriptor.

Q-Hardware table search operation did not fetch an invalid page descriptor
1-Hardware table search operation fetched an invalid page descriptor

SP-Supervisor Protection Violation
The DMMU sets this bit if hardware table search operation for a user logical address B:
fetches a segment or page descriptor with the supervisor protection bit set.

Q-Supervisor protected descriptor not fetched
1-Supervisor protected descriptor fetched

WE-Write Exception
The Data MMU sets this bit if a write access is attempted to write-protected page or a
page whose modified bit is clear.

Q-No write fault occurred
1-Write fault occurred

BPE-Breakpoint Exception
When the data access matches the logical address described by a data breakpoint
register and data breakpoints are enabled, the DMU sets this bit.

Q-Data breakpoint not matched
1-Data breakpoint matched

MOTOROLA MC88110 USER'S MANUAL 8-71

•

PH-PATe Hit
This bit is updated by data ATe probe commands to indicate whether the probed
logi"cal address is described by the PATC.

o-Probe command did not hit in the PATC
1-Probe command hit in the PATC

BH-BATC Hit
This bit is updated by data ATC probe commands to indicate whether the probed
logical address is described by the BATC.

o-Probe command did not hit in the BATC
1-Probe command hit in the BATe

StU-Supervisor/User Address
This bit indicates if the logical address saved by the MC8811 0 in the DLAR isa user or
supervisor logical address.

o-Address is a user logical address
1-Address is a supervisor logical address

RIW-ReadlWrite
This bit indicates whether the faulted access was a read or write access

o-Data access was a write
1-0ata access was a read

CP-Copyback Error
The MC8811 0 sets this bit if a bus error occurs for a burst write bus cycle to external
memory during a copyback operation by the data cache. Refer to Section 6
Instruction and Data Caches for more information about data cache operations.

o-Buserror has not occurred
1-Bus error has occurred

WA-Write-Allocate· Bus Error
The MC88110 sets this bit if a bus error occurs for a burst read bus cycle to external
memory during a write-allocate operation by the data cache. Refer to Section 6
Instruction and Data Caches for more information about data cache operations.

Q-Bus error has not occurred
1-Bus error has occurred

BE-Bus Error
The MC88110 sets this bit if a bus error occurs for a bus cycle to external memory
during a data access.

Q-Sus error has not occurred
1-Bus error has occurred

8-72 MC88110 USER'S MANUAL MOTOROLA

8.9.2.11 DATA ACCESS LOGICAL ADDRESS REGISTER (DLAR). For data
access and data PATe miss exception conditions, the DMMU loads the logical address
of the failed access into the DLAR, cr50. The supervisor/user mode .bit for the access is
located in the DSR. This register is not updated while EFRZ=1 in the PSR (cr1). See
Section 2 Programming Model for a detailed description of the PSR. Figure 8-44
illustrates the format of the DLAR.

31

cr50 1 lO_G_IC_Al_A_D_DR_ESS_._O_FF_A_ILE_D_AC_C_ESS ~-----'

Figure 8-44. DLAR Format

8.9.2.12 DATA ACCESS PHYSICAL ADDRESS REGISTER (DPAR).For most
data access exceptions, the DMMU loads a physical address related to the exception
into the DPAR, cr51. Figure 8-45 illustrates the format of the DPAR.

Table 8-21 summarizes the contents of the DPAR for the different types of data access
exceptions. This register is not updated while EFRZ=1 in the PSR (cr1). See Section 2
Programming Model for a detailed description of the PSR.

31

cr51 II..-.- PH_YS_IC_A_LA_D_DR_ES_S_FO_R_F_AU_LT ---1

Figure 8-45. DPAR Format

Table 8-21. DPAR Contents for MMU/Cache Faults

Fault That Caused Data DPAR Contents
Access Exception

Table Search Bus Error Physical Address of Faulted Bus Cycle

Segment Descriptor Invalid Physical Address of Invalid Segment
Descriptor

Page Descriptor Invalid Physical Address of Invalid Page Descriptor

Supervisor Protection Violation Physical Address of Violation Segment or
Page Descriptor (SP=1)

Write Protect Violation Undefined

Data Breakpoint Undefined

Copyback Error Physical Address of Faulted Bus Cycle

Write-Allocate Bus Error Physical Address of Faulted Bus Cycle

Bus Error Physical Address of Faulted Bus Cycle

•

MOTOROLA MC88110 USER'S MANUAL 8-73

•

8.10 MC88110 AND MC88200 MMU DIFFERENCES

Table 8-22 summarizes the differences between the MC8811 0 MMUs and the MMU in
the MC88200 Cache/Memory Management Unit.

Table 8-22. MC88110 MMU and MC88200 MMU Differences

MC88110 MC88200

Hardware or Software Table Search Hardware Table Search Only

32 PATC Entries, 8 SATC Entries 56 PATC Entries, 10 BATC Entries

BATC-Exclusive Address Translation Option No BATe-Exclusive Address Translation Option

Area Descriptors Do Not Apply to Block Address Area Descriptors Apply to Block Address Translation
Translation

User Attributes in Area, Page, and Block Descriptors No User Attributes

Indirection and Masked Protection Indirection No Indirection
Descriptors

Block Size 512K-byte to 64M-byte Block Size 512K-byte

Software Sets Used and Modified Bits Hardware Sets Used and Modified Bits

Write-Through Broadcast onto External Bus Write-Through On-Chip Only

12 General Control Registers for Each MMU 26 Memory-Mapped I/O Registers

2 Data Breakpoint Registers No Data Breakpoint Registers

Probe Command Searches On-Chip ATCs Only Probe Command Searches On-ChipATCs and Table
Searches Page Descriptor Tables

8-74 MC88110 USER'S MANUAL MOTOROLA

SECTION 9
INSTRUCTION TIMING AND CODE SCHEDULING
CONSIDERATIONS

This section describes instruction execution timings for the MC8811 0 microprocessor. In
such a highly parallel machine, exact timing of all possible circumstances cannot be
listed; therefore, instruction timings for example code sequences are presented as
guidelines only. This guideline approach is used since exact instruction timing depends
on variables such as memory speed and instruction sequencing.

Instruction prefetch and execution through all of the execution units of the MC8811 0 are
described in detail. Examples of instruction sequences showing concurrent execution
and various register dependencies are provided to illustrate timing interactions. Bus
signals described in this section are only accurate to within one-half clock cycle
increments. Refer to Section 11 System Hardware Design for more specific
information regarding bus operation timing. Instruction mnemonics used in this section
can be identified by referring to Section 10 Instruction Set.

9.1 INSTRUCTION TIMING OVERVIEW

The MC8811 0 has been designed to minimize average instruction execution latency.
Instructions are implemented without micro-code, thus minimizing instruction decode
and execution time.

Latency is defined as the number of clock cycles necessary to execute an instruction and
make ready the results of that execution. For the majority of instructions in the MC8811 0,
this can be simplified to include only the execute phase for a particular instruction.
However, data instructions will require additional clock cycles between the execute
phase and the write-back phase due to memory latencies.

In accordance with this definition, logical, bit-field, and most integer and graphics
instructions have a latency of one clock cycle (e.g., results for these instructions are
ready for use on the next clock cycle after issue). Other instructions, such as the integer
multiply, require more than one clock period to complete execution. An example of the
term "latency" is shown in Figure 9-1.

•

MOTOROLA MC88110 USER'S MANUAL 9-1

INSTRUCTION
STREAM

•
•
•

fmul.sss r7, r7, r9

or r10, r11, r12

add r2, r3, r10

.~~~.. ~~'_~4..'_~4.._..
•
••

INSTRUCTION
STREAM

L
I

fmul.sss r7, r7, r9 Iadd r2, r3, r1 0

or r10 r11, r12 sub r9, r4, r4

r10 IS READY FOR USE ON
THE CLOCK CYCLE AFTER
THE or INSTRUCTION ISSUES,

THUS THE or INSTRUCTION
IS SAID TO HAVE A LATENCY
OF 1CLOCK CYCLE.

(a) Instruction Latency

•
•
•

cmp r15, r17, r9

•f!!,~~:.~~~ _~~,_rJ.!_~~ _..
or r10, r11, r12

add r2, r3, r10

.~~~.. __ . _~~,_~4..'_~4.. __ .
•
•
•

~ I
I

cmp r15, r17, r9 Ior
fmul.sss r7, r7, r9

THE or AND THE add CANNOT
ISSUE ON THE SAME CLOCK CYCLE
BECAUSE THE add HAS ADATA

DEPENDENCY ON THE or. THUS,
A SINGLE BUBBLE IS INTRODUCED
INTO THE INSTRUCTION STREAM
AND THE or OPERATION IS SAID
TO HAVE ALATENCY OF 1 CLOCK
CYCLE.

(b) Instruction Latency

L
I

add r2, r3, r10

sub r9, r4, r4

Figure 9-1. Instruction Latency

Notice that in Figure 9-1 (a), r10 is used in two different clock cycles. In this case, there is
no penalty for the latency of the or operation. However, in Figure 9-1 (b), the add
operation could have issued during the same clock cycle as the or , but the results of the
or will not be ready until the next clock cycle, thus a single bubble is introduced into the
instruction stream. In this case there is effectively a half-clock penalty induced by the
latency of the or operation.

9-2 MC88110 USER'S MANUAL MOTOROLA

Effective throughput of more than one instruction per clock cycle can be realized by the
many performance features in the MC88110, including pipelining, superscalar
instruction issue, feed forwarding, branch acceleration, and multiple execution units
which operate independently and in parallel.

Many of the execution units on the MC8811 0 are said to be pipelined. This implies that
the particular execution unit is broken into stages. Each stage performs a specific step,
which contributes to the overall execution of an instruction. The pipelined design is
analogous to an assembly line where workers perform a specific task and pass the
partially complete product to the next worker.

When an instruction is issued to a pipe lined execution unit, the first stage in the pipeline
begins its designated work on that instruction. As an instruction is passed from one stage
in the pipeline to the next, evacuated stages may accept new instructions. This design
allows a single execution unit to be working on several different instructions
simultaneously. Once the pipeline has been filled with instructions, the execution unit
will complete a multi-cycle instruction every clock. Figure 9-2 shows a graphical
representation of a generic pipelined execution unit.

If the number of stages in each pipeline is equal to the total latency in clock cycles of its
respective execution unit, the processor can continuously issue instructions to the same
execution unit without stalling. Thus, when enough instructions have been issued to an"
execution unit to fill its pipeline, the first instruction will have completed execution and

MOTOROLA MC88110 USER'S MANUAL 9-3

•

left the pipeline, allowing subsequent instructions to be issued into the tail of the pipeline
without interruption.

The MC8811 0 is capable of issuing and executing two instructions on every clock cycle.
In general, instruction execution is accomplished in three stages: the prefetch and
decode stage, the execute stage, and the write-back stage. Often, two instructions are
proceeding through each of these stages concurrently, as shown in Figure 9-3.

The instruction prefetch and decode stage consists of the reply phase of the instruction
fetch as well as the time to fully decode the instruction. Instruction decode time is
minimal since none of the instructions are implemented with micro-code.

In the write-back stage, results are returned to the register file. This stage does not
contribute to overall execution time (if write-back slots are available). Instructions are
prefetched and executed concurrently with the execution and write-back of previous
instructions producing an overlap period between instructions (see Figure 9-3). This
overlap decreases the average execution time for a sequence of instructions.

ISSUE FEED FORWARDING

Figure 9-3. Instruction Prefetch and Execute Timing

See 9.2 General Timing Considerations and 9.3 Execution Unit Timings for
instruction timing details.

9-4 MC88110 USER'S MANUAL MOTOROLA

9.2 GENERAL TIMING CONSIDERATIONS

A superscalar machine is one which can issue multiple instructions concurrently from a
conventional linear instruction stream. The MC88110 is a true superscalar
implementation of the 88000 architecture since two instructions are decoded and issued
to multiple execution units during each clock cycle. Although a superscalar
implementation complicates instruction timing, these complications are transparent to
the software. The MC8811 a provides the logical functionality of issuing only a single
instruction at a time, while providing the performance of issuing two instructions at a
time.

To sustain its throughput potential, the instruction unit must be supplied with instructions
at a high rate. The instruction unit generates a single address for each prefetch
operation but gets two instructions from the memory system on each clock. Instructions
are issued to the execution units in strict program sequence. If the first instruction in an
issue pair cannot be issued, then neither instruction in the pair is issued. If the first
instruction in the pair is issued but the second cannot, then the second instruction is
moved into the vacated first-issue position, and a new instruction is placed in the
second-issue position. If both instructions in the pair are issued, then two new
instructions to be issued in the next clock cycle are fetched from the instruction cache.

When two instructions are considered for issue in the same clock cycle, the MC8811 a
places no restrictions on instruction type or address alignment for either instruction in the
issue pair. Instructions in either slot can be from any word-aligned memory location and
can be issued to any execution unit, provided that the execution unit is available and
there are no data dependencies. This is known as symmetric superscalar instruction
issue.

Figure 9-4 illustrates symmetric superscalar instruction issue. In this illustration,
instruction N is not bound to be issued to any particular execution unit. Similarly,
instruction N+1 is free to be issued to any available execution unit. This feature frees the
compiler/programmer from the restrictions of specific instruction ordering or alignment.

Figure 9-4. Symmetric Superscalar Instruction Issue

The execution unit pipelines are hardware interlocked via a register scoreboard;
therefore, data dependencies automatically stall instruction issue without software
assistance. The scoreboard mechanism eliminates the need to schedule wasteful no
operation (NOP) instructions into empty pipeline delay slots.

•

MOTOROLA MC88110 USER'S MANUAL 9-5

When an instruction is issued, the register file places the appropriate source data on the
appropriate source bus. The corresponding execution unit then reads the data from the
bus. The register files and source buses have sufficient bandwidth to sustain the peak
execution rate of two instructions per clock.

The MCBB11 0 contains the following execution units which operate independently and
completely in parallel:

• Superscalar Instruction Unit

• BO-Bit (Integer, Floating-Point, and/or Graphics) Multiply Execution Unit

• BO-Bit (Integer and/or Floating-Point) Divide Execution Unit

• BO-Bit Double-Extended-Precision Floating-Point Add Execution Unit

• Two 64-Bit 3D Graphics Execution Units

• Two 32-Bit Integer Arithmetic Logic Execution Units

• 32-Bit Bit-Field Execution Unit

• Data Unit with Load Buffer and Store Reservation Station

Each execution unit contains independent, internally controlled pipelines. All execution
units are either single-cycle execution, or fully pipelined (with the exception of the divide
unit, which is iterative).

When an execution unit finishes executing an instruction, it places the resulting data, if
any, onto one of the destination buses. The appropriate register file then stores it into the
correct destination register. If a subsequent instruction is waiting for this data, it is
forwarded past the register files directly into the appropriate execution unit(s) for the
immediate execution of the waiting instruction. This allows a data-dependent instruction
to issue without waiting for the data to be written into the register file and then read back
out again. This feature, known as feed forwarding, significantly shortens the time the
machine must stall on data dependencies.

• 9.2.1 Instruction Issue Timing
There are several factors which affect instruction issue timing. These factors include the
following:

• Can instructions be prefetched from the instruction cache (a cache hit), or, must they
be fetched from main memory (a cache miss)?

• Do dependencies exist which will force an instruction stall while source data is being
generated?

• Are execution units available to accept additional instructions?

• Is the history buffer full?

• Is program flow sequential?

9-6 MC88110 USER'S MANUAL MOTOROLA

If an instruction stall occurs (Le., an instruction cannot be issued due to any of the factors
listed in the previous paragraph), and the offending instruction is in the first issue slot of
an instruction pair, then instruction issue is halted until the cause of the stall is resolved.
If the offending instruction is in the second issue slot, the instruction in the first issue slot
is issued to the appropriate execution unit, the offending instruction is moved into the first
issue slot, and another instruction is fetched into the second issue slat.

Figure 9-5 shows an example of a stalled instruction. In this example, instruction 3 is
stalled while in the second-issue position. Immediately, it is placed in the first-issue
position for the next clock, and instruction 4 is placed in the second-issue position.
Notice that instruction 5 is prefetched twice. When only one instruction is issued during a
clock cycle, an instruction will be prefetched twice (instruction 5 in this case). The cost of
prefetching and decoding an instruction the first time is zero since it is done in parallel
with the prefetch and decoding of another instruction.

ISSUE FEED FORWARDING

Figure 9-5. Instruction Execution Order

For detailed bus timing information, refer to Section 11 System Hardware Design
For additional instruction execution timings, refer to 9.3 Execution Unit Timings.

9.2.1.1 INSTRUCTION CACHE TIMING. If the required instructions are
successfully prefetched from the instruction cache (cache hit), and all other requirements
are met, then there are no interruptions in dual instruction issue. However, if the required
instructions are not found in the instruction cache or target instruction cache, the
MC88110 must fetch them from main memory (cache miss).

During the time instructions are being fetched from main memory, previously prefetched
instructions continue to be issued. However, even in an ideal memory system, there are
not enough prefetched instructions to completely overlap the delay incurred by an
instruction fetch from main memory; thus, the MC8811 0 runs out of instructions to issue'
while it is waiting for an instruction fetch from main memory to complete. During this

•

MOTOROLA MC88110 USER'S MANUAL 9-7

•

waiting period, opportunities to issue instructions may be lost simply because there are
no instructions to issue.

9.2.1.1.1 Instruction Cache Hit. For an instruction cache hit, a pair of instructions is
fetched by the instruction unit on each clock, regardless of whether the pair is aligned to
an even or odd word position in the cache. Thus, there are no instruction address
alignment restrictions imposed on dual instruction issue except when the first instruction
of a pair is the last word in a cache line. However, instruction addresses still must be
modulo four (the two least significant bits cleared).

When the first instruction of a pair is the last word in a cache line, only one instruction
can be fetched during that clock cycle. This case causes a single bubble to occur in the
execution sequence. A bubble is defined as a lost opportunity to issue an instruction
(see Figure 9-5).

Figure 9-6 shows a brief example of an instruction prefetch from the instruction cache
and how that prefetch affects instruction issue. In this example, the first two instruction
fetches hit the instruction cache (instructions 0 and 1). On clock 2, the sequencer
attempts to fetch two instructions from the instruction cache but the first instruction in the
fetch pair (instruction 2) is at the end of a cache line. Only instruction 2 is returned, and a
single bubble occurs .in the pipeline in place of the instruction 3. The next instruction
fetch (instructions 3 and 4) is to the beginning of another cache line, so instruction
fetches resume at a rate of two instructions per clock.

o I add r2, r2, r3

1 I ad.d r3, r3, r4

2 I add r4, r4, r5

3 I add r5, r5, r6

4 I add r6, r6, r7

5 I add r7, r7, r8

6 I add ra, ra, r9
LEGEND:

o INSTRUCTION FETCH

1:11 EXECUTE

• WRITE-BACK

Bel INSTRUCTION FETCH PAST END OF CACHE LINE

7 _,__--.JS

8 --.1__--.JS

9-8

Figure 9-6. Instruction Cache Hit Timing Example

MC88110 USER'S MANUAL MOTOROLA

9.2.1.1.2 Instruction Cache Miss. For an instruction cache miss, if the miss is
caused by the fetch of the first instruction in an issue pair, then a minimum three clock
latency (best case memory access time) is incurred, which results in six lost
opportunities to issue instructions (Le., six bubbles). If the instruction pair straddles a
cache line, the instruction which was successfully fetched is issued along with a single
bubble in place of the second instruction. At this point, an additional minimum three
clock latency occurs. The result is seven lost opportunities to issue instructions.

Figure 9-7 shows a brief example of an instruction prefetch which misses the instruction
cache and shows how instruction issue is affected. In this example, a new instruction
pair is requested from the instruction cache on clock 2 (instructions 2 and 3) and the first
instruction address misses the cache. A bus transaction begins on clock 3 to fetch the
missed line into the cache. Assuming an ideal memory system, two instructions are
received at the end of clock 5 and are forwarded to the instruction unit in clock 6. During
clock 6 both instructions are issued. Meanwhile, the next instruction pair is being
received from the bus and streamed into the instruction unit. As long as the bus
continues to receive instruction pairs every clock, instruction issue will continue without
interruption.

Had there not been an instruction cache miss, instructions 2 and 3 would have been
issued on clock 3; thus, the miss had a latency of three clocks and caused a total of 6
instruction bubbles.

ADDRESS ---< --I _- >
DATA

•
6 c:3
7 c:3

4 I add r6, r6, r7

5 I add r7, r7, r8

add r5. r5. f'6 b:

2 INSTRUCTIONS
o I add r2, r2, r3

1 I add r3, r3, r4

2 m:bOOO&m®§&X88>§¢==~~E~~3~~~3Sa~d[jdr~4!~r4G]!r!:5]'••••.' iiii' 3 CLOCK LATENCY

3 bi0XMiOOOOiXJ

LEGEND:

D INSTRUCTION FETCH

tim EXECUTE

• WRITE-BACK

~ INSTRUCTION CACHE MISS

§ BUS TRANSACTION

Figure 9-7. Instruction Cache Miss Timing
First Instruction in Pair Missed

MOTOROLA MC88110 USER'S MANUAL 9-9

In the example shown in Figure 9-8, instruction 2 is the last instruction in a cache line so
only a single instruction (instruction 2) is fetched and sent to the instruction unit. In clock
3, during the next instruction fetch, a cache miss occurs. The bus transaction begins on
clock 4. Since the missed address is for data at the beginning of a cache line, the
address is evenly aligned, so dual instruction issue resumes on clock 7.

-----"------' '-----' "----....,}

3 biMiii5iMMJ

o I add r2. r2, r3

1 I add r3, r3, r4

2 I add r4. r4, r5

LEGEND:

D INSTRUCTION FETCH

II EXECUTE

_ WRITE-BACK

lZi3 DELAYED

ki! INSTRUCTION CACHE MISS

E3 BUS TRANSACTION

o INSTRUCTION FETCH PAST END OF CACHE LINE

2 INSTRUCTIONS

4 CLOCK LATENCY

aad r5r5.rti

5 I add r7, r7, r8

6 I add r8. r8. r9

7 r:=5
8 r:=5

..
Figure 9-8. Instruction Cache Miss Timing

Second Instruction in Pair Missed

Figure 9-9 shows an example of when the opportunity for instruction streaming is
missed. Recall that when instructions or data is read from memory, the information can
be forwarded to a waiting execution unit directly from the bus as it is written to an on-chip
cache. The information arrives from memory in 64-bit packets, and if the processor only
needs 32-bits of data at a time, it is possible that the information which an execution unit
would like to have forwarded has already been written to the on-chip cache and new
data is coming in on the memory bus. In this case, the processor must wait until the burst
read is complete before the data can be read back out of the on-chip cache. This is
known as missing the stride of arriving information and can occur when attempting to
read instructions or data directly from the bus as they arrive from external memory.

On clock 0 in Figure 9-9, instructions 0 and 1 are completing their fetch and decode
stage. On clock 1, instructions 0 and 1 are executed and an instruction cache miss
occurs, thus initiating an instruction fetch from main memory. Instructions 2 and 3 arrive
from memory on clock 4 and are immediately decoded.

During clock 5, instructions 4 and 5 are arriving from memory and instruction 2 begins
execution. Instruction 3 does not issue along with instruction 2 due to a data
dependency, and is moved into the first issue position. Since only one instruction was
issued during clock 5, the instruction unit will read instruction 4 directly from the bus.

9-10 MC88110 USER'S MANUAL MOTOROLA

During clock 6, instructions 6 and 7 are arriving from memory and instruction 3 begins
execution. However, instruction 4 stalls, due to a data dependency, and is moved into
the first issue position. Since only one instruction was issued during clock 6, the
instruction unit will attempt to read instruction 5 from the bus, which will fail because
instructions 6 and 7 are now on the bus and being sent to the on-chip instruction cache.

During clock 7, instructions 8 and 9 are arriving from memory and instruction 4 begins
execution. Instruction 5 can not issue along with instruction 4 because it was not read
during the last clock. The instruction unit has no more instructions to decode and
execute and cannot fetch from the instruction cache because instructions 8 and 9 are
being written.

During clock 8, the instruction cache line fill has completed, and a fetch from the on-chip
instruction cache is initiated. Instructions 5 and 6 can be read from the on-chip
instruction cache and decoded during clock 8. Instructions 5 and 6 can begin execution
on clock 9 while instructions 7 and 8 begin their decode stage. There are a total of two
lost opportunities to issue instructions during clocks 8. However, if the processor never
had the capability of streaming data directly from the bus, the execution of instruction 2
would be pushed out to clock 9. Thus, the penalty of missing the stride of arriving
information only means that the processor cannot take full advantage of data streaming.

ADDRESS --(..... X__.....x~__....x,__....I

DATA

o I or r3,r3,r4

1 I eltur5,rO,1

2 k>OO&iOOMd

LEGEND:

D INSTRUCTION FETCH

1m EXECUTE

II WRITE-BACK

o DELAYED

~ CACHE ACCESS

~ INSTRUCTION CACHE MISS

1 orr2r2 rQ

I and r6 j1) i2 f 2 2 2 2 ?
41 O[[8r2r6 IZ????

5 I add r8,r8,,2

6 I sub r9,,3,1

7 c::3
8 c::3 •

MOTOROLA

Figure 9·9. Missing the Stride of Arriving Information

MC88110 USER'S MANUAL 9-11

•

9.2.1.2 SOURCE DATA CONSIDERATIONS. If an instruction attempts to use a
source operand which js still being computed by a previous instruction, a data
dependency exists. When a data dependency exists, instruction issue is stalled until all
of the necessary source data is available (except for branch and store operations). The
MC88110 employs a register scoreboard mechanism to keep track of which registers are
and are not available for use.

Feed forwarding allows data to be simultaneously written to a register file and forwarded
to a waiting instruction. The register scoreboard is used as an efficient method of stalling
instruction issue when a data dependency exists, and feed forwarding is an efficient
method for minimizing that stall time.

9.2.1.2.1 Scoreboard Checks. The scoreboard is used to keep track of operand
availability. Conceptually, the scoreboard is a bit vector, and each bit in the vector
corresponds to a register in the register files.

Whenever an instruction is issued, the scoreboard bit corresponding to the instruction's
destination register is set, thus marking the register as busy. When the instruction
completes execution and writes back its result to the destination register, the scoreboard
bit corresponding to the destination register is cleared, thus marking the data in that
register as available for use.

The scoreboard bits for all of an instruction's source and destination registers (except
store and branch operations) must be clear (or will be cleared during the issue clock
cycle) for that instruction to be issued. If the corresponding scoreboard bits are set,
instruction issue is stalled until those scoreboard bits are cleared by the instruction(s)
currently using the registers.

As described earlier, the MC8811 0 attempts to issue two instructions simultaneously.
Since the scoreboard cannot be updated instantaneously, the scoreboard mechanism
cannot be used to resolve data dependencies between instructions within an issue pair.
These dependencies are resolved by interdependency resolution hardware whose
effect is similar to a scoreboard.

Since the contents of rO and xO are hardwired to zero, neither of the scoreboard bits for
these registers are ever set since their data is always current. However, rO and xO are
subject to interdependency checks. In other words, if rO is a destination for the
instruction in issue slot one and is also used as a source for the instruction in issue slot
two, the interdependency resolution hardware will prevent the second instruction from
issuing during the current clock cycle.

9-12 MC88110 USER'S MANUAL MOTOROLA

9.2.1.2.2 Feed Forwarding. In a highly parallel microprocessor, each clock cycle is
valuable. In order to minimize the overhead of data dependencies in the instruction
stream, the MC8811 0 implements a design feature known as feed forwarding. When an
instruction has stalled (or will stall on the next clock cycle) because source data is not
available, feed forwarding allows the operand to be forwarded directly to the waiting
instruction as soon as it is available (see Figure 9-10). This forwarding occurs in parallel
with the register write-back and clearing of the scoreboard bits.

ISSUE

Figure 9·10. Feed Forwarding

•

MOTOROLA MC88110 USER'S MANUAL 9-13

..

9.2.1.3 DESTINATION REGISTER CONSIDERATIONS. The following
paragraphs describe how the MC88110 prevents destination registers from being
overwritten by out-at-sequence instructions and how instructions are prioritized for
writing back to the register files.

9.2.1.3.1. Scoreboard Checks. In a machine that allows instructions to complete out
of order, there is the potential for an instruction's result to be overwritten by an instruction
which issued earlier but completed later. To preclude this possibility, the scoreboard bit
aorresponding to the destination register is automatically checked as a condition for
instruction issue. This ensures that updates to any given register are always completed
in the order specified by the program and thus no data is ever incorrectly overwritten in
the register files.

The data unit maintains its own set of rules for instructions being issued and completed
out of order. Only one memory access instruction can be issued per clock cycle;
however, the load buffer and the store reservation station (see 9.2.2 Load Buffer and
Store Reservation Station Model) help minimize the effects of long memory
latencies. Store (st) instructions may be issued into a reservation station before the data
being stored is available. This allows continued issuance and execution of other
instructions in parallel with the computation of the source data for the store operation. In
other words, issue of st instructions is not prevented by scoreboard checks on the data
being stored. Note that address operands for the st operation are vulnerable to
scoreboard checks. Additionally, load (Id) instructions are allowed to bypass st
instructions which are stalled in the reservation station as long as the address being
accessed by the Id instruction does not match that being accessed by any waiting st
instructions.

9.2.1.3.2 Write-back Priorities. There are two destination buses available on the
MC88110. Since different execution units have different pipeline lengths, it is possible
for more than two instructions to complete in a given clock cycle; therefore, execution
units arbitrate for an available destination bus. Highest write-back priority is granted to
single-cycle execution units (integer and graphics units). Thus, single-cycle instructions
are always guaranteed the use of a destination bus while multi-cycle execution units
arbitrate for their chance to use a destination bus. The priorities for each of the various
execution units are as follows:

1. ALU, Bit-Field, and Graphics Units

2. Floating-Point Add Unit

3. Multiply Unit

4. Divide Unit

5. Data Unit

While waiting for a bus grant, execution units which have been denied a destination bus
continue to advance their internal pipeline stages and accept new instructions until all
pipeline stages are full.

9-14 MC88110 USER'S MANUAL MOTOROLA

9.2.1.4 EXECUTION UNIT CONSIDERATIONS. For an instruction to be issued,
the required execution unit must be available. The sequencer monitors the availability of
aU execution units and suspends instruction issue if the required execution unit is not
available. An execution unit may not be available under the following circumstances:

1. A multi-cycle, nonpipelined unit can have only one instruction inexecution at a
time. Such a unit becomes busy when an instruction is issued to it, and it cannot
accept another instruction until the previous one completes. The divide unit is the
only such unit on the MC8811 O.

2. An execution unit may become unavailable for additional instructions if its pipeline
becomes full. This situation may occur if execution takes more clock cycles than the
number of pipeline stages in the unit and enough additional instructions are issued
to that unit to fill the remaining pipeline stages. This situation can only occur in the
data unit. In addition, if the execution unit cannot get access to a write-back slot
while additional instructions continue to fill its pipeline, the pipeline may become
full.

3. Execution units can accept only one instruction per clock. Attempting to issue two
instructions to the same unit on the same clock will cause a stall.

Figure 9-11 illustrates which instruction pairs can and cannot be issued simultaneously
due to the one instruction per execution unit per clock restriction. For example, if the first
instruction in an issue pair is an add, then the top row of the grid in Figure 9-11 shows
that any type of instruction can be issued concurrently with the add (all the boxes on the
top row are shaded), provided there are no data dependencies. On the other hand, if the
first instruction in an issue pair were a muls, then the fourth row of the grid in Figure 9
11 shows that anothermuls, a pmul or an fmul (the three white boxes on row four)
cannot be issued along with a muls instruction.

Notice that if Figure 9.:11 were divided from the top-left corner to the bottom-right corner,
each side of the figure would be a mirror image of the other side. This phenomenon
occurs because the MC88110 is a symmetric superscalar implementation. Each
instruction pair that can be issued together, can also issue together if the order of the
instructions were reversed. This provides a more flexible environment for instruction 11_,'
scheduling and optimization.

There are several important points that should accompany a discussion of dual
instruction issue with respect to execution unit availability. First, if the serial mode bit
(SER) in the processor status register (PSR) is set, then simultaneous instruction issue is
disabled and, at most, only one instruction can be issued per clock cycle. Second, when
instructions which affect the carry flag (add, sub, addu, or subu with .co or .cio suffix)
are issued as the first instruction in an issue pair, they prevent issue of any other
instruction in the same clock. Third, any instruction which specifies rO or r1 as a source
or destination and is in the delay slot of a bsr.n instruction will not issue in the same
clock as the bsr.n.

MOTOROLA MC88110 USER'S MANUAL 9-15

•
LEGEND:

1m CAN BE ISSUED SIMULTANEOUSLY

D CANNOT BE ISSUED SIMULTANEOUSLY

Figure 9-11. Simultaneous Instruction Issue Restrictions

NOTE

All instructions which cause the machine to serialize (xmem,
tbO, tb1 , tcnd, rte, Ider, xcr, stcr, fldcr, fxcr, and fster)
cannot be issued in the same clock with any other instruction.

9-16 MC88110 USER'S MANUAL MOTOROLA

9.2.1.5 HISTORY BUFFER INDUCED STALLS. Although the MC88110 issues
instructions in strict sequential order, it is possible for instructions to complete execution
out of order. The MC88110 keeps an internal first-in-first-out (FIFO) queue of all
instructions that are executing. This feature, called the history buffer, keeps all details of
out-of-order execution internal to the processor. To user software, the processor appears
to issue and execute instructions in a strict sequential fashion.

At the time of issue, an instruction is placed at the tail of the queue. The instructions
move through the FIFO queue until they reach the head. An instruction reaches the head
when all of the instructions in front of it have finished execution. However, since
instructions can be executed out of order, it is possible for an instruction to have
completed execution, but still be in the middle of the queue. Afl instruction is retired from
the history buffer when it reaches the head and it has completed execution.

Figure 9-12 shows an example of the history buffer where an fdiv.ddd instruction (a
multi-cycle instruction) was the first instruction issued by the MC88110 followed by a
series of single-cycle instructions. Until the fdiv.ddd has finished execution, no
subsequent instructions can be retired from the history buffer.

TOP OF HISTORY BUFFER ---. fdiv.ddd r8, r6, r4

and r15, r16, r17

or r2, r11, r13

•••
addu r3, rll, r12

BOTTOM OF HISTORY BUFFER subu rl0, r11, rl0

Figure 9-12. History Buffer

The history buffer contains 12 cells. It is possible to fill the history buffer to capacity. In II_
this case, the MC8811 0 stalls instruction issue until the instruction at the head of the
buffer completes execution and is retired from the queue.

The following algorithm is used to retire instructions from the history buffer:

while(history_buffer[top] == completed_execution)

retiree history_buffer(top])

history_buffer[top] = history_buffer[top - 1]

history_buffer[bottom + 1] = history_buffer[bottom]

history_buffer[bottom] = nil

r has top instruction completed ?

r empty the top cell of the history buffer

r shift every cell up one cell

r clear bottom of history buffer

'It,

'It,

'It/

MOTOROLA MC88110 USER'S MANUAL 9-17

•

As long as the head of the history buffer contains an instruction that has completed
execution, that instruction is retired from the history buffer and the remaining cells are
shifted up. This algorithm is run to completion after every clock cycle; therefore, the
history buffer can go from being completely full to completely empty in a single clock
cycle.

9.2.2 Load Buffer and Store Reservation Station Model
The data unit contains a load address buffer and a store address/data reservation
station, which operate as two independent FIFO queues. After being issued, aliid and st
instructions pass through the appropriate FIFO queue. See Figure 9-13 for an illustration
of the load buffer and store reservation station model. Notice that there are four slots in
the load buffer and three slots in the store reservation station. Provided availability, the
data cache can service either a Id or st operation every clock cycle.

INCOMING INSTRUCTION

LOAD STORE
BUFFER RESERVATION

STATION

Figure 9-13. Load/Store FIFO Queue Model

The store reservation station allows st instructions to be issued before source data is
available from a previous computation (e.g., a scoreboard hold on the data being stored
does not delay the issue of st instructions). However, a scoreboard check is performed
on the source register(s) whose contents make up the address for the store. If
unavailable at the time of issue, the data being stored is forwarded directly to the
pending st instruction in the store reservation station as soon as it becomes available.

There is an exception to a st operation bypassing a scoreboard check. If the data which
will be stored is not available and will not be transmitted on the destination bus in the
same format as the waiting st operation is expecting it, instruction issue will stall until the
data becomes available. For example, if a single-word st operation will write the data in
r7 to memory, and the data in r7 is not yet available, another check is made before

9-18 MC88110 USER'S MANUAL MOTOROLA

allowing the store operation to issue to the store reservation station. Ifr7 is the
destination register of a single-word operation, the st instruction Will issue to the store
reservation station and ·wait for r7 to be forwarded. However, if r7 is the destination
register for part of a double-precision operation, instruction issue will stall until r7 has
been written back into the register file and read back out again for the waiting 5t
operation.

The load buffer allows multiple Id instructions to be issued while a previous Id
instruction is stalled in the load buffer. The Id or 5t instructions only wait in their
respective FIFO queues for the following reasons:

• A st instruction must wait in its reservation station if the source data being stored is
not available at the time of instruction issue.

• A st instruction must wait in its reservation station until it reaches the top of the
history buffer.

• A st instruction must wait in its reservation station at least one clock cycle for its data
to be aligned.

• A Id instruction must wait in its buffer if its effective memory address matches the
page index of the destination address of a pending st instruction.

• A Id instruction must wait in its buffer if there are previous Id instructions pending.

• A Id or st instruction must wait in its respective FIFO queue i·f the memory system
(cache) is busy-.

The feature described in the second bullet of the previous paragraph is used to ensure
the precise exception model on the MC8811 O. For more information on the exception
model on the MC8811 0, refer to Section 7 Exceptions. In the case of an interrupt or
exception, the MC88110 must be able to back out of any instructions that may have been
issued after the excepting instruction. Since the destination of a st operation is cache
(and possibly main) memory, it is necessary to hold that st operation in the store
reservation station until the MC8811 0 is positive that it will not need to be reversed. The
only way to ensure that no instruction that was issued before the st operation will cause II..,"
an exception is to wait until the st has reached the top of the history buffer.

The data unit executes the queued Id/st instructions as data from the cache or memory
becomes available. The data unit always executesld instructions in program order with
respect to other Id instructions. Likewise, st instructions are also always executed in
program order with respect to other st instructions. However, Id instructions are allowed
to execute out of order with respect to st instructions. While a stinstruction is waiting in
its reservation station, subsequent Id instructions can bypass the pending st and can get
access to the cache. To prevent memory conflicts, load addresses are compared to store
addresses and Id instructions are prevented from running ahead of st instructions for
which there is an address match. Since there is only one data path out of the data unit, if
the load buffer and store reservation station each have pending instructions which need
access to the cache, priority is given to a st instruction which is ready.

MOTOROLA MC88110 USER'S MANUAL 9-19

II

When a Id or 5t instruction is encountered, the instruction unit checks the scoreboard to
determine if the operands are available and, for Id instructions only, makes sure that
there is no destination register conflict. The sequencer then checks the data unit to verify
that there is an available slot in the appropriate queue. If a slot is not available,
instruction issue stalls until a slot becomes available. When a slot is available, the
instruction is issued to the appropriate queue on the next clock cycle. One of the
following courses of action is then taken:

• For Id instructions-If there are no prior instructions waiting in the load buffer, and
the data cache is not busy servicing a prior request, then the Id instruction falls
through the load buffer directly to the MMU and cache. If the data cache is busy or if
there are already instructions pending in the load buffer or if there is an address
match between the Id instruction and a pending 5t instruction, then the Id
instruction waits in the load buffer.

• For 5t instructions-The store instruction waits in the reservation station while the
data (if available) is properly aligned for the cache/external memory. If all previous
instructions are complete (the st operation has advanced to the top of the history
buffer) and the data cache is available, the 5t is issued to the data cache on the next
clock cycle.

Once Id and 5t instructions have been issued to the appropriate queue, the sequencer
is free to continue issuing other instructions. Note that the xmem instruction is a special
case. Before an xmem instruction issues, the MC88110 serializes (all pending
instructions complete execution). This ensures that the load buffer and store reservation
station are empty and the load and store operations which make up the xmem operation
can issue unimpeded.

9-20 MC88110 USER'S MANUAL MOTOROLA

9.2.2.1 LOAD BUFFER AND STORE RESERVATION STATION EXAMPLE.
The following paragraphs and figures show an example of instructions moving through
the load buffer and store reservation station:

Clock Cycle One
During the first clock cycle (see Figure 9-14), the first two instructions in the sequence
are issued. Recall that the MC8811 0 is capable of issuing both of these instructions
in a single clock cycle. At this point, both the load and store queues are empty. The
fdiv.5SS is a multi-cycle instruction; thus, the contents of r8 will not be ready for
approximately 13 clock cycles.

LOAD STORE
BUFFER RESERVATION

STATION

Figure 9-14. Clock Cycle One-Load/Store Example

Clock Cycle Two
During the second clock cycle (see Figure 9-15), the contents of ra are needed by a
5t instruction. However, the fdiv.sss will not be finished with ra for 12 more clock
cycles. The 5t instruction is issued anyway (thereby not stalling the instruction
pipeline), and it waits in the store reservation station for the contents of ra to become
available. Instruction issue continues as normal. The fadd.sss instruction is also a
multi-cycle instruction; thus, the contents of r15 will not be ready for another three
clock cycles.

LOAD
BUFFER

STORE
RESERVATION

STATION

..

MOTOROLA

Figure 9-15. Clock Cycle Two-Load/Store Example

MC88110 USER'S MANUAL 9-21

Clock Cycle Three
During the third clock cycle (see Figure 9-16), the contents of r15 are needed by a st
instruction; however, the fadd.sss will not be finished with r15 for two more clock
cycles. The st instruction is issued anyway (thereby not stalling the instruction
pipeline), and it waits in the store reservation station for the contents of r15 to
become available. Even if the contents of r15 had been available, the second st
instruction would still enter and remain in the store reservation station since st
instructions must execute in strict program sequence relative to other Id and st
operations.

Instruction issue continues as normal.

Although the contents of r15 will become available before the contents of ra, the
5t r15 wi-ll continue to wait since it is behind another instruction in the store
reservation station and the store reservation station is a strict FIFO queue.

LOAD STORE
BUFFER RESERVATION

STATION

st r15

st ra

II

Figure 9-16. Clock Cycle Three-Load/Store Example

Clock Cycle Four
During the fourth clock cycle of this sequence (see Figure 9-17), the Id instruction is
requesting the contents of the memory location whose address is located in r11. The
address in r11 resulted from adding the contents of r9 and r10 (the second
instruction in the sequence). The address for the first st instruction was also formed
by addi ng the contents of r9 and r10.

When the Id instruction is issued, the address in r11 is checked against all
addresses in the store reservation station. Since there is a match with the first st
instruction in the store reservation station, the Id instruction cannot execute. The Id
instruction is issued anyway (thereby not stalling the instruction pipeline), and it waits
in the load buffer until the pending 5t instruction has completed execution. This
allows instructions to continue issuing while the Id instruction is pending.

If the address used in the Id instruction had not matched any of the addresses in the
store reservation station, the Id instruction would have fallen through the load buffer
and begun execution out of order with respect to the two pending st instructions in
the store reservation station.

9-22 MC88110 USER'S MANUAL MOTOROLA

1~'l(lllllltl,i·
m:~l:m~f:~[~@~~t!:r[!!![:r18t~1~frR[~:~~~:
?~~:~rH}n:>nm?~~~J~~::t~fmmfm
Id r12,r11,rO

or r2, r5, rO

LOAD
BUFFER

Id r12

STORE
RESERVATION

STATION

st r15

st ra

Figure 9·17. Clock Cycle Four-Load/Store Example

9.2.2.2 LOAD/STORE REORDERING EXAMPLE. This example illustrates the run
time reordering of Id and st instructions (see Figure 9-18). In this example, a floating
point operation is followed immediately by a st of the result. The st instruction is issued
to the store reservation station while it waits for its source data.

The st instruction is immediately followed by three Id instructions. The first Id is given
access to the data cache while the previously issued st instruction waits for its data. By
the time the second Id operation is ready to access the data cache (clock cycle 5), the
data that the st operation is waiting for has arrived. However, it will take two additional
clock cycles for the store operation to properly align its data for the write, and during this
time, the second Id (instruction 3) accesses the data cache. On clock cycle 6, the third Id
operation accesses the data cache because the st operation is still aligning its data. In
this example, three load operations have bypassed the pending store.

•
.4~

4 I Id rG, r12, 0

5 I add r1, r3, r3 EMJUE.lM4.$& '.

2 I Id r4, r12, 4

3 ,r.-.:.:::...:..=.J...:....:..=a..:.-.~~"""""'~Iiliilii:iIi:i:~~~~..:u:w:w:~.:w:w:w:a.-_

o :tadd xt, x2, x3

1 st x1, r2, 0 ,

LEGEND:
6 I...-I S

o INSTRUCTION FETCH 7 I S
• EXECUTE

t FEED FORWARD

• WRITEBACK

~ DELAYED

l2Ll DELAYED IN LOAD BUFFER OR STORE RESERVATION STATION

9 CACHE ACCESS

~ DATA ALIGNMENT

Figure 9·18. Load/Store Reordering Timing

MOTOROLA MC88110 USER'S MANUAL

..

9.3 EXECUTION UNIT TIMINGS

After .instructions are prefetched, they are either executed by the instruction unit (in the
case of flow-control instructions) or dispatched to another on-chip execution unit. The
following paragraphs describe the execution of instructions within the seven categories
of execution units (integer, bit-field, logical, data, floating-point, instruction, and graphics
units).

The clock counts presented in the following tables represent the latency induced by an
instruction. Latency is the number of clock cycles necessary to execute an instruction
and make ready the results of that execution. For the majority of instructions in the
MC88110, this can be simplified to include only the execute phase for a particular
instruction; however, data instructions will require additional clock cycles between the
execute phase and the write-back phase due to memory latencies. The latencies in this
section represent execution under ideal conditions. The latency of an instruction does
not represent the average execution time since execution timing depends on the
dynamic state of the pipelines in the MC8811 o.

9.3.1 Integer/Bit-Field Unit Execution Timing

There are three integer units in the MC8811 o-two identical arithmetic logic units (ALUs)
and one bit-field unit (BFU). Each integer unit has a one clock execution phase and can
process instructions at a rate of one instruction per clock; however, accesses to control
registers serialize the machine causing longer latencies. Since the maximum issue rate
of the MC8811 0 is two instructions per clock and there are two ALUs, instructions a·re
never delayed due to an unavailable ALU. However, since there is only one BFU, only
one bit-field instruction can be issued per clock.

Table 9-1 lists the latencies for instructions executed by the integer/logical/bit-field units.
The Instruction Timing: time for updating the destination register is not included in the
latencies listed because the write-back occurs in parallel with the execution of other
instructions and does not cause an additional delay.

9-24 MC88110 USER'S MANUAL MOTOROLA

Table 9-1. Integer, Logical, and Bit-Field Execution Timings
in Clock Cycles

Instruction Latency

Integer (ALU)

add 1

addu 1

sub 1

subu 1

cmp 1

Ida 1

add.clo 1

addu.clo 1

sub.clo 1

subu.clo 1

Instruction Latency

Logical

and 1

mask 1

or 1

xor 1

B~-Field (BFU)

clr 1

ext 1

extu 1

ffO 1

ffl 1

mak 1

rot 1

set 1

Figure 9-19 illustrates an example of integer unit operation timing. During the first clock,
instructions a and 1 are fetched from the instruction cache. During the second clock,
instructions a and 1 are issued to the two ALUs and complete execution. Meanwhile,
instructions 2 and 3 are being fetched. During the third clock, instruction 2 is issued to an
execution unit but instruction 3 is delayed due to a scoreboard hold placed on r2 by
instruction 2. With instruction 2 issued, instruction 3 moves to the first issue slot and
instruction 4 is fetched and placed in the second issue slot. During clock 4, instruction 2
forwards its result so that instruction 3, which was waiting for the data, can execute.
Instruction 4 attempts to execute but is delayed by a destination register conflict with
instruction 3. Instruction 4 then moves into the first issue slot and instruction 5 is fetched 9
and placed in the second issue slot. During clock 5, instruction 3 releases its destination
register (r5), instructions 4 and 5 are issued together, and instructions 6 and 7 are
fetched. Instruction 6 is a bit-field instruction and is issued to the BFU in the same clock
as instruction 7 is issued to an ALU. The next instruction pair, 8 and 9, however, are both
bit-field instructions. Since there is only a single BFU, instruction 8 is issued while
instruction 9 is delayed until the BFU is free to accept another instruction. Bit-field
instruction 10 is fetched during clock 7 and attempts to be issued in clock 8 but is
delayed until the BFU is free to accept another instruction.

MOTOROLA MC88110 USER'S MANUAL 9-25

LEGEND:

o INSTRUCTION FETCH

II EXECUTE

t FEED FORWARD

• WRITE-BACK

~ DELAYED

4 I addr5,r7,r8~

5 I add r6. r7, r8

6 I ext r7, r8. r9

7 Iadd r8. 1'9. r10

8 I· ext r2, r3, r4

9 1 extr3.r4.r5~

10 I ext r4, r5, r6~

111 S

•

Figure 9-19. Integer and Bit-Field Instruction Sequence Timing

9.3.2 Data Unit Execution Timing
The data unit is implemented as an independent execution unit Stalls in this unit do not
cause stalls in instruction issue (except in the case of a data dependency, or if the
load/store queues are full and the instruction unit needs to issue an additional data
access instruction). Only one data access instruction (either Id, st or xmem) can be
issued to the data unit per clock cycle.

Single-word and double-word data require one clock to be accessed from the data
cache while double-extended-precision data requires two clocks per access. All data
transfers between the data unit and the register files occur in a single clock cycle since
the internal data paths are BO-bits wide.

Table 9-2 shows the latencies for the instructions executed by the data unit. Notice that
the xmem instruction causes the machine to serialize; therefore, all pending instructions
in the execution unit pipelines and buffers will be executed before the xmem instruction
begins execution. In addition to the time it takes for the machine to complete its
serialization, the xmem instruction takes 12 clock cycles to execute, assuming a zero
wait state memory access time. .

As shown in Table 9-2, a load operation that hits in the data cache has a latency of two
clocks (3 for double-extended-precision data). The latency for a load operation which
misses in the cache, assuming zero wait state memory references, is five clocks (six for
double:'extended-precision data).

9-26 MC88110 USER'S MANUAL MOTOROLA

Table 9-2. Data Unit Execution Timings in Clock Cycles

Instruction Transfer Size (instruction auffix) Latency

8/16 (.b/.h) 32 64 (.d) 80 (.x)

Id · · • 2*. 3*

at · · . . 1

xmem · · Serialize + 10

*Add three more clocks for cache miss assuming zero wait state memory

9.3.2.1 DECOUPLED CACHE ACCESSES. It is possible for a data instruction to
access the on-chip data cache while a previous data instruction is accessing main
memory. These accesses are known as decoupled cache accesses. Both load and store
operations provide opportunities for decoupled cache accesses. A store operation may
only access the decoupled cache during a load which has missed the on-chip data
cache and has bypassed the store. Load operations may access the decoupled cache
during either a touch load (see 9.3.2.2.2 Touch Load) or a store operation which has
missed the on-chip data cache. Decoupled access to the cache is inhibited during:

• the first clock cycle after a cache miss

• copyback

• the cycle during which the first data of the line fill is received

• the duration of the line-fill operation

A 2/1/1/1 external memory model will provide one clock cycle of opportunity for a
decoupled cache access. Similarty, a 4/1/1/1 external memory model will provide three
clock cycles of opportunity for a decoupled cache access. Refer to Section 9.3.2.3.10
Touch Load Operation Timing Example for an example of a decoupled cache
access.

9.3.2.2 USER MODE CACHE CONTROL FEATURES. Four features are II
implemented in the MC8811 0 which provide explicit control over caching behavior in
user mode. These features allow performance to be improved in cases where the
programmer has some specific knowledge about how.or when data will be used. These
new features include:

• Cache Bypassing on Stores (Store-Through)

• Cache Preloading (Touch Load)

• Forced Dirty Line Flush (Flush Load)

• Line Allocation Without Line Fill (Allocate Load)

Three of the special cache control features, touch, flush, and allocate load, are specified
by performing loads of various sizes into rOo The touch, flush, and allocate load
accesses are visible on the external bus through the transfer code pins (TC3-TCO). If the
processor is in user mode during one of these cache control accesses, these pins are
encoded as 0010. If the processor is in supervisor mode during one of these cache
control accesses, these pins are encoded as 0110. In addition, the transfer size pins

MOTOROLA MC88110 USER'S MANUAL 9-27

II

(TSIZ1-TSIZO) determine which cache control access is being executed. These pins will
indicate 01 if the data size is a word (flush load), 10 if the data size is a half-word
(allocate load), or 11 if the data size is a byte (touch load).

Past and future implementations which do not support these three cache control features
are compatible with code employing these features because they do not affect the
functionality of the user program. Whether or not the memory references specified by
these features are actually performed is irrelevant to the program; however, performance
may be affected.

9.3.2.2.1 Store-Through. The store-through feature allows a user to specify that a
given store operation will be forced to update main memory. This option is provided with
the triadic register addressing forms of st instructions. The store-through option serves
two purposes. First, it provides a mechanism to force a particular data to write-through
the cache and into memory even if the access is to a write-back page. This can be useful
in cases such as writing to a display screen (frame buffer). Second, it provides a way to
prevent data that the program knows will not be reused from allocating a new cache line
on a cache miss and possibly replacing a potentially more useful line in the cache. This
not only avoids the wasted time of moving a line out of the cache and back in again, but
also improves the hit rate of subsequent operations to that cache line.

When specified, the store-through option unconditionally causes the store operation to
write-through the cache directly into memory. If a store-through access hits the cache on
its way out to memory, the cache is updated but the line is not marked as dirty unless it is
already dirty (dirty implies modified). It is important to note that if a store-through access
hits a dirty line in the cache on its way out to memory, the entire dirty line is not written to
memory. When the store-through misses the cache on its way to memory, no line is
allocated in the cache (Le., no dirty line copyback is forced, no new line is brought into
the cache, no existing line is replaced, and no data is written into the cache). In this case,
the access simply goes directly to memory, bypassing the cache completely.

Store-through is specified by a write-through extension (.wt) on any triadic register
addressing form of the st instruction. All operand sizes and both register files are
supported as shown in Table 9-3.

Table 9-3. Store-Through Format for st Instructions

Instruction Operand sz/xsz options
Syntax

st.Sl.Wt rD,rS1,rS2 .b (byte), .h (half), {blank} (word), or

rD,rS1 [rS2]
.d (double)

st.xsz.wt xD,rS1,rS2 {blank} (single), .d (double), or .x

xD,rS1 [rS2]
(double-extended)

9-28 MC88110 USER'S MANUAL MOTOROLA

9.3.2.2.2 Touch Load. The touch load feature allows data to be loaded into the
cache under user program control. Normally, data is brought into the cache only when it
is needed. This can lead to instruction execution stalls due to dependencies on data
which must be read from main memory. In many cases, however, the need for data can
be predicted. By requesting data to be read into the cache before its actual use, the
latency of the memory system can be overlapped with useful work, and stalls due to long
latency cache misses can be minimized.

A touch load is specified by a signed byte load to rO as shown in the following Id
instructions:

Id.b rO,r81,rS2

Id.b rO,r81 [r52]

Id.b rO,r81,SIMM16

If the data specified by the effective address of the touch load operation is not already in
the cache, then it is brought into the cache and replaces an existing line if necessary
Gust as a normal load miss would).

A touch load differs from normal loads in two ways. First, a touch load never generates
an exception, and, therefore, the machine never needs to recover from one. This means
that a touch load can be retired from the history buffer as soon as it enters the data unit,
rather than waiting until the load completes execution. Second, although a touch load
operation may bring data into the cache, it does not write a result to the register files.
Thus, load operations executing during a touch load do not need to run in program
sequence with the touch load and can be allowed access to the cache while waiting for
the touch load operation's line fill to begin.

9.3.2.2.3 Flush Load. The flush load feature forces a dirty cache line to be written out
to memory. Normally, dirty cache lines are copied back to memory only as a side effe:ct of
needing to allocate a new cache line. However, it is sometimes convenient to be able to
flush data in the cache to immediately update the memory image. For example, the user •. 9. .
may store several data words to memory which get filtered by the cache and never
actually update memory. In this case, the flush load option could be used to flush the
data words from the cache out to memory

The flush load option allows the programmer to perform multiple store operations to a
line in the cache then write the data to memory in a single burst transaction, all from user
mode code; thus, the flush load option provides performance advantages over other
methods of keeping memory coherent with the cache. Placing a memory page in write
through mode or using the store-through option may have an undesirable performance
impact because of the multiple individual bus transactions which would occur. Also, the
time required to flush a line from supervisor mode may be prohibitive.

MOTOROLA MC88110 USER'S MANUAL 9-29

•

A flush load is specified by a word load to rO as shown in the following Id instructions:

Id rO,rS1,rS2

Id rO,rS1 [rS2]

Id rO,rS1,SIMM16

When a flush load operation hits a dirty line in the data cache, the line is flushed out to
memory and the modified bit for the line is cleared. On a cache miss, the flush load is
treated as a NOP. A flush load can generate an exception like other data access
operations.

9.3.2.2.4 Allocate Load. It is sometimes known in advance that an entire cache line
is going to be overwritten. In these cases, performance could be improved if the
overhead of fetching a new line from memory that is going to be overwritten could be
avoided. The allocate load option provides this capability. Allocate load allows the user
to allocate a line in the cache for a series of subsequent store operations while avoiding
the normal line fill from memory. This option allocates a line in the cache, as any normal
load does on a cache miss, but performs only a single-beat transaction on the bus rather
than a full line fill bus transaction.

The allocate load option should be used with this caution: if the sequence of stores
which is overwriting the allocated line is interrupted, it is possible that the partially valid
line could be pushed out to memory. However, upon returning from the interrupt, the
remaining stores in the sequence will be completed and the memory state will be
corrected. Thus, the invalid memory version of the line in memory will only have been a
transient phenomenon.

An allocate load is specified by a signed half-word load to rO as shown in the following
example Id instructions:

Id.h rO,rS1,rS2

Id.h rO,rS1 [rS2]

Id.h rO,rS1,SIMM16

Allocate load allocates a line in the cache on a miss but only performs a single-beat bus
transaction rather than a complete line fill bus transaction. When allocate load is used on
a cache inhibited access, no cache line is allocated but the single-beat bus transaction
is still performed. On a data cache hit, allocate load is a NOP. An allocate load can not
cause a data exception.

An allocate load never generates an exception, and therefore the machin"e never needs
to recover from one. This means that the allocate load can be retired from the history
buffer as soon as it enters the data unit, rather than waiting until the operation completes
execution.

9-30 MC88110 USER'S MANUAL MOTOROLA

9.3.2.3 DATA UNIT EXECUTION TIMING EXAMPLES. The following paragraphs
describe ten data unit ~xecution timing examples.

9.3.2.3.1 Load Timing with Cache Hit Example. In this example (see Figure 9
20), during the first clock, a Id and add. instruction are fetched from the instruction cache.
During the second clock, both instructions are issued and begin execution. The initial
phase of the Id execution is used to compute the· effective address (the logical address
for the memory access). During the third clock, the load instruction accesses the data
cache and fetches. the data. During the fourth clock, the load transfers data to one of the
destination buses and writes data into the destination register (r2).

Also on the second clock, another Id and add pair is fetched from the instruction cache.
This time, only the Id instruction is issued because the add has a data de~pendency (r7)
on the Id. Execution stalls until clock 5 when the load data is received from the data
cache. At this point, instructions 3 and 4, which were both dependent on the data, are
issued. During clock 6, instruction 5 is issued but instruction 6 is not because it is
dependent on instruction 5 for its source data (r9). During clock 7, a pair of Id
instructions are fetched while instructions 6 and 7 are issued. During clock 8, the first Id
in the pair (instruction 8) is issued but the second (instruction 9) is not because the data
unit is busy accepting the first Id (only one Id or st instruction can be issued to the data
unit per clock cycle).

Instruction 3 is issued at the beginning of clock 5, which is two clocks later than the
earliest it could possibly have been issued had it not had the data dependency. Thus the
load hit (instruction 2 in this example) is shown to have a latency of two clocks. Had this
Id instruction been issued in the second issue slot, and had the next instruction been a
non-data dependent instruction, -the Id would have been issued in clock 4; if the next
instruction was data dependent, it would have been issued in clock 5. Therefore, when a
Id instruction is issued in the second issue slot, a data dependent instruction that
immediately follows will experience only a single-clock cycle delay.

•

MOTOROLA MC88110 USER'S MANUAL 9-31

1 add r5, r5, r6

LEGEND:

D INSTRUCTION FETCH

_ EXECUTE

t FEED FORWARD

II WRITE-BACK

~ DELAYED

fErn CACHE ACCESS

4 add r9 r7 r9

7 I add r9, r7, r9

8 I Id r4, r5, r6

9 I Id r7. ra. r9 W'~

10 I S

•

Figure 9·20. Load Hit Timing

9.3.2.3.2 Load Timing with Cache Miss Example. This example (see Figure 9
21) uses the same instruction sequence as the one starting at clock two of the previous
example. However, in this example, the Id operation at instruction 0 misses the cache in
clock 3 and begins a bus transaction in clock 4. The bus transaction shown is the best
possible case; no dirty line copyback is required, the bus interface unit (BIU) is parked
on the bus, and the memory returns data with no wait states (2/1/1/1). The data cache is
busy beginning in clock 4 and remains busy through clock 10, until the remainder of the
cache line is read into the data cache and the cache tags are updated.

9-32 MC88110 USER'S MANUAL MOTOROLA

Bus transactions always begin with the address of the missed access, regardless of its
offset within a cache line; therefore, during clock 6, the double word which contains the
missed data is received from the bus. During clock 7, the data is feed-forwarded to the
register files and the waiting instructions. The Id operation at instruction 4 is not issued
until clock 9, due to the data dependency on r9. Once issued, it waits in the load buffer
until it may access the data cache in clock 10.

5 add r9 r7 r9
LEGEND:

D INSTRUCTION FETCH

1m EXECUTE

t FEED FORWARD

II WRITE-BACK

Em DELAYED

mm CACHE ACCESS

[ill CACHE BUSY AND NOT AVAILABLE

~ CACHE WRITE FROM BIU

B CACHE BUSY BUT AVAILABLE

Figure 9-21. Load Miss Timing

•

MOTOROLA MC88110 USER'S MANUAL 9-33

9.3.2.3.3 Load Miss with Dirty Line Copyback Example. This example (see
Figure 9-22) also uses the same instruction sequence as the one starting in clock 2 of
the example in 9.3.2.2.1 Load Timing with Cache Hit (see Figure 9-20). However,
in this example, the load operation misses the data cache and is forced to replace a dirty
line in the cache. The copyback to memory begins on clock 4 and is completed on clock
9. The line fill begins on clock 11 and is completed on clock 14.

....6 I

7 I

Figure 9-22. Load Miss with Copyback Timing

LEGEND:

D INSTRUCTION FETCH

• EXECUTE

, FEED FORWARD

• WRITE-BACK

~ DELAYED

l:.2l DELAYED IN LOAD BUFFER

~ CACHE ACCESS

o DIRTLY LINE COPYBACK (CACHE BUSY)

[IT] CACHE BUSY AND NOT AVAILABLE

Eli) CACHE WRITE FROM BIU

E3 CACHE BUSY BUT AVAILABLE

ADDRESS --('--__----..j~ _

9.3.2.3.4 Load Miss with Instruction Overlap Example. Figure 9-23 illustrates
the execution of a code sequence which has been scheduled to avoid data
dependencies resulting from the data cache miss by instruction o. Notice that additional
Id instructions are issued during the cache fill latency caused by the first Id instruction.
This is possible due to the load buffer in the data unit. As a result, instruction issue
continues with no stalls.

II

When the first Id operation (instruction 0) executes, its data is not in the data cache
(cache miss). During clocks 2, 3, 4, and 5, additional Id operations are issued into the
load buffer. These pending operations will remain in the load buffer until the data cache
is available for access at which time the pending Id operations will be executed out of
the load buffer in the sequence that they were issued.

9-34 MC88110 USER'S MANUAL MOTOROLA

Notice that five load operations are issued to the load buffer on consecutive clock cycles.
This is possible because instruction 0 is retired from the load buffer just in time to make
room for instruction 8.

Id x7 r4 72

4 Id x6 r4 68

14 c==::3

10 tadd x3,x4,x10

11 I st x3. r5. 0

12 I sub r6, r6, 1

13 Ifadd x5, x4. xS

8 Id x13 x4 76

9 add r4 r4 16

7 fmul x11,x11,x12
LEGEND:

D INSTRUCTION FETCH

1m EXECUTE

t FEED FORWARD

II WRITE-BACK

[Ji1 DELAYED

o DELAYED IN LOAD BUFFER OR STORE RESERVATION STATION

~ CACHE READ ACCESS

[ill CACHE BUSY BUT NOT AVAILABLE

~ CACHE WRITE FROM BIU

D CACHE BUSY BUT AVAILABLE

Id x5 r4 64

1 Ifmul x8,x8,x12

5 I add r7,r7.r2

3 Umul x9,x9.x12

Figure 9-23. Load Miss with Instruction Overlap Timing

9.3.2.3.5 Load Miss with Data Streaming Example. The MC88110 supports B.
streaming of data from the bus to the data unit as soon as the data is received.
Instruction a in the Figure 9-24 is a Id instruction which misses the cache and begins a
bus transaction in clock 4. Data is received from the bus in clock 6 and is forwarded to
instruction 8 during clock 7. Meanwhile, a second Id instruction is issued in clock 3 and
waits in the load buffer. Since the second Id operation is from the next memory address
(relative to the first Id), when the next double word is received from the bus, it is
forwarded to instruction 10.

MOTOROLA MC88110 USER'S MANUAL 9-35

7Zb

14c=3

1Sc=3

12 I fadd x3.x4.x9

13 I st.d x3.r5.4

11 I sub r6.r6.1

10 fadd x5 x5 x10

9 st.d x2 r5 0

8 fadd x2 x4 xB

7 fmul x11,x11,x1 .., .: ': .

LEGEND:

D INSTRUCTION FETCH

m EXECUTE

t FEED FORWARD

II WRITE·BACK

rm DELAYED

E2] DELAYED IN LOAD BUFFER OR STORE RESERVATION STATION

~ CACHE READ ACCESS

E3 CACHE BUSY AND NOT AVAILABLE

~ CACHE WRITE FROM BIU

G CACHE BUSY BUT AVAILABLE

9.3.2.3.6 Store Example. Figure 9-25 shows the timing for a sequence of 5t
instructions. The data unit is pipelined so that one cache access can occur every clock
cycle. In this example, store operations begin accessing the on-chip data cache on clock
5.

Figure 9-24. Load Miss with Data Streaming Timing

6 Id.d x7,r4,24 '.

S fmul x10,x10,x12

4 Id.d x6,r4,16

ADDRESS --< X......__-J _

3 Ifmul x9,x9,x12 " ;

DATA

2 Id.d x5 r4 8

1 Ifmul X8,X8,X12ij.:-.i ...

o Id.d x4 r4 0 .

..
Notice that there are clock cycles in the store pipeline labeled "data alignment." Two
things occur during these two clock cycles which precede the cache access phase of the
5t operation. First, the data which is being stored is properly aligned on the BO-bit
internal bus so that the correct word is written to the correct memory location. Second, if
necessary, internal steps are taken which ensure the precise exception model. The
instruction in the history buffer preceding the st determines the need for these internal
steps. If the preceding instruction is another st, th.en these steps are not necessary and
only one clock is needed for data alignment. If the preceding instruction is not another
st, then the steps are necessary and two clocks are needed for data alignment.

The first clock cycle of data alignment for a store operation can occur during the second
clock cycle of data alignment for a previous store operation. This is illustrated in Figure
9-25 during clocks 7 and 8.

9-36 MC88110 USER'S MANUAL MOTOROLA

o I add r2, r2. r3 ri

1 I sf r3, r4, 0 r;0..?

2 I sub r2, r2,r3

3 I st xl, r4, 4 t

4 I add r5, r4, 16 • i §[i:it.;
5 I st x2, r4, 0 &4

6 L!iliLIiF r3, r3

11 I add rS, r2, r3 _

7 I st r2, r4, 4 t&Mt+t ...::

::a:::'::',sr2::.~
10 I str3,r4,$C 4

DATA ALIGNMENT

LEGEND:

o INSTRUCTION FETCH

1m EXECUTE

t FEED FORWARD

II WRITE-BACK

~ DELAYED

[2] DELAYED IN LOAD BUFFER OR STORE RESERVATION STATION

~ CACHE ACCESS

~

Figure 9-25. Store Timing

9.3.2.3.7 Write-Back Arbitration Example. In Figure 9-26, a floating-point
operation (instruction 0) is issued in clock 2 and a Id operation (instruction 2) is issued in
clock 2. Both of these instructions complete and need to write-back their results during
clock 5; however, two integer instructions are issued in clock 4 and these integer
instructions (instructions 4 and 5) have priority for both destination buses. Thus, the
write-back for both the floating-point operation and the Id is delayed one clock until clock
6 when both operations attempt to write-back. During clock 5, two new integer
instructions attempt to be issued. The first one (instruction 6) is issued and uses one of •
the write-back slots in clock 6. The second integer instruction (instruction 7) has a data .•
dependency (r2) on the floating-point operation and therefore fails to be issued in clock
5. Since instruction 7 is not issued, one write-back slot is available in clock 6, and both
the Id and the floating-point operation contend for it. Priority is given to the floating-point
operation which writes back, and the Id is delayed another clock. Another data
dependency (r8) delays instruction 8 from being issued. As a result, in clock 7, the Id
finally gets a write-back slot.

MOTOROLA MC88110 USER'S MANUAL 9·37

4 I add r5, r5, 1 '':;'::;.:.:4;, ::44::
5 I add r6, r6, 1 itk4;;.. :

12[3

13D

9 I add r5, r5, r6

1o_1 __

11_1 ~_

8 elr ra ra 1<31>

7 add ra, r2, rO

LEGEND:

o INSTRUCTION FETCH

• EXECUTE

t FEED FORWARD

• WRITE-BACK

~ DELAYED

m CACHE ACCESS

6 add r7 r7 1 .~ : ,: :..:::::,~.:

Figure 9-26. Write-Back Arbitration Timing

..
9.3.2.3.8 Load/Store with Extended Operands Example. The width of the data
path to/from the cache is 64 bits. Therefore, operations with aD-bit double-extended
precision operands require two clock cycles for the data unit to perform cache accesses.
The data unit accepts and delivers double-extended-precision operands to the extended
register file in a single clock. In Figure 9-27, a st.x operation (instruction 1) is issued
during the same clock cycle as an fadd.x operation (instruction 0), even though the st.x
is dependent on the results of the fadd.x. After being issued, the st.x instruction waits in
the store reservation station for the results of the fadd.x instruction. The st.x operation
is delayed in the store reservation station until clock 5, when the result of the fadd.x
instruction is available.

The first Id.x operation (instruction 2) is fetched and immediately executed since it has
no data dependencies and no address conflicts with the pending st.x operation in the
store reservation station. The second Id.x operation (instruction 3) is issued, but it is
delayed in the load buffer. It is allowed to execute when the first Id.x instruction
completes because the pending st.x is still aligning its data for the write. When the st.x
operation has finished aligning its data and is ready to write to the data cache, it is
delayed by instruction 3, which is accessing the cache.

9-38 MC88110 USER'S MANUAL MOTOROLA

51 __----'S
61 <>

The second fadd.x operation (instruction 4) is delayed until clock 6 because it has a
data dependency (x2) on instruction 2. Notice that the cache access periods for the
double-extended-precision memory operations are 2 clock cycles as explained
previously. The extra clock cycle of cache access is the only difference between the
timing for double-extended-precision data operations and the timing for single- and
double-precision data operations.

o :fadd.x x1, x2, x3

1 st.x xl, r2, 0

2 Id.x x2 r2 8

3 Id.x x3 r2 12

4 fadd.x x4, xl, x2

LEGEND:

o INSTRUCTION FETCH

III EXECUTE

t FEED FORWARD

• WRITE-BACK

~ DELAYED

I2LI DELAYED IN LOAD BUFFER OR STORE RESERVATION STATION

~ CACHE ACCESS

~ DATA ALIGNMENT

Figure 9-27. Load/Store with ~xtended Operands Timing

9.3.2.3.9 1/0 Serialization Example. This example illustrates using trap
instructions to force the MC8811 0 to serialize bus transactions, which can be useful in
systems requiring I/O bus transactions to occur in strict program order. Trap instructions
will not be executed until all previously issued instructions have completed; therefore, a ..
trap instruction can be inserted before a load or store instruction to guarantee that the _
load or store will not execute out of order with respect to other loads or stores. The tb1
0, rO, 0 instruction is recommended for this use, because it will force the" machine to
serialize without causing any other side effects.

In this example (see Figure 9-28), a st instruction is issued but must wait in the store
reservation station for data from a previous instruction (instruction 0) which is already in
progress. Normally, the Id operation (instruction 3) would be issued to the data unit and
be granted access to the data cache during clock 4, ahead of the 5t at instruction 1. If
the Id and sl were both to miss the data cache, which would be the case for an addre,ss
to an I/O device declared uncacheable, then the specified bus transactions would
execute out of order. But as shown, the trap instruction forces the machine to serialize
before any other instructions are issued. Note that the MC88110 requires one clock
cycle before and one clock cycle after the execution of the trap instruction to serialize the
machine. Therefore, the Id at instruction 3 is delayed until clock 11, when the store and
trap operations have completed and the machine is synchronized.

MOTOROLA MC88110 USER'S MANUAL 9-39

•

The use of the trap instruction could be avoided by setting the serialize memory bit
(SRM) in the PSR. When this is done, the execution of the Id at instruction 3 would have
the same effect as the trap instruction (Le., the machine would fully serialize before the
Id was allowed to issue). The use of the trap instruction is recommended when possible
because only the Id and st instructions must run in strict program sequence. Operation
of other Id and st operations can then proceed normally.

G[~IlmmmmDIIZ7Z7Z7Z7ZZCvH4W/.m.w~
2 I tbt O. rO. 0 V////0:'"#...w/@/#//a//,,:~·:////#Q//////&;.·f7//////#.£"':.m::·t...mr

3 I Id r5. r4. 4 V#h'7##.¥/ffff&..q.-//////y.//X//////////.w&ffffh0/ff//U/4'ff##~ff,.0/4:

LEGEND: 4 I add r6. r5, 4· W/ffH//AW"////ffAf/ff//ph@'Hh7HHY////-&//A/////ffff4f'l"ff/fi'"ff/A'l//h

o INSTRUCTION FETCH

ID EXECUTE

t FEED FORWARD

• WRITE·BACK

r21 DELAYED

(2) DELAYED IN STORE BUFFER

m;a CACHE ACCESS

FZ) DATA ALIGNMENT

Figure 9-28. I/O Serialization Timing

9.3.2.3.10 Touch Load Operation Timing Example. Touch load operations
provide the opportunity for other data instructions to steal cycles from the data cache
after the copyback (caused by the touch load) is complete (if a copyback is required) and
before the data is received from the bus to load the cache. Accesses to the data cache
during a touch load operation are called decoupled cache accesses. Refer to section
9.3.2.1 Decoupled Cache Accesses for a detailed description of the decoupled
cache access feature of the MC8811 O.

A 2/1/1/1 memory transaction without a copyback will present a one-cycle opportunity for
cache access under a touch operation while a 4/1/1/1 allows three. Data cache access is
not permitted once the actual data transfer begins so, for example, a 4/2/2/2 transaction
provides the same number of cycles of decoupled access as a 4/1/1/1.

Figure 9-29 shows an example of a 4/2/2/2 bus transaction with no touch-induced
copyback.The first Id (instruction 0) is a touch load executed to bring data into the data
cache for future use. The Id at instruction 2 is able to access the cache in clock 5,
whereas if instruction 0 had been a regular Id then it would not have been granted
access to the data cache until clock 15. Additionally, instruction issue would have halted
on clock 6 due to the data dependency that instruction 8 has on the Id (instruction 2).
Use of the touch load provides a mechanism for doing useful data-access work during
cache misses, thus avoiding the performance degradation typically associated with long
latency memory systems.

9-40 MC88110 USER'S MANUAL MOTOROLA

ADDRESS

DATA

o I Id.b ro.r4.0 4 _:::::::::::::: £-:-:-:-:-:-:-:-:-:-:-:-:-:+:-:-:-:-:-:-:-:"->::-1-:-:-:-:-:-:-:-:-:-:-:-:-:-JX;XXXC)XXJ
1 I fmul x1,x1,x2 • _;

2 I Id x5,r5,O 772//~
3 I add r4,r4,16

4 I Id x6,r5,4 ',M; 4
5 I fmul x3,x3,x4 ;', "

8 I fmul x5 x5 x1

13 I~JS

9 I fmul x6 x6 x3

......::

10 lL!s[tx~6~,r5~,4:J•••~.F/~z~z~33

11 I add r4.r4,16

12 I fadd x4,x3,x5~

6 I add r5 r5 r4

7 I Id x7,r5,8

LEGEND:

D INSTRUCTION FETCH

R EXECUTE

t FEED FORWARD

II WRITE-BACK

~ DELAYED

lZJ DELAYED IN LOAD BUFFER OR STORE RESERVATION STATION

L1]J CACHE ACCESS

III] CACHE BUSY BUT NOT AVAILABLE

D CACHE BUSY BUT AVAILABLE

~ CACHE WRITE FROM BIU

Figure 9·29. Touch Load Operation Timing

9.3.3 Multi-Cycle Execution Unit Timing
There are three multi-cycle execution units in the MC8811 0: the floating-point add unit,
the multiply unit, and the divide unit.

The floating-point adder is a three-stage, fully pipelined design, capable of accepting
one single-, double-, or double-extended-precision addition operation every clock. The
floating-point adder requires 3 clocks to complete execution. The instructions executed
by the floating-point adder are fadd, fsub, fcmp, fcmpu, fevt, int, nint, trnc, and fit.

The multiplier is also a three-stage, fully pipelined design, capable of accepting one
single-, double-, or double-extended-precision multiplication operation every clock with
a latency of 3 clocks. The multiplier is shared between floating-point, integer, and
graphics operations. The instructions executed by the multiplier are fmul, mulu, muls,
and pmul.

•
The divider is a nonpipelined, iterative design which produces exact IEEE results that
require no software modifications. The divider is shared between floating-point and
integer operations. The instructions executed by the divider are fdiv, divs, divu and
divu.d. The performance of the divider is dependent on the precision and type of the
operands. The MC88110 executes signed integer divide instructions with negative
operand(s) directly in hardware.

MOTOROLA MC88110 USER'S MANUAL 9-41

II

Table 9-4 shows the latencies for MC8811 0 floating-point operations.

Table 9-4. Floating-Point Execution Timings
in Clock Cycles

Size

Instruction 32 64 80 Execution Unit Latency
.s .d .x

fadd,fsub · · · Floating-Point Add 3

femp, fempu · · · Floating-Point Add 1

fmul · · · Multiply 3

fcyt · · · Floating-Point Add 3

fit · · · Floating-Point Add 3

Int,n Int,trnc · · · Floating-Point Add 3

moy 9 <-> X · · Instruction 1

moyx<-x · Instruction 1

fldcr, fster, fxcr Instruction Serialize + 2

fdly · Divide 13 (3*)

fdly · Divide 23 (3*)

fdlv · Divide 26 (3*)

dlvs, divu Divide 18 (5*)

mUls, mulu, mulu.d Multiply 3

fsqrt · · · Trap N/A

• If either operand is 0

9.3.3.1 FLOATING-POINT ADD AND MULTIPLY TIMING EXAMPLE. In this
example (see Figure 9-30), two floating-point instructions issue in clock 2-one to the
floating-point adder and the other to the multiplier. During clock 3, two fadd instructions
attempt to be issued but since each execution unit can only accept one instruction per
clock, the second fadd is delayed until the next clock cycle. Instruction 4 can not be
issued in clock 4 because of a data dependency on instructions 0 and 1 until clock 5.
Instructions 0, 1, 6, and 7 show that fadd and fmul instructions may be issued
simultaneously and in either order. Since both floating-point multiply instructions and
integer multiply instructions use the multiply unit, instruction 9 is delayed by one clock
while the fmul at instruction 8 is issued.

9-42 MC88110 USER'S MANUAL MOTOROLA

o Ifmul xl x2 x3 " .',

1 Ifadd x2, x3, x4

2 Ifadd x3, x4, xS

3 Ifadd x4 x5 x6

•••.='*.~~;::...... '.:.:~:::."

..... ..~.

4 Itmul x7 xl x2

5 I add rl, r2, r3

6 fadd xl x2 x3

7 fmul x2, x3, x4

LEGEND:

D INSTRUCTION FETCH

1m EXECUTE

t FEED FORWARD

• WRITE-BACK

~ DELAYED

8 Ifadd x4, x5, x6

9 ImUIUr2,r3,r4~ ;;

10_1 ~iIliJT

11 r::::::3
12 r::::::3

Figure 9-30. Floating-Point Add and Multiply Timing

9.3.3.2 DIVIDE TIMING EXAMPLE. In this example (see Figure 9-31), during clock
2, an fdiv instruction is issued and begins execution. Other instructions continue to
execute simu.ltaneously with the divide until clock 13 when an integer div instruction
attempts to be issued. At this point, since the divider is nonpipelined, the sequencer finds
the divider busy and stalls issue until the previous divide finishes on clock 15. This is
also the first clock in which an instruction with a data dependency on the fdiv can issue,
as demonstrated by instruction 13.

•

MOTOROLA MC88110 USER'S MANUAL 9-43

1 I or r7,r7,rO tRiM ... Mat;

2 Ifmul x3, x4, xs' . J4
3 Ifadd x6, x6, X3@Ph>

11 I add r2, r2, r3

LEGEND:

D INSTRUCTION FETCH

Em EXECUTE

t FEED FORWARD

• WRITE-BACK

~ DELAYED

12 div r2 r3r4

13 fadd x7 x1 x2

Figure 9-31. Divide Timing

141 ~~

15 1..-1 ...IliIIJiIil;Q""iIil;Q;~;p.

16r::=3

17r::=3

II

9.3.4 Instruction Unit (Flow Control) Execution Timing

Flow control operations Oumps, branches and traps) are typically expensive to execute
in most machines because they disrupt normal flow in the instruction stream. When a
change in program flow occurs, the instruction pipeline must be reloaded with the target
instruction stream. During this time, bubbles can be introduced into the instruction
stream. However, since all of the execution units on the MC88110 operate
independently, previously issued instructions will continue to execute while the new
instruction stream makes its way to the issue stage of the instruction pipeline.

Design strategies such as delayed branching, the target instruction cache (TIC), and
static branch prediction help minimize the penalties associated with branch instructions
in the MC8811 0; therefore, the timing for branch instruction execution is determined by
many factors including the following:

• Whether or not the branch is taken.

• Whether or not the delayed branch option (.n) is specified.

• Whether the branch issues from the first or second issue slot.

• Whether or not the first two instructions of the target instruction stream are in the TIC
(TIC hit).

• Whether or not the target instruction stream is in the instruction cache.

• Whether the branch is predicted or unpredicted.

• Whether the prediction was correct or incorrect.

9-44 MC88110 USER'S MANUAL MOTOROLA

Table 9-5 lists the flow control instructions and the penalties associated with the
execution of these instructions. The causes of these penalties are explained in the
following paragraphs.

Table 9-5. Flow Control Instruction Execution Penalties

Instruction Position In Not Taken Taken

Issue Pair TIC Hit TIC Miss

Branch and Jump 1st 2nd Number of bubbles introduced into instruction
Instructions stream.

jmp, jsr · - - 3

· - - 2

jmp.n, Jsr.n · - - 2

· - - 1

br, bsr · - 1 3

· - 0 2

br.n, bsr." · - 0 2

· - 1 1

bbO, bb1, bcnd · 1 1 3

· 0 0 2

bbO.n, bb1.n, bcnd.n · 0 0 2

· 0 1 1

Trap Instructions Latency in clock cycles.

tbO, tb1, tcnd · Serialize+1 - Serialize + 3

tbnd · 1 - Serialize + 3

rte · - - Serialize + 3

Control Register Latency in clock cycles.
Instructions

Idcr · - - Serialize +~

ster · - - Serialize +~

xcr · - - Serialize +~

II

MOTOROLA MC88110 USER'S MANUAL 9-45

II

9.3.4.1 DELAYED BRANCHING. The instruction issue opportunity immediately
following a flow control instruction is called a delay slot (see Figure 9-32). If the flow
control instruction is the first instruction in an issue pair, then the second slot in the issue
pair would be the delay slot. If the flow control instruction is the second in an issue pair,
then the first issue slot of the next clock cycle is the delay slot.

FIRST IN SECOND IN
ISSUE PAIR ISSUE PAIR

bend.n m.

LEGEND:

CLOCK BOUNDARIES
mmm INSTRUCTION-ISSUE OPPORTUNITY

Figure 9-32. Branch Delay Slot

When a branch instruction is encountered, the clock cycle following the branch is only
used for refilling the instruction pipeline (Le., no instruction is issued). However, it is
possible to issue an instruction during the delay slot by using the delayed branching
option. The delayed branching option (.n) can be specified for all branch and jump
instructions. Delayed branching allows a useful instruction immediately following a
branch or jump instruction to be unconditionally executed during the penalty time
incurred by the disruption in program flow.

An instruction that might normally reside before the branch can be placed in the delay
slot. For example, the results from a loop can be stored during the delay slot since this
operation should occur whether or not the loop is executed again. Another option is to
place the first instruction of the target instruction stream in the delay slot, provided that
executing this instruction does not affect the program if the branch is not taken.

Although the MC88110 is capable of issuing two instructions per clock cycle, the
delayed branch option only allows a single instruction to be issued during the penalty
incurred from a flow control instruction. Since only one instruction can be issued during
the one clock cycle of penalty, a single bubble may still be introduced into the instruction
pipeline.

9-46 MC88110 USER'S MANUAL MOTOROLA

NOTE

Delayed branching was developed for the MC88100 to help
reduce penalties associated with changes in program flow;
however, in future machines, delayed branching may be
implemented in software and may actually reduce
performance. Therefore, it is recommended that new software
(e.g., compilers) avoid delayed branching.

'9.3.4.2 TARGET INSTRUCTION CACHE. The target instruction cache (TIC) allows
the first two instructions at the target address of a branch instruction to be executed while
the instruction pipeline is being refilled. The TIC can be used in place of, or in
conjunction with, the delayed branching option.

As shown in Figure 9-33, the TIC is a fully associative, 32-entry, logically addressed
cache which must be flushed on a context switch. Each entry in the cache can maintain
the first two instructions of a branch target instruction stream and a 31-bit logical address
tag. The 31-bit logical address tag holds the 30-bit address of the branch instruction and
a user/supervisor bit.

ADDRESS OF
BRANCH INSTRUCTION

FIRST TWO INSTRUCTIONS OF
TARGET INSTRUCTION STREAM

•••

A------I--
32 ENTRIES ADDRESS TAG 31

~ ...
I ~~~~o W ~~~I_~_rn_oc_T_~_NO~~~~I_~_ffi_u_cr_~_N_1~~~

"""IIIiO<;,-------- 2WORDS I LINE -------.,>~

Figure 9·33. The Target Instruction Cache (TIC)

One entry in the TIC is automatically filled when a branch is taken (assuming all
conditions are met). Each time the branch instruction at that address is prefetched, the
TIC is accessed (Le, a TIC hit occurs) in parallel with the decode of the branch
instruction.

When a TIC hit occurs and the branch is taken, the two instructions in the TIC entry are
ready to execute on the nextlclock cycle. The first instruction fetched from the TIC must
be placed in the first-issue slot of the clock cycle. If the branch is not taken, the TIC entry
remains valid.

If a TIC miss (a branch instruction is encountered that is not already in the TIC) occurs,
the branch is taken, and there are no empty (invalid) entries in the TIC to accept a new
entry, then one of the valid entries is chosen for replacement using a FIFO replacement
policy. If the branch is not taken, no entry is allocated in the TIC.

..

MOTOROLA MC88110 USER'S MANUAL 9-47

•

There are several conditions when the TIC is not used to accelerate a flow control
operation. First, jump instructions are not accelerated by the TIC. In other words, the first
two instructions at the target instruction stream of a jump operation are not entered in the
TIC. Second, when a delayed branch and the instruction in its delay slot are not issued
during the same clock, the first two instructions at the target instruction stream are not
entered in the TIC. Third, when two instructions at the target instruction stream can not
be fetched together, those two instructions will not be entered in the TIC. For example, if
the target address of a branch operation points to the last word on a cache line, only one
instruction can be fetched, thus no instructions at the target instruction stream will be
entered in the TIC. It is important to note that this does not depend on whether the two
instructions can actually issue together. For more information on instruction fetch timing,
refer to section 9.2.1.1 Instruction Cache Timing.

The advantages of the TIC depend on whether a branch instruction resides in the first or
second issue slot as well as whether the delayed branching option was used. The
following examples show how instruction issue is affected by the TIC when a branch
instruction is in the first and second issue positions for both delayed and nondelayed
branches.

9.3.4.2.1 Delayed Branching Example. When the delayed branching option is
used and the branch instruction resides in the first issue slot, the instruction following the
branch is placed in the second issue slot. This is possible since delayed branching
causes the instruction in the second issue slot to be issued whether or not the branch is
taken. The MC8811 0 requires an additional clock cycle to refill the instruction pipeline
with the branch target instruction stream. During this clock cycle, if there is a TIC miss,
two bubbles are created (see Figure 9-34). However, when there is a TIC hit for this
branch instruction, these two bubbles are filled by the two instructions stored in the TIC.
Thus, when delayed branching is used in the first issue slot and a TIC hit occurs for the
branch, there are no interruptions in the execution of instructions.

A different situation occurs when a branch instruction using delayed branching resides
in the second issue slot. The instruction following,the branch is issued alone during the
next clock cycle (clock cycle 1); thus, only one opportunity to issue an instruction is lost
(see Figure 9-34). When there is a TIC miss the instruction pipeline is refilled in the clock
cycle after the branch (clock 1). Execution continues in the second clock cycle after the
branch (clock cycle 2). When there is a TIC hit for this branch, the two instructions at the
target address are ready to execute during clock cycle 1; however, the instruction which
was placed in the delay slot must be placed in the first issue slot of clock cycle 1. Since
the first instruction fetched from the TIC must also be placed in the first issue slot of a
clock cycle, the instructions from the TIC cannot be issued until clock cycle 2 after the
delay slot instruction has been issued. This results in a bubble after the delay slot
instruction. Therefore, in the specific case where delayed branching is used and the
branch instruction falls in the second issue ·slot, the TIC provides no advantage. Since
the TIC provides no advantage in this specific case, if a delayed branch and the
instruction in its delay slot are not issued during the same clock cycle, then that branch
instruction will not be entered in the TIC.

9-48 MC88110 USER'S MANUAL MOTOROLA

FIRST IN ISSUE PAIR SECOND IN ISSUE PAIR

bend.n

add
neO, r7, @LOOPl

ra, r7, r6

add
bend.n

add

c=J

r5, r4, r3

neO, r7, @LOOPl

r8, r7, r6

LEGEND:

CLOCK BOUNDARIES
DE BUBBLES WHICH OCCUR AS THE RESULT OF ATIC MISS

c::J BUBBLES WHICH OCCUR REGARDLESS OF ATIC HIT OR MISS

Figure 9-34. Effect of the TIC When Delayed Branching Is Used

9.3.4.2.2 Nondelayed Branching Example. When the delayed branching option is
not used and the branch instruction resides in the first issue slot, no instruction is issued
from the second issue slot. Additionally, the MC8811 0 uses another clock cycle to refill
the instruction pipeline with the target instruction stream. During this clock cycle, if a TIC
miss occurs, two more opportunities to issue instructions are lost. Thus, a total of three
bubbles occur when a nondelayed branch is prefetched into the first-issue slot and a TIC
miss occurs (see Figure 9-35). When there is a TIC hit for this branch case, the second
issue slot remains vacant (the first issue slot contains the branch instruction), resulting in
a loss of one opportunity to issue an instruction. However, the instructions fetched from
the TIC are ready to execute on the next clock cycle. Thus, when there is a TIC hit, and a
nondelayed branch is prefetched into the first issue slot, only one opportunity to issue an
instruction is lost.

When a nondelayed branch instruction is prefetched into the second issue slot, and a
TIC miss occurs, the MC88110 uses one additional clock cycle to refill the instruction
pipeline. This delay introduces two bubbles into the instruction pipeline (see Figure 9
35). When there is a TIC hit for this branch case, the two instructions from the TIC will be
ready to execute during the next clock, thus no bubbles occur. This case (branch •
instruction in second issue slot with no delayed branching) is important because it •
shows that the TIC provides the opportunity to execute a nondelayed branch instruction
without incurring a penalty.

MOTOROLA MC88110 USER'S MANUAL 9-49

FIRST IN ISSUE PAIR SECOND IN ISSUE PAIR

bend

c=J
neO, r7, @LOOP1 add

bend

r5, r4, r3

neO, r7, @LOOP1

•

LEGEND:

................. CLOCK BOUNDARIES

1m! BUBBLES WHICH OCCUR AS THE RESULT OF ATIC MISS
c=J BUBBLES WHICH OCCUR REGARDLESS OF ATIC HIT OR MISS

Figure 9-35. Effect of the TIC When Nondelayed Branching Is Used

Table 9-6 summarizes the penalties incurred by executing branch instructions when the
branch is taken. It is important to note how the penalties vary with respect to TIC hits
versus TIC misses, as well as with respect to whether or not delayed branching is used.

Table 9-6. Penalties Incurred by Branch
Instructions When the Branch Is Taken

TIC I Delayed Branch INondelayed Branch
Hit/Miss

Branch Instruction in First Issue Slot

TIC Miss I 2 Bubbles I 3 Bubbles

TIC Hit I ,0 Bubbles I 1 Bubble

Branch Instruction in Second Issue Slot

TIC Miss I 1 Bubble I 2 Bubbles

TIC Hit I 1 Bubble I oBubbles

9.3.4.3 STATIC BRANCH PREDICTION. Static (compiler-directed) branch
prediction is a mechanism by which software (e.g. compilers) can give a hint to the
machine hardware on which direction the branch is likely to go. When a branch
instruction encounters a data dependency, the branch instruction is issued to the branch
reservation station where it waits for the required source operand to become available.
Rather than stalling instruction issue until the source operand is ready, the MC8811 0
predicts which path the branch instruction is likely to take, and instructions are fetched
and executed along that path. When the branch operand becomes available, it is
forwarded to the instruction unit and the branch is evaluated. If the predicted path was
correct, program flow continues along that path; otherwise, the processor backs up using
the history buffer, and program flow resumes along the correct path.

There is a scenario where a conditional branch, whose source data is not available, will
not be predicted on the MC88110. If the data which is being tested by the branch
operation is not available and will not be transmitted on the destination bus in the same
format as the waiting branch needs it, instruction issue will stall until the data becomes

9-50 MC88110 USER'S MANUAL MOTOROLA

available. For example, if a conditional branch is testing r6 and the data in r6 is not yet
available, another check is made before allowing the branch operation to issue to the
branch reservation station. If r6 is the destination of a double-precision operation,
instruction issue will stall until 'r6 has been written back into the register file and read
back out again for the waiting branch operation.

The MC88110 has three conditional branch instructions: bbO (branch on bit clear), bb1
(branch on bit set), and bend (conditional branch). The static branch prediction
mechanism is defined in the MC88110 to maximize performance of conditional
branches. The implementation of branch prediction is not a change from the MC88100
instruction set but is simply a convention which the compiler can use to optimize branch
performance on the MC8811 O.

The preferred direction of program flow (Le., taken or not taken) for each branch
instruction is predicted based on hints provided by the software. Table 9-7 shows how
the MC8811 0 interprets the bbO, bb1, and bend instructions for static branch prediction
purposes. When the MC8811 0 encounters a bb1 instruction, the branch is predicted to
be taken. When a bbO is encountered, the branch is predicted not to be taken. How the
MC88110 interprets the bend instruction depends on which instruction encoding
variation is used: if the condition being tested for is either greater-than-zero, greater
than-or-equal-to-zero, or not-equal-to-zero (Le., bit 21 in the instruction encoding is set),
the bend instruction is predicted to be taken. Conversely, if bit 21 is clear, the branch is
predicted to not be taken. This convention is consistent with the common use of bend as
the loop test-and-branch or null-check operation.

Table 9-7. Branch Predictions for
Conditional Branch Instructions

Instruction Prediction

bend rS1 Condition Bit 21

=0 0 Not Taken

*0 1 Taken

>0 1 Taken

<.0 0 Not Taken

~O 1 Taken

so 0 Not Taken

bb1 Taken

bbO Not Taken

Branch instructions whose source data is not available and therefore must be issued to
the branch reservation station are said to be predicted. When the MC88110 takes a
predicted branch which later turns out to have been incorrect (Le., the processor
conditionally executed the wrong path), that branch instruction is said to be
mispredicted. Branch instructions which are issued with source data already available
(and thus do not have to wait in the branch reservation station) are said to be

•

MOTOROLA MC88110 USER'S MANUAL 9-51

II

unpredicted. Instructions issued as a result of a predicted branch are said to be issued
conditionally, and are tagged as such until the branch is resolved.

When a branch is. resolved and it has been correctly predicted, the conditional tag on all
instructions issued conditionally is cleared, and instruction execution continues without
interruption along the predicted path. In the event that a branch is mispredicted, the
instruction unit causes all execution units to flush all instructions in their respective
pipelines that are tagged as conditional. In addition, the instruction unit then reverses the
effects of any conditionally issued instructions that have completed execution, thereby
returning the machine to its state at the time the branch was issued. Execution then
resumes down the correct path. The mechanism used to reverse the effects of
mispredicted branches is the history buffer. A detailed description of the history buffer
can be found in Section 7 Exceptions.

If an instruction fetch is attempted conditionally and misses both the TIC and instruction
cache then a bus transaction to read the instruction cache line from memory is initiated.

The MC8811 0 places the following restrictions on the execution of conditionally issued
instructions:

• The MC8811 0 conditionally issues instructions down only one predicted path at a
time; instruction issue will stall if an attempt is made to issue a predicted branch
instruction while instructions are being issued conditionally. Unpredicted branches
are allowed to be issued while instructions are being issued conditionally.

• st instructions are issued conditionally to the store reservation station but are not
granted access to the data cache or the external bus until the branch is favorably
resolved.

• Id instructions are issued conditionally to the load buffer and execute normally if
they hit the address translation cache (ATC) and data cache. If a conditionally
issued Id instruction causes a miss in the ATC or data cache, then further execution
of that instruction is stalled until the branch is favorably resolved.

• The number of instructions which can be executed conditionally after the issue of a
predicted branch instruction is limited by the depth of the history buffer (12
instructions).

The following is an example of static branch prediction:
1. The MC8811 0 encounters a bb1 instruction which cannot be executed because of

a scoreboard hold on its source register.

2. The MC8811 0 always predicts bb1 to be taken, so the instruction is issued to the
branch reservation station while the processor continues instruction execution at
the branch target address.

3. When the source data for the branch instruction becomes available, the initial bb1
instruction is executed. If it was correctly predicted, then the bb1 has been
successfully executed without stalling the instruction pipeline while source data
becomes available. If the branch was mispredicted, the MC88110 reverses its state
to when the bb1 instruction was issued.

9-52 MC88110 USER'S MANUAL MOTOROLA

The MC8811 0 is able to reverse its machine state at a rate of two instructions per clock
cycle; therefore, if 8 instructions were executed conditionally, and the branch was
mispredicted, the MC8811 0 will require 4 clock cycles to return to the correct state.

9.3.4.4 UNPREDICTED BRANCH TIMING EXAMPLES. The following notation is
observed in the timing diagrams for the examples in the following paragraphs:

Nx: An instruction labeled with an "N" is the next sequential instruction following a
branch in the program.

Tx: An instruction labeled with a "Tn is the target instruction of a branch-Le., the
instruction stream to which control will be transferred if the branch condition is
evaluated to be true.

bxx: A generic label for br, bbO, bb1, or bend.

bxx.n: A generic label for a branch instruction with the delayed branching option
(Le., br.n, bbO.n, bb1.n, or bend.n).

9.3.4.4.1 Unpredicted Branch Not Taken Example. This example assumes that
the conditions have been resolved for all branch instructions by the time they are
issued-Le., the branches are unpredicted. In general, branches which are not taken
require only the instruction issue slot they occupy and do not introduce additional
bubbles into the instruction pipeline. One exception to this is when a nondelayed branch
is issued as the first instruction in an issue pair. This exception is illustrated by instruction
o in Figure 9-36. Notice that instruction 1 cannot begin execution on the same clock as
the branch (instruction 0). This is because the MC8811 0 has no way of knowing if the
branch will be taken or not and must resolve the branch before any additional
instructions can be issued. As a result, one opportunity to issue an instruction is lost.

Instruction 7 is a delayed branch; therefore, instruction 8 is executed whether or not the
branch is taken and instruction 8 is issued along with instruction 7. In this case, no
opportunities to issue instructions are lost.

•

MOTOROLA MC88110 USER'S MANUAL 9-53

o 1 bxx ffrn-rdi"rnTfd

1 1 NO t?'¥ffffff.@.4;.x)Ml~

2 I N1 @ ;lM.:.:...J.·:iji:

3 1 N2 IM®tBWffi1

4 1 bxx 'i'j:rrrrn:r, n1id

5 [I=~NQ:O=lmm$OO;.i.·.·mamMmUmAlli.l:.11
6 1 _..:.;.N.;...1_-II@~tj~.$~((:MMW""w;.:.: : __

7 1 bxx.n friyH"rrBrl Ii Ii

8 1 NO With.;....
9 I N1

LEGEND:

o INSTRUCTION FETCH

mE EXECUTE

II WRITE-BACK

~ DELAYED

ITIl TARGET INSTRUCTION CACHE ACCESS

10 1 bxx.n illiiidiiliiil'
11 1 __NO_-..IIlilll~

12 1 _..;;.;"N1~--t;Q;~

1300

14 []B.

II

Figure 9-36. Unpredicted Branch Not Taken Timing

9.3.4.4.2 Unpredicted Branch Taken with TIC Miss Example. In this example
(see Figure 9-37), instruction °is a branch instruction that is issued as the first instruction
in an issue pair. In clock 2 the branch is detected in the first issue slot and instruction 1 is
unconditionally delayed in case the branch is taken. The TIC is accessed during clock 2
but the target instructions are not found in the cache (TIC miss). Meanwhile the
instruction unit, in preparation for the issue of the next instruction pair, has already
fetched the next two sequential instructions, N1 and N2. By clock 3 the processor has
determined that the branch is to be taken, so NO, N1 and N2 are discarded. At the same
time, the branch target address computed during clock 2 is used to fetch the first two
instructions of the target instruction stream from the instruction cache. During clock 4,
normal execution of the target instruction stream begins. As a result of the branch taken
at instruction 0, three bubbles have been introduced into the instruction pipeline.

The second branch in the example (instruction 7) is an example of a taken branch
issued as the second instruction in an issue pair. The execution of this branch is similar
to that of the first branch but this time there is no post-branch instruction to be issued in
the same clock; thus, only two bubbles are introduced into the instruction pipeline.

9-54 MC88110 USER'S MANUAL MOTOROLA

1 1 NO w~~1j'/ZZ/2ZA

2 1 N1 w////ZI

3 1 N2 fZ?Z22z;t

4 L-I_..:..To=------li:I~:i:i:i:ir§:i:i:i:i:~@:i:i:i:i*;l,i;i;j@xi;i;W;j~~ti:i:i:il*ji:i:i:i:.:;.~~:__

51 _-=-T1.=...----I.:iIi:i:i:i:ji~i::i::i:i:tti:i:i:i:~~t~t.i:i:i:i::~W~:*t~tM~.~:__

LEGEND:

D INSTRUCTION FETCH

Em EXECUTE

III WRITE-BACK

[i] DELAYED

131 INSTRUCTION CACHE ACCESS

ITIl TARGET INSTRUCTION CACHE ACCESS (MISS)

~ ABORT

8 1 NO f'l/Tfi'/A
9 1 N1 VH2U~

10 I ____.To__

111 __T1__

12 _I S
13 I S

Figure 9-37. Unpredicted Branch Taken with TIC Miss Timing

9.3.4.4.3 Unpredicted Delayed Branch Taken with TIC Miss Example. This
example uses the same code sequence as the previous example, except the branch
instructions in this example use the delayed branching option (see Figure 9-38).

The first branch operation (instruction 0) is issued in the first issue slot and a TIC miss
occurs. Instruction 1 (NO) is executed along with the branch since the delayed branch
option (.n) has been used. The processor determines that the branch is to be taken, so
the next two instructions in the current instruction stream are discarded during clock 2. 9
Also during clock 2, the target instruction stream is computed. The MC8811 0 begins
executing the target instruction stream during clock 3 (instructions 4 and 5). Because of
the TIC miss, two opportunities to issue instructions are lost during clock 2.

Another delayed branch occurs during clock 4. This time, the branch is fetched into the
second issue slot. Again, there are no entries in the TIC corresponding to this branch
instruction (probably because this is the first time this branch instruction has been
executed). Since the delayed branch option (.n) is used, the next instruction in the
stream is issued during the next clock cycle; however, since the delayed branch option
only allows the next instruction after a branch to be issued, instruction 9 is aborted
during clock 5.

Because of the delayed branch (.n) feature, the number of instruction bubbles
introduced by each branch in this example have been reduced by one from the
nondelayed branches in the previous example. It can be seen from Figure 9-38 that
because of the delay slot, the instruction following the branch is always executed and

MOTOROLA MC88110 USER'S MANUAL 9-55

therefore never has to be delayed or aborted. Delayed branching allows a bubble to be
replaced by the issue of an instruction.

It is usually possible to rearrange the code sequence "br.n, NO" to be "NO, br". It is also
possible that both sequences may have the same performance and functionality; thus, in
the MC8811 0, little benefit may result from the use of the delayed branching option. In
future implementations, delayed branching may give worse performance than
nondelayed branching; therefore, while the 88000 architecture and the MC88110
continue to fully support the delayed branch option, it is recommended that new
compilers not use this option and that the use of delayed branching be phased out
completely over time. For a more in-depth discussion of the delayed branch option, refer
to 9.3.4.1 Delayed Branching and 9.3.4.2 Target Instruction Cache.

o 1 bxx.n ft9n-riij£finii_

1 1 NO

2 '''---....,;",;.N1 ---'''it'l;L.t~L.t~L.t~L.tZL.tZL.t':AL.I

3 _I_N2 Ll:....2....z....2....z....z....z__J
4 1[=]ToC::l.m.f!tMm.. l1Mt•••

5 II~T1r--,,~m:$m.t::}m::::km..::¥m.,m4~m¥--

6 1 T2 @.:..';. 4 ;; AM;.

7 1 bxx.n fFA:¥j fn·a. f ir_

•
LEGEND:

o INSTRUCTION FETCH

lit EXECUTE

II WRITE-BACK

rm DELAYED

~ INSTRUCTION CACHE ACCESS

[II] TARGET INSTRUCTION CACHE ACCESS (MISS)

~ ABORT

8 10.-1 _~NO~_

9 1L.-_...;.,;.N1~--..a..~&..oZ&..oZ&..oZ&..oZ&..oZ&..oZ&.ll:A

10 1 TO

11 1 T1

12 10.-1 __-,S
131 __..JS

Figure 9-38. Unpredicted Delayed Branch
Taken with TIC Miss Timing

9.3.4.4.4 Unpredicted Branch Taken with TIC Hit Example. This example
illustrates taken branches which hit in the TIC (see Figure 9-39). A branch instruction is
issued on clock 2, and the TIC is accessed using the address of the branch instruction.
Since instruction 1 is in the second issue slot and has already been fetched, it is
aborted, resulting in one bubble in the pipeline. Thus, the TIC has reduced the latency of
the branch by a full clock and has kept two potential bubbles from being introduced into
the instruction pipeline. Notice that the target instructions are available a clock earlier
when a TIC hit occurs than they are when a TIC miss occurs since the target instructions
have to be fetched from the instruction cache in the case of a TIC miss.

9-56 MC88110 USER'S MANUAL MOTOROLA

The branch at instruction 5, which is issued as the second instruction in an issue pair,
does not result in any wasted fetches and thus introduces no bubbles into the pipeline.
There are no wasted fetches because the TIC has the first two instructions from the target
instruction stream ready in clock 4.

The bsr (instruction 8) has the same timing as any other taken branch. This example
shows that the write-back of the return address to r1 occurs in time for the first target
instruction to use it without a stall.

o 1 bxx hnj jj jj jj i1\ it

1 1 NO t&&~///L~

2 1 TO

3 1 T1

41 T2 I@

5 1 bxx httti¥n,.iI in1

6 [I=:1ToC::JltUffiithB·m·~.·xrn··rnJtrn:i.;IX·~I:.11
7 Ir----:rT:;-1-"m8.im'imimJ...~mb.m...mw-;--

Figure 9·39. Unpredicted Branch Taken with TIC Hit Timing

LEGEND:

o INSTRUCTION FETCH

1m EXECUTE

t FEED FORWARD

• WRITE-BACK

~ DELAYED

ITID TARGET INSTRUCTION CACHE ACCESS (HIT)

IZI ABORT

::
11 1 T1

12 1 S
13 1 S

II
9.3.4.4.5 Unpredicted Delayed Branch Taken with TIC Hit Example. When a
delayed branch is issued as the first instruction in an issue pair, the fetch of the next
instruction is not wasted and no pipeline bubbles occur. When a delayed branch is
issued as the second instruction in a pair (see instruction 5 in Figure 9-40) the next pair
of instructions are fetched from the instruction cache even though the second instruction
in the pair will not be issued. For this reason, instruction 7 in Figure 9-40 is not issued,
thus introducing one bubble into the instruction pipeline. A nondelayed branch
introduces one bubble when issued in the first slot and zero bubbles when issued in the
second slot; a delayed branch introduces zero bubbles when issued from the first slot
and one from the second.

The timing of a delayed branch to subroutine (bsr.n) is the same as other conditional
delayed branches when there are no data dependencies on its result. However, when
there is a data dependency on the result, one bubble is introduced into the pipeline. For

MOTOROLA MC88110 USER'S MANUAL 9-57

example, the bsr.n at instruction 10 introduces a data dependency (r1). When the
bsr.n is issued, r1 is marked "busy" in the scoreboard. When the add at instruction 11
tries to be issued, it finds r1 busy and is delayed one clock until r1 is ready. Thus, an
instruction in the delay slot of a bsr.n that has a data dependency on the result of the
bsr.n, will introduce one bubble into the pipeline before receiving the required data. If
the bsr.n had been issued as the second instruction in an issue pair, no bubble would
have occurred.

o 1 bxx.n f"'fj~fitffWffffl

1 1 NO f.'
2 1 TO

4 1 T2 f.rt~%}m*tt-

5 1 bxx.n h¥ri7frfitm*a

Figure 9-40. Unpredicted Delayed Branches Taken
with TIC Hit Timing•

LEGEND:

INSTRUCTION FETCH

EXECUTE

FEED FORWARD

WRITE-BACK

DELAYED

TARGET INSTRUCTION CACHE ACCESS (HIT)

ABORT

6 liNNinO-""iim.«m.i;m.i~m::¥m.J:m.:-s-:mi:"m.:.:<. ..

7 _I__N_1_......rz..-....;,Z.....z.....z_z....z....:I'.J.....

8 1 TO

9 _I T.....1 __

10: bsr.n ==
11 : add r2, rl, r~

12 _I T.....O_-a;u;~iiiIiI

13 DI3
14 [![3.

9.3.4.5 PREDICTED BRANCH TIMING EXAMPLES. The following paragraphs
illustrate various cases of predicted branch timing.

9.3.4.5.1 Predicted Branch Example. Branch prediction does not affect the latency
of flow control instructions. Instead, branch prediction is used to accelerate the issue of
conditional branches by allowing branch instructions to issue even when the branch
condition cannot be evaluated due to a data dependency. The timing of predicted
branches after being issued is the same as shown for the unpredicted branches in the
preceding pipeline diagrams. The effect of prediction on branch issue is illustrated in the
pipeline diagrams which follow.

9-58 MC88110 USER'S MANUAL MOTOROLA

The prediction of the branch evaluation is based on which branch instruction is used for
the operation (refer to 9.3.4.3 Static Branch Prediction for a detailed explanation of
how branch predictions are made and carried out). While the branch waits in the branch
reservation station for its source data, instructions along the predicted path are
conditionally fetched and executed. If the branch turns out to have been mispredicted,
the instruction unit causes all execution units to flush all instructions in their respective
pipelines which are tagged as conditional, and the instruction unit then reverses the
effects of any conditionally issued instructions which have completed execution and
might have erroneously updated the machine state. Execution then resumes down the
correct path.

If the MC88110 did not implement branch prediction, execution would proceed as
illustrated in the first instruction sequence shown in Figure 9-41. The branch issue would
be delayed until clock 3, when the results of the compare instruction are available, and
the subsequent issue of instructions down the new instruction stream would not have
been able to start until clock 4. With branch prediction, however, the MC8811 0 can begin
execution down the predicted path one clock earlier, thus eliminating two instruction
bubbles from the instruction stream.

If the cmp instruction was issued as the second instruction in a pair and the dependent
branch was issued as the first instruction of the next issue pair, then evaluation of the
branch would not have been delayed and branch prediction would not have improved
performance.

•

MOTOROLA MC88110 USER'S MANUAL 9-59

2 _I__NO__rt...~...~...~...~....~....2I__
3 _I__1_0_illi:ilj··lilili/li·IiaIi·IifiIfIf WITHOUT BRANCH PREDICTION

4 1 T1

5 L:!LS
6 l:f[3

o : ~mp r2,r3.r4 a =
1. bbOr2,7 ~m

Figure 9-41. Branch Prediction Effect Timing

9.3.4.5.2 Predicted Branch Taken with TIC Hit Example. Figure 9-42 illustrates
the operation of branches which are predicted to be taken. The first branch at instruction
1 shows a correctly predicted branch. The second branch at instruction 7 shows a
misprediction. Compared to not having branch prediction at all, the correct prediction
saves two instruction bubbles, and the misprediction adds two instruction bubbles. Thus
branch prediction provides the same performance as not having branch prediction if the
prediction is completely random. If the prediction is more than 50% accurate, prediction
provides a net increase in performance.

WITH BRANCH PREDICTION
4 1__T_2__6_,_'_'
5 II.--_T_3_'_;0;;0._.._

6 c:E3
7 I::li3

2 [I=}ToC:Jmm<l:biEJ«m;·•••1
3 _I__T_1__._..1:

INSTRUCTION FETCH

EXECUTE

FEED FORWARD

WRITE-BACK

DELAYED

ABORT

TARGET INSTRUCTION CACHE (HIT)

LEGEND:

D
mit
t•~

lZJ
IIIIIII

..
The prediction mechanism was designed such that flow control will be correctly
predicted more than 50% of the time. For example, the majority of branch operations are
used for looping. The majority of loops use a counter which is decremented to zero; thus,
the loop branch instruction is taken most of the time. Since the bcnd gtO instruction is
widely used to test if a counter has been decremented to zero, it follows that this
instruction is used to predict a change in instruction flow.

9-60 MC88110 USER'S MANUAL MOTOROLA

o : eme r2,r3,r4 : &5+=
1 . bbl r2!2ITB~imHmf&2 liilill

2 1 TO

3 I T1
4 I T2

51 13__@

LEGEND:

o INSTRUCTION FETCH

• EXECUTE

t FEED FORWARD

• WRITE-BACK

~ DELAYED

DID TARGET INSTRUCTION CACHE ACCESS (HIT)

r2J ABORT

8 1[=l!ToC:D;Pf!U[i.';f!·;.m.•~c~~~z~z?:tz~z~~~

9 IC:JT!:1=Jlmt.m.@B..gm.!ml~Z~2~ZZzZZ2Z2~:A
10 1 12 V/U//~

11 1 13 r/«U/A

12 I NO

13 1 N1

14 []B.

15~

Figure 9-42. Predicted Branch Taken Timing

9.2.4.5.3. Predicted Branch Not Taken with TIC Hit Example. Figure 9-43
shows the case of branches which are predicted not to be taken. The first branch is
correctly predicted and the second is mispredicted. The relative performance cost and
benefits are the same as for the previous example.

II

MOTOROLA MC88110 USER'S MANUAL 9-61

o : em!.! r2,r3,r~ ==
1. bbor2,3.= Ai ..•

2 I NO

3 I Nl

4 I N2

5 I N3

LEGEND:

D INSTRUCTION FETCH

mil EXECUTE

t FEED FORWARD

II WRITE-BACK

~ DELAYED

~ INSTRUCTION CACHE ACCESS

~ ABORT

8 I NO

9 I Nl lie

10 I N2

11 I N3

12 I TO M
13 I T1

14 [li3

15 LIT:5

II

Figure 9-43. Predicted Branch Not Taken Timing

9.3.4.5.4 Long Latency with Misprediction Example. This example (see Figure
9-44) shows the effect of branch prediction when the availability of the branch source
register is delayed for several clocks. The branch at instruction 1 is dependent on data
(r2) from the Id at instruction O. The Id is issued in clock 2 but is delayed in a load buffer
(because of a previous Id instruction that is not shown). After the branch is issued in
clock 2, the branch waits in the branch reservation station for the load to complete.
Because the branch is a bcnd neO, the branch is predicted to be taken, so on clock 3
instruction issue begins along the branch target instruction stream. Four instructions, TO
T3, are issued conditionally; the issue of T4 and T5 is delayed because of a data
dependency. On clock 5, the data from the Id at instruction 0 becomes available to the
instruction unit, and the branch condition is evaluated during that same clock. During
clock 6, it is known that the branch was mispredicted, so the first two instructions from the
correct instruction stream, NO and N1, are fetched from the instruction cache. At the
same time, the issue of instructions T4 and T5 is canceled, and the machine state is
restored to the state before the issue of instructions T2 and T3. Instruction issue is
delayed one more clock while the effects of instructions TO and T1 are reversed during
clock 7. In clock 8, instruction issue is resumed down the correct path.

9-62 MC88110 USER'S MANUAL MOTOROLA

2 1 __TO__

3 1 __T1__

41 __T2__

5 1 T3

........-==ii5iS

~

16......--=-m
ri9!.......-..s1

LEGEND:

D INSTRUCTION FETCH

II EXECUTE

t FEED FORWARD

• WRITE-BACK

~ DELAYED

fZ] DELAYED IN LOAD BUFFER

~ ABORTED (BUBBLE)

m TARGET INSTRUCTION CACHE ACCESS (HIT)

[fill DATA CACHE ACCESS

63 INSTRUCTION CACHE ACCESS

~ UNDO

6 1 __T4 Eil""'"'??@""'"'~'"""'"""'"""""""'~......__~__~__~....~....~....~_~

7 1 __T_5_~~~~~..&Z....c.~....c.~....&Z....&Z....ll:ZI....a

81 NO ~

91 N1 ~

10 I N2 S
11 I N3 S

Figure 9-44. Long Latency with Misprediction Timing

9.3.5 Graphics Unit Execution Timing

The process of rendering realistic animated 3D images in real time is computationally
intensive; therefore, the MC8811 0 has a dedicated set of instructions for accelerating 3D
graphics rendering algorithms. All graphics instructions in the MC88110, except pixel 11_.
multiplication, execute in a single clock cycle. Like all other MC88110 instructions,
graphics instructions are capable of issuing two at a time. They can be intermixed freely
with other integer and floating-point instructions with no restrictions on whether they are
in the first or second slot in an issue pair. Also, as with the other execution units,
instruction pipelines in the graphics unit are not exposed to the programmer. This means
that NOPs are not required to schedule pipeline delay slots. Data dependencies are
automatically detected and interlocked by the same hardware scoreboard mechanism
used for all other instructions.

There are two independent graphics units in the MC88110: a pixel adder and a pixel
packing/unpacking unit. Instructions executed by the pixel adder include padd, padds,
psub, psubs, and pcmp. The pixel packing/unpacking unit is a specialized bit-field unit
for packing, unpacking, and shifting pixel or fixed-point data. Instructions executed by the
pixel packing/unpacking unit include ppack, punpk and prot. Both of the graphics units
execute instructions in a single clock.

MOTOROLA MC88110 USER'S MANUAL 9-63

•

Table 9-8 shows the execution timings for the MC8811 0 graphics instructions. Note that
the pmul instruction is executed by the multiply unit, which also executes floating-point
and integer multiplication operations.

Table 9-8. Graphics Instruction Execution
Timings in Clock Cycles

Instruction Execution Latency
Unit

padd, psub Pixel Add 1

padds, psubs Pixel Add 1

pcmp Pixel Add 1

ppack Pixel Pack 1

punpk Pixel Pack 1

prot Pixel Pack 1

pmul Multiply 3

In the example shown in Figure 9..45, a padd and a punpk are issued during clock 2
each to their respective graphics execution units. In clock 3, an attempt is made to issue
a padd and a psub; however, both of these instructions use the graphics adder. As a
result, the psub is delayed one clock, and is issued in clock 4. Also in clock 4, a pmul
instruction is kept from issuing because of a data dependency (r4) on instruction 3. On
clock 5 the pmul and an add are issued. On clock 8, the ppack receives the required
data from the multiplier and is issued. The punpk fetched in clock 5 cannot be issued to
the packing unit during the same clock as the ppack instruction and so its issue is
delayed until clock 9.

o Ipadd r2, r4, r6

1 I punpk ra, r4

2 lpadd r6, r10, r12

3 psub r4, r10, r12

LEGEND:

D INSTRUCTION FETCH

m EXECUTE

t FEED FORWARD

II WRITE-BACK

[Zl DELAYED

mul ra, r8, r4

5 I add r4, r4, 1 [·.&4Uti.;;gf

ack r14, r8

7 I punpk r8, r6 W..wff;Z-§.M..w..#/..#&'"~4

8 Ipadd r2, r4, r6

Figure 9-45. Example Graphics Pipelines

9-64 MC88110 USER'S MANUAL MOTOROLA

9.3.6 Instruction Execution Example
This example demonstrates the instruction sequencing capability of the MC8811 0 for a
highly computational, floating-point intensive process-a 3D transformation involving
matrix multiplication. For this example, matrix R, a vertex, is multiplied by the transform,
matrix K, and the resulting matrix is R' (where R' =R * K) as shown in the following
illustration:

R'

[X' ,V',Z',H']

R

[X,V,Z,H] *

K

AO BO Co DO

A1 81 C1 D1

A2 B2 C2 D2

AS 8S C3 DS

To perform this matrix multiplication, the code sequence shown in Figure 9-46 performs
32 floating-point multiplications, 24 floating-point additions, 8 loads, and 8 stores. The 80
instructions in the code sequence are executed in 41 clock cycles, resulting in an
average rate of 1.95 instructions per clock cycle. In addition, at 50 MHz, this sequence
results in 2.4 mega-points per second, 68 double-precision MFLOPS, and 97 MIPS.

II

MOTOROLA MC88110 USER'S MANUAL 9-65

•

0123 .. 567890123 .. 567890123 .. 567890123 .. 5678901

1-1-1-1 hul.ddd T2 20 A02 1-1-1-1 fodd.ddd T2 T2 Tt

1-1-1 Id.d Yl IPTR YHDX 1-1-1-1 f.ul.ddd Tl Xl Al0

1-1-1-1 hul.ddd T3 HO A03 1-1-1-1 fodd.ddd TO TO T6

1-1-1 Id.d 21 IPTR 2HDX 1-1-1-1 hul.ddd T5 Yl All

1-1-1-1 fadd.ddd TO T6 Tl 1-1-1-1 fodd.ddd 13 13 H
1-1-1-1 f.ul.ddd Tl XO Al0 1-1-1-1 f.ul.ddd H 21 A12

1-1-1-1 Id.d HI IPTR HHDX 1-1-1 sLd TO TEMP HHDX

1-1-1-1 f.u I •ddd H YO All 1-1-1-1 hu I. ddd T6 HI A13

1-1-1-1 fadd. ddd T2 T2 T3 1-1-1-1 f odd. ddd T1 T1 T5

1-1-1-1 f.ul.ddd T3 20 A12 1-1-1-1 hul.ddd T5)(1 A20

1-1-1-1 f.ul.ddd T5 HO A13 1-1-1-1 fodd.ddd T2 T2 T3

1-1-1-1 fadd.ddd Tl Tl H 1-1-1-1 hul.ddd TO YI A21

1-1-1-1 f.ul.ddd H)(0 A20 1-1-1-1 fadd.ddd H H T6

1-1-1-1 fadd.ddd TO TO T2 1-1-1-1 hul.ddd T6 21 A22

1-1-1-1 f.ul.ddd T2 YO A21 1-1-1 st.d T2 TPTR)(HD)!

1-1-1-1 fadd.ddd 13 T3 T5 1-1-1-1 f.ul.ddd T3 HI A23

1-1-1-1 hul.ddd T5 20 A22 1-1-1-1 fodd.ddd T5 T5 TO

1-1-1 st.d TO TPTR)(HOX 1-1-1-1 hul.ddd TO)(1 A30

1-1-1-1 hul.ddd T6 HO A23 1-1-1-1 fodd.ddd T1 T1 H

1-1-1-1 fodd.ddd H H T2 1-1-1-1 hul.ddd T2 Yl A31

1-1-1-1 hul.ddd T2 XO A30 1-1-1-1 fadd.ddd T6 T6 T3

1-1-1-1 fodd.ddd Tt Tt T3 1-1-1-1-1 hul.ddd T3 21 A32

1-1-1-1 f.ul.ddd TO YO A31 1-1-1 st.d Tl TPTR YHO)(

1-1-1-1 fodd.ddd TS T5 T6 1-1-1-1 hul.ddd H HI A33

1-1-1-1-1 f.ul.ddd T6 20 A32 1-1-1-1 fodd.ddd TO TO T2

1-1-1 st.d Tl TPTR YHDX I-I add IPTR IPTR 16

1-1-1-1 f.ul.ddd T3 HO A33 1-1-1-1 fadd.ddd TS TS T6

1-1-1-1 fodd.ddd TO TO T2 1-1-1-1 Id.d Xl IPTR XHOX

I-I add IPTR IPTR 16 1-1-1-1 fodd.ddd T3 T3 H
1-1-1-1 fodd.ddd H H T5 I-I odd TEMP TPTR 0

1-1-1-1-1 I d .d XO I PTR XHDX 1-1-1·'" f.u I . ddd T6)(0 AOO

1-1-1-1-1 fadd.ddd T6 T6 T3 1-1-1 sLd T5 TEMP 2HOX

I-I add TEMP TPTR a 1-1-1-1 hul.ddd T1 YO AOI

I-I add TPTR TPTR 16 1-1-1-1 fadd.ddd H TO T3

1-1-1 st.d H TEMP 2NOX 1-1-1-1-1 st.d H TEMP HHO)(

1-1-1-1 f.ul.ddd T2 XI AOO I-I bcnd.n /- H loop

I-I sub H H 2 I-I add TPTR TPTR 16

1-1-1-1 f.ul.ddd Tt Yl AOI

1-1-1 I d. d YO IPTR YHOX

1-1-1-1 f.ul.ddd T3 21 A02

1-1-1 Id.d 20 IPTR 2HDX

1-1-1-1 hul.ddd H HI A03

1-1-1 I d .d HO I PTR HHOX

Figure 9-46. Example Matrix Multiplication Code Sequence

9.4 MEMORY PERFORMANCE CONSIDERATIONS

When instruction throughput approaches two instructions per clock cycle, lack of data
bandwidth can become a performance bottleneck. In order for the MC8811 0 to approach
its potential performance levels, it must be able to. read and store data quickly. If there
are many processors in a system environment, one processor may experience long
memory latencies while another bus master (e.g., another processor or a direct memory
access controller) is using the external bus.

In order to alleviate this possible contention, the MC88110 provides three memory
update modes: write-back, write-through, and cache inhibit. Each page of memory is
specified to be in one of these modes. If a page is in write-back mode, data being stored
to that page is written only to the data cache. If a page is in write-through mode, writes to
that page update the data cache on hits and always update main memory. If a page is
cache inhibited, data in that page will never be stored in the data cache. All three of

9-66 MC88110 USER'S MANUAL MOTOROLA

these modes of operation have advantages and disadvantages. Which mode to use
depends on the system environment as well as the application.

This section describes how performance is impacted by each memory mode. For details
on the operation of the data cache and the memory update modes, refer to Section 6
Instruction and Data Caches.

9.4.1 Write-Back Mode

When storing data while in write-back mode, store operations for cacheable data do not
necessarily cause an external bus cycle to update memory. Instead, memory updates
only occur on line replacements, cache flushes, or when another processor attempts to
access a specific address for which there is a corresponding dirty cache entry. For this
reason, write-back mode may be preferred when external bus bandwidth is a potential
bottleneck-e.g., in a multiprocessor environment. Write-back mode is also well suited
for data that is closely coupled to a processor, such as local variables.

If more than one processor uses data stored in a page which is in write-back mode,
snooping must be enabled to allow write-back operations and cache invalidations of
modified data. The MC8811 0 implements snooping hardware to prevent other devices
from accessing invalid data. When bus snooping is enabled, the MC8811 0 monitors the
transactions of the other devices. For example, if another device accesses a memory
location, the MC8811 0 data cache has a modified value for that address, and the global
(G) bit corresponding to that page is set, the MC8811 0 preempts the bus transaction,
and updates, memory with the cache data. The other device is then free to attempt an
access to the updated memory address. See Section 11 System Hardware
Design for complete information on bus snooping.

Write-back mode provides complete cache/memory coherency as well as maximizing
available external bus bandwidth.

9.4.2 Write-Through Mode

Store operations to memory in write-through mode always update memory as well as the
data cache (on data cache hits). Write-through mode is used when the data in the cache
must always agree with external memory (e.g., video memory) or when the"re is shared
(global) data that may be used frequently or when allocation of a cache line on a cache
miss is undesirable. Automatic write-back of cached data is not performed if that data is
from a memory page marked as write-through mode since valid cache data always
agrees with memory.

It is important to note that although store operations do not cause any scoreboard bits to
be set (Le., store operations never cause data dependencies), stores to memory that is in
write-through mode may cause a decrease in performance. Each time a store is
performed to memory in write-through mode, the bus will be busy for the extra clock
cycles required to perform the memory update; therefore, pending load operations which
miss the data cache must wait while the external store operation completes.

II

MOTOROLA MC88110 USER'S MANUAL 9-67

•

9.4.3 Cache Inhibit
If a memory page is specified to be cache inhibited, data from this page will not be stored
in the data cache.

Areas of the memory map can be cache inhibited by the operating system software;
however, the xmem instruction always performs as if cache inhibition is in effect. If a
cache inhibited access hits in the data cache, the corresponding cache line is
invalidated. If the line is marked as modified, it is copied back to memory before being
invalidated.

The cache inhibited mode is most detrimental to performance since every memory
access must bypass the data cache and incur the latencies of a bus transaction with
memory.

9.5 SUPERSCALAR OPTIMIZATION TECHNIQUES

The MC8811 0 instruction set allows software to break large tasks into smaller ones that
execute very rapidly and, if possible, in parallel.-Performance can be hindered by lower
instruction throughput caused by poor instruction scheduling. Good instruction
scheduling techniques can greatly increase the performance levels of the MC88110.
The MC8811 0 has many design features, such as multiple independent execution units,
two independent ALUs, a store reservation station, and static branch prediction which
simplify the task of scheduling code. The MC88110 can use many of the scheduling
algorithms that were appropriate for the MC88100; however, the dual instruction issue
capability of the MC8811 0 slightly changes effectiveness of these algorithms.

The following paragraphs address some of the issues involved with code scheduling for
the MC88110. In addition, some insights are provided into how the code scheduling
algorithms for an MC88110 code scheduler differ from existing MC88100 code
scheduling algorithms. Finally, a brief example of code scheduling for the MC88110 is
given.

9.5.1 The Impact of Superscalar Processing on Schedulers

The ability to issue more than one instruction per clock cycle adds a new dimension to
the code scheduling algorithms used for the MC881 00. Not only must the programmer
schedule each instruction, but must also look at each potential pair of instructions as a
single unit. The programmer should try to maximize the instances in which an instruction
pair can issue together. Since there are no address boundaries dictating whether an
instruction will be placed in the first or second issue slot, the programmer usually doesn't
know if an instruction will be paired with the instruction above or the instruction below.

When scheduling small segments of code, the programmer only needs to avoid
execution unit and register contentions within instruction issue pairs (except in the case
of the divide and data execution units, which may not be able to accept new instructions
every clock cycle). An example of this might be if a code sequence called for 5 fadd and
5 fmul instructions to be executed. Rather than issue the 5 fadds and then the 5 fmuls

9-68 MC88110 USER'S MANUAL MOTOROLA

(taking 9 clock cycles to issue and 12 clock cycles to execute the sequence), the
sequence can be combined as fadd fmul, fadd fmul, fadd fmul, fadd fmul, fadd
fmul. Since the floating-point adder and multiplier are both fully pipelined (they can
receive a new instruction each clock cycle), and both execution units are independent,
each fadd-fmul pair can issue together on each clock cycle. The new sequence will
issue in 5 clocks and execute in 8 clocks. To further simplify scheduling, two ALU
execution units prevent execution unit contention within ALU instruction pairs.

When scheduling larger segments of code, execution unit contentions, write-back
contentions, and execution latencies must all be given additional attention. For example,
all single-cycle instructions are guaranteed a slot on the destination bus while multi
cycle instructions must arbitrate. Therefore, it is possible to issue a multi-cycle instruction
followed by a stream of single-cycle instructions which use all available write-back slots.
This may lead to bubbles in the instruction stream because a multi-cycle instruction will
not be able to write its results to the register file before another instruction needs those
results.

An example of this case is shown in Figure 9-47. The code sequence begins with a Id
operation into r7. During the execute and cache access phases of the Id operation,
additional instructions are being issued and executed. To hide any latency which might
be incurred, the scheduler has placed 12 instructions between the Id operation and the
instruction which uses r7. The execution of 12 instructions would seem to provide
enough time for the Id operation to complete; however, all 12 instructions are single
cycle operations with no register or execution unit contentions. This combination
guarantees that every write-back slot will be used.

The Id operation is ready to place its results on the destination bus on clock 3, however
instructions 3 and 4 are using the write-back slot during clock 3. During clock 4 the Id
operation is again denied a write-back slot because instructions 5 and 6 are completing.
This continues until clock 8. During clock 6, instructions 13 and 14 are prefetched.
During clock 7, instruction 13 is executed, but instruction 14 is stalled because of a data
dependency on r7. This bubble propagates through the instruction pipeline and 9
provides an open slot on the destination bus during clock 8. On clock 8, the Id operation
writes its results to the register file and simultaneously forwards its results to instruction
14. In this example, the write-back opportunity for the Id operation is a result of a bubble
which is produced because the Id operation has not yet written its results.

MOTOROLA MC88110 USER'S MANUAL 9-69

14

11 I cmp r4,r1,O

12 I rot r3,r9,r2

13

2 I add r2,r2,1

3 I or r3,r3,r4

4 I extu r5,rO,1

5 I mak rS,r9,r1

6 I or r11,r1,r2 4;.....:~

7 I sub r5,r2,1 g.?... J
8 I add r6,r3,1 &-:-I......kk%.1:

9 I and r18,rS,1 ;.

10 I add r9,r3,3 & :f::::':

LEGEND:

o INSTRUCTION FETCH

a EXECUTE

t FEED FORWARD

• WRITE-BACK

~ DELAYED

fZJ DELAYED IN LOAD BUFFER

m CACHE ACCESS

15 I or r21,rO,1 bi :;;

Figure 9-47. Instruction Stall Due to Write-Back Arbitration

•

9.5.2 Upgrading from an MC88100 Scheduler to an MC88110
Scheduler

The following paragraphs describe some of the guidelines used to schedule instructions
for the MC88100 and discuss how these algorithms can be be adapted to produce
efficient code for the MC8811 O.

9.5.2.1 OVERLAPPING LATENCIES WITH USEFUL WORK. One technique of
scheduling instructions for the MC88100 is to overlap unavoidable latencies with useful
work. Figure 9-48 shows an example of this technique.

Id @r6,r5 WAIT FOR r7 TO BE LOADED

or r10, r9, ra INSTRUCTIONS ISSUED WHILE WAITING FOR r7

and r13, r12, r11

add r8,@r4 r7 HAS HAD TIME TO BE LOADED

Figure 9-48. Example of the MC88100 Technique
of Overlapping Latencies with Useful Work

9-70 MC88110 USER'S MANUAL MOTOROLA

N:otice that when a Id instruction is issued in an MC88100, the data is not ready for at
least th'ree clock cycles. This number has been reduced to two cl·ocks on the MeSS110
for a data cache hit. While the data is being read into the reg'ister file, other instructions
can be issued.

This s.cheme is still effective on the MC88110, but the dual instruction issue
characterisUc must also be taken into account. Suppose the code above is run through
an MC88110. There are four instructions in the sequence and it is not possible to
determine which instructions will be paired together. The first I,d instruction may be
paired with the instruction above it or it may be paired w,ith the or instruction.

Consider the case in Figure 9-48 where the I:d instruction is executed together with an
instruction that m.ight appear above it. In the next clock cycle, the and and or instructions
will execute together. In the third clock cycle, the add instruction can execute because
the first Id instruction has had time to complete (assuming a data cache hit). In this
instruction sequence, no stalls occur (assuming that none of the instructions shown
depe·nd on the instructions preceding the Id operation).

Now consider the cas·e in Figure 9-48 where the Id instruction is executed to.gether with
the first or instruction. In the next clock CYCle, it would have been possible to execute
both the and and add instructions together. Unfortunately not enough time has passed
for the Id instruction to complete, thus a stall occurs. The a,dd instruction must wait an
addltionat clock cycle to execute.

9.5.2.2 NO GRO·UPING VS. GROUPING OF LIKE INSTRUCT'IONS. When
scheduling assembly code for the MC881 00, a commo,n technique is to group like
instructi·ons. Benefits of this technique i'nclude ma,king the code more readable as well
as overlapping unavoidable latencies with other useful work. Figure 9-49 illustrates this
technique.

•

MOTOROLA MC88110 USER'S MAN1UAL 9-71

•

Id.d r24, r4, ° ;dx(i)

Id.d r22, r4, 8 ; dx(i+1)

Id.d r20, r4, 16 ; dx(i+2)

Id.d r18, r4, 24 ;dx(i+3)

fmul.ddd r24, r24, r8 ; da*dx(i)

fmul.ddd r22, r22, r8 ; da*dx(i+1)

fmul.ddd r20, r20, r8 ; da*dx(i+2)

fmul.ddd r18, r18, r8 ; da*dx(i+3)

Id.d r16, r6, ° ; dy(i)

Id.d r14, r6, 8 ; dy(i+1)

Id.d r12, r6, 16 ; dy(i+2)

Id.d r10, r6, 24 ;dy(I+3)

fadd.ddd r16, r16, r24 ;dy(l)

fadd.ddd r14, r14, r22 ; dy(i+1)

fadd.ddd r12, r12, r20 ; dy(i+2)

fadd.ddd r10, r10, r18 ; dy(i+3)

addu r4, r4, 32 ;dx

subu r2, r2, 4 ; loop count

st.d r16, r6, ° ; store dy(i)

st.d r14, r6, 8 ; store dy(i+1)

st.d r12, r6, 16 ; store dy(i+2)

st.d r10, r6, 24 ; store dy(i+3)

Figure 9-49. Example of the MC88100
Technique of Grouping Like Instructions

The code sequence in Figure 9-49 begins by loading four elements from the array dx. By
the time data from these load operations is needed, it is ready (assuming cache hits).
Next, four fmul.ddd instructions are issued. Again, these operations have completed by
the time their results are needed (eight instructions later). Furthermore, the
corresponding fadd.ddd instructions are complete by the time the results from the loop
begin to be stored.

Grouping like instructions improves throughput of code on the MC881 00. This technique
can also be used with the MC8811 0; however, the ability to issue two instructions per
clock combined with the limitations imposed by the execution units must be taken into
account when using this technique.

Recall that each execution unit on the MC88110 can only accept one instruction per
clock cycle. Since there are two ALUs, two arithmetic/logic instructions can be executed
per clock. Suppose the code sequence in Figure 9-49 was executed by an MC88110.
There are three segments of this code that contain a series of back-to-back Id or st
instructions. Since the data unit can accept only one instruction per clock, and Id or st
instructions are both executed by the data unit, dual instruction issue would not occur
during these segments.

Two floating-point instructions can be issued during the same clock cycle if they are
issued to two different execution units. There are two segments of the code in Figure 9
49 that contain a series of back-ta-back floating-point instructions which would be issued

9-72 MC88110 USER'S MANUAL MOTOROLA

to the same execution unit. Thus, dual instruction issue would not occur during these
segments.

Because grouping like instructions often wastes the opportunity to issue two instructions
per clock cycle, this technique must be used carefully when scheduling instructions for
the MC88110. Note however, that there are no execution unit considerations when
grouping ALU instructions since two ALU instructions can be issued and executed
simultaneously.

9.5.2.3 REGISTER USAGE. Since the register scoreboard cannot be updated
instantaneously, the scoreboard mechanism cannot be used to resolve data
dependencies between instructions within an issue pair. These dependencies are
resolved in the MC88110 by Instruction Timing: which is similar to the register
scoreboard mechanism. When there is a register conflict between instructions in an
issue pair, the interdependency resolution hardware stalls the second instruction until
the register becomes available.

When scheduling code for the MC881 00, register allocation is not a concern when
ordering single-cycle instructions; since the MC88100 can only issue one instruction per
clock cycle, single-cycle instructions do not cause scoreboard holds. However, for the
MC88110, register allocation is an important performance factor which must be
considered when scheduling single- or multi-cycle instructions. Even though a sequence
of instructions may execute on an MC88100 with no scoreboard holds or stalls, it is quite
possible that when the same sequence is run on the MC88110, the interdependency
resolution hardware will prevent two instructions from being issued during the same
clock cycle. Although the performance for the same code on the MC8811 0 can not be
any worse than its relative performance on the MC88100, opportunities for dual
instruction issue may be lost.

•

MOTOROLA MC88110 USER'S MANUAL 9-73

The interdependency resolution hardware uses the following rules to determine whether
both instructions in an issue pair will be issued during the same clock" cycle (see Figure
9-50):

1. Two instructions will not be issued on the same clock cycle if the destination
register for the first instruction is a source register for the second instruction.
However, if the first or second instruction is a st operation, and the data which is
being stored is dependent on the results of the instruction in issue slot one, this
rule is not applied by the interdependency resolution hardware. Similarly, if the
second instruction is a predicted branch, this rule is not applied. For more
information on branch prediction and store instructions, refer to 9.3.4.3 Static
Branch Prediction and 9.2.2 Load Buffer and Store Reservation Station
Model.

2. Two instructions will not be issued during the same clock cycle if the destination
register is the same for both instructions. This situation should be very rare since
the compiler could simply remove the first instruction without any logical effect on
the ptogram results.

3. Two instructions may be issued in the same cycle if the source register for the first
instruction is the destination register for the second instruction. The pair can be
issued together because the data is forwarded to the appropriate execution units in
the order that it appears in the instruction pair. In other words, the data in r3 (see
Figure 9-50) is forwarded into the first ALU before the second instruction can
modify it. It is as if the instructions in the issue pair are executed sequentially, but
performance is improved because instructions are executed simultaneously.

1. CANNOT ISSUE TOGETHER-

DESTINATION REGISTER FOR { or @r3,r4
FIRST INSTRUCTION IS ASOURCE
REGISTER FOR THE SECOND NO

INSTRUCTION. or rs,rG,@

2. CANNOT ISSUE TOGETHER-
@r3,r4BOTH INSTRUCTIONS HAVE THE { orSAME DESTINATION REGISTER. NO.. or @rs,r6

3. CAN ISSUE TOGETHER-

SOURCE REGISTER FOR THE {or r2,@r4
FIRST INSTRUCTION IS THE
DESTINATION REGISTER FOR YES

THE SECOND INSTRUCTION. or @rs,r6

Figure 9-50. Interdependency Resolution Hardware Rules

9-74 MC88110 USER'S MANUAL MOTOROLA

9.5.3 Code Optimization Example
The following paragraphs provide a brief overview of some code scheduling techniques
which are applicable to the MC8811 O. The code segments shown are examples and do
not represent the best possible code scheduling.

Figure 9-51 shows a tight loop of double-precision operations that has been compiled
into MC88110 assembly language. No instruction scheduling was performed during the
conversion. If this code sequence is run on an MC8811 0, the first two instructions in the
code sequence will not be issued in the same clock cycle because only one memory
access instruction can be issued during each clock cycle. The next two instructions can
not issue during the same clock cycle for two reasons: both instructions have the same
destination register and the fmul.ddd instruction requires the data in r24 (which. will not
be ready until the completion of the Id.d operation). Because of this data dependency,
instruction issue will stall until the data in r24 becomes available.

do 50i =1, n
dy(i) =dy(i)+da*dx(i)

50 continue

t
@LaOO:

Id.d ra, rO,_da ; r8, r9.da
Id.d r24, r4, 0 ; r24, r25 • dx(i)
fmul.ddd r24, r24, r8 ; r24, r25 • da*dx(i)

Id.d r16, r6, 0 ; r16, r17. dy(i)

fadd.ddd r16, r16, r24 ; r16, r17. dy(i)+da*dx(i)

st.d r16, r6, 0 ; dy(i).r16, r17

addu r4, r4, 8 ; r4.&dx(i)
addu r6, r6, a ; r6.&dy(i)

subu r2, r2, 1 ; r2.n-4
bcnd gt, r2, @L800 ; branch if n > 0

Figure 9·51. Example Source Code Which Has
Been Converted into Assembly Language

Once the second Id.d operation has completed, the fmul.ddd and the third Id.d will be
issued during the next clock cycle. Unfortunately, another stall will occur in the following
clock cycle because the fadd.ddd instruction must wait for the data in r16 to become
available.

Once the load into r16 has completed, the processor can issue the fadd.ddd and the
st.d. These two instructions are issued in the same clock cycle even though the st.d has
a data dependency (r16) on the fadd.ddd instruction because the st.d instruction waits
in the store reservation station for the data in r16 to become available. While the st.d
instruction is waiting, instruction issue will continue.

•

MOTOROLA MC88110 USER'S MANUAL 9-75

•

Since there are no data dependencies or register contentions between the two addu
instructions, they will be issued during the same clock cycle. The next two instructions
are the subu and the bend. Although the bend depends on the result of the subu
instruction, the use of branch prediction allows these two instructions to be issued
together. Since the bend instruction is testing for a greater than (gt) condition, the
branch will be predicted to be taken. The bend instruction will be issued to the branch
reservation station. When the subu instruction has completed, it will forward its results to
the pending bend instruction. In the meantime, execution will continue at the top of the
loop.

Since there are so few instructions in this loop, simply rearranging the instructions
provides few options for improving performance. Figure 9-52 illustrates a technique
called Instruction Timing:loop unrolling which increases the number of instructions in the
loop. With more instructions in the loop, multi-cycle instructions can be overlapped to
achieve maximum throughput.

In Figure 9-52, four iterations of the original loop (see Figure 9-51) are executed within
each loop and the loop counter is decremented by four after each pass. Little
rescheduling has been done in this example; where there was a single Id.d instruction
in the first example, four Id.d instructions now appear. Although the arrangement of
these instructions (Le., similar instructions grouped together) is effective for achieving a
throughput of one instruction per clock cycle, this algorithm can be detrimental to
achieving a throughput rate of two instructions per clock cycle (see 9.5.2.2 No
Grouping vs. Grouping of Like Instructions); however, it is possible to rearrange
the instructions in the loop to help improve the throughput rate.

9-76 MC88110 USER'S MANUAL MOTOROLA

do 50i =1, n, 4

dy(i) =dy(i)+da*dx(i)
dy(i+1) =dy(i+1)+da*dx(i+1)
dy(i+2) =dy(i+2)+da*dx(i+2)
dy(i+3) =dy(i+3)+da*dx(i+3)

50 continue

+
@L800:

Id.d r8, rO,_da ; r8, r9.da

Id.d r24, r4, 0 ; r24, r25 • dx(i)

Id.d r22, r4, 8 ; r22, r23. dX(i+1)

Id.d r20, r4, 16 ; r20, r21 • dx(i+2)

Id.d r18, r4, 24 ; r18, r19 .dx(i+3)

fmul.ddd r24, r24, r8 ; r24, r25 • da*dx(i)

fmul.ddd r22, r22, r8 ; r22, r23. da*dx(i+1)

fmul.ddd r20, r20, r8 ; r20, r21 • da*dx(i+2)

fmul.ddd r18, r18, r8 ; r18, r19 .da*dx(i+3)

Id.d r16, r6, 0 ; r16, r17. dy(i)

Id.d r14, r6, 8 ; r14, r15 .dy(i+1)

Id.d r12,r6,16 ; r12, r13. dy(i+2)

Id.d rl0, r6, 24 ; rl0, rl1. dy(i+3)

fadd.ddd r16, r16, r24 ; r16, r17. dy(i)+da*dx(i)

fadd.ddd r14, r14, r22 ; r14, r15.dy(i+l)+da*dx(i+1)

fadd.ddd r12, r12, r20 ; r12, r13. dy(i+2)+da*dx(i+2)

fadd.ddd rl0, rl0, r18 ; rl0, r11. dy(i+3)+da*dx(i+3)

subu r2, r2, 4 ; r2. n-4

st.d r16, r6, 0 ; dy(i).r16, r17

st.d r14, r6, 8 ; dy(i+l). r14, r15

st.d r12, r6, 16 ; dy(i+2). r12, r13

st.d rl0, r6, 24 ; dy(i+3). rl0, rl1

addu r4, r4, 32 ; r4. &dx(i+4)

bcnd.n gt, r2, @L800 ; branch if n ~4, &

addu r6, r6, 32 ; r6. &dy(i+4)

Figure9-S2. First Pass Loop Unrolling

Figure 9-53 shows a rescheduled version of the instructions in Figure 9-52. The shaded
lines represent clock cycles. Since it is usually not possible to determine if a certain
instruction will correspond to the first or second issue slot of a clock cycle, the clock
divisions shown may not be valid during the first pass through the loop. However, the
bend.n instruction puts the loop into a steady state after the first pass, thus making the
indicated clock divisions valid. The clock boundaries shown assume cache hits on every
memory access.

•

MOTOROLA MC88110 USER'S MANUAL 9-77

@L800:
fmul.ddd

Id.d
"0:':':':':':':':':':':':':'

fmul.ddd

Id.d

fmul.ddd

Id.d

fmutddd

Id.d
fadd.ddd

Id.d
:.:.;.;.;.;.;.;.;.;.:.;.;.;.

f-add.ddd

Id.d

fadd.ddd

..:.:.:.:.:.:.:.:.!:~.~.d
fadd.ddd

Id.d

st.d

subu
;.;.;.;.;.;.:.;.;.;.;.:.;.;.

st.d
·:·:·:-:·:·:·:·:·:;t·d

.;.:.:.;.:.:.:.;.;.:.:.;.:.;

st.d

addu
:.:.;.;.:.;.;,,;.:.:.;.:.;..:.

addu

bend

r24, r24, r8

r16, r6, rO

r22, r22, r8
r14, r6, 8
r20, r20, r8

r12, r6, 16

r18, r18, r8

rl0, r6, 24

r16, r16, r24

r24, r4, a
r14, r14, r22

r22, r4, 8
r12, r12, r20

r20, r4, 16
r10, rl0, r18

r18, r4, 24

r16, r6, 0

r2, r2, 4

r14, r6, 8

r12, r6, 16

rl0, r6, 24

r4, r4, 32

r6, ra, 32

gt, r2, @L800

; r24, r25 .da*dx(i)

; r16, r17 .dy(i)

; r22, r23.da*dx(i+l)
; r14, r15 .dy(i+l)
; r20, r21 • da*dx(i+2)

; r12, r13 .dy{i+2)

; r18, r1"9 .da*dx(i+3)

; rl0, rl1.dy(i+3)

; r16, r17.dy(i)+da*dx(i)

; r24, r25 .dx(i)

; r14, r15 .dy(l+l)+da*dx(i+l)

; r22, r23 • dx(i+1)
; r12, r13 .dy(i+2)+da*dx(i+2)

i r20, r21 • dx(i+2)
; rl0, rl1 • dy(i+3)+da*dx(i+3)

; r18, r1-94dx(i+3)

; dy(i) .r16, r17

; r2.n-4

; dy(i+l).r14, r15

i dy(i+2).r12, r13
i dy(i+3) • rl,O, r11

; r4. &dx(i+4)

;r6. &dy(i+4)

; branch i·f n>4

•

LEGEND:
................. CLOCK BOUNDARIES

Figure 9-53. Unrolled Loop with Sch:eduling

For this code sequence, the first four elements of dx must be loaded into registers r24,
r22, r2'O, and r1·8 before the loop is entered. In add.ition, it will be necessary to initialize
reg·isters r4 and r6 to point to the appropriate data structures, and initialize r2 and r8 to
contain appropriate values.

Provided cache hits occur on every mem·ory access and registers have been initialized
before the loop is entered, the loop in Figure 9-53 will execute in 13 clock cycles (at 50
M·Hz, that is 92.3 MIPS and 30.7 MFLO·PS).

9-78 MC88110 USER'S MANUAL MOTOROLA

SECTION 10
INSTRUCTION SET

This section provides the details for each of the MC88110 instructions. A complete
opcode summary is also listed.

10.1 INSTRUCTION SET DETAILS

This section provides a detailed description of each instruction in the MC88110
instruction set. The instructions are arranged in alphabetical order with the instruction
mnemonic in large bold type for easy reference.

Each instruction description provides a complete discussion of the instruction operation,
the assembler syntax, and the instruction encoding. The assembler syntax is supported
by the Motorola MC88110 assembler. Figure 10-1 illustrates how the information is
presented for each instruction.

Destination +- Source 1+Source 2

INSTRUCTION NAME ----------~

OPERATION DESCRIPTION --------~~

ASSEMBLER SYNTAX FOR THE INSTRUCTION ------.~

add
Operation:

Assembler add
Syntax: add. cl

add. co
add. clo
add

Integer Add

rD, r51, rS2 signed add (w~h

rO, r81, r52 signed add plus
rD, r81, rS2 signed add, pro
rD, r51, r82 signed add
rD, r51, SIMM16 signed add w~h i

POTENTIAL EXCEPTIONS CAUSED BY THE INSTRUCTION

TEXT DESCRIPTION OF INSTRUCTION OPERATION --~

Exceptions: Integer Overflow

Description: The add instruction adds the contents of athe S1 re
w~h either the contents of the S2 register or a 16-btt immediate ope

Instruction Encoding:

Integer Category-Register with 16-B~ Immediate
31 2625 21 20 16 15

INSTRUCTION ENCODING: THE INSTRUCTION ---~..-I

CATEGORY, THE ADDRESSING MODULES,
THE BIT PATTERNS AND THE FIELDS OF
THE INSTRUCTION.

EXPLANATION OF FIELDS WITHIN THE ---~>....
INSTRUCTION

D:
81:
81MM16:
I:

0:

82:

Destination Register
Source 1 Register
16-Bit Signed Immediate Operand
o. Disable Carry In
1 • Add Carry to Resu~s

o. Disable Carry Out
1 - Generate carry
Source 2 Register

II

MOTOROLA

Figure 10-1. Instruction Description Format

MC88110 USER'S MANUAL 10-1

Destination f- Source 1 + Source 2

add

Operation:

Assembler
Syntax:

add
add.ci
add.co
add.cio

add

Integer Add

rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2

rD,rS1,SIMM16

add

signed add (without carry)
signed add plus carry
signed add, propagate carry out
signed add plus carry, propagate

carry out
signed add with immediate

(without carry)

Exceptions: Integer Overflow

Description: The add instruction adds the contents of the 51 register with either the
contents of the S2 register or a 16-bit immediate operand. The immediate operand is
zero-extended in unsigned mode or sign-extended in signed immediate mode. Binary
addition is performed, and the result is placed in the D register. If the result cannot be
represented as a signed 32-bit integer, an integer overflow exception occurs.

The .ci option causes the carry bit to be added to the result (Le., D =51 + 52 + carry).
The .co option causes the generated carry bit to be written to the PSR. The .cia option
causes the carry bit to be added to the result and also causes the generated carry bit to
be written to the PSR.

Instruction Encoding:

Integer Category-Register with 16-Bit Immediate

31 26 25

o

21 20

51

16 15

5NM16

o

Integer Category-Triadic Register

II 31 26 25 21 20 16 15 10 9 8 7 5 4

1
1 1 1 1 0 1 I 0 I 81 Ia1 1 1 0 arna 0 o I 82

10-2

D:

51:

SIMM16:

I:

0:

52:

Destination Register (rD)

Source 1 Register (r51)

16-8it Signed Immediate Operand

o-Oisable Carry In

1-Add Carry to Result

o-Oisable Carry Out

1-Generate Carry

Source 2 Register (rS2)

MC88110 USER'S MANUAL MOTOROLA

addu Unsigned Integer Add addu

Destination f- Source 1 + Source 2Operation:

Assembler
Syntax:

addu
addu.ci
addu.co
addu.cio

addu

rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2

rD,rS1,IMM16

unsigned add (without carry)
unsigned add plus carry
unsigned add, propagate carry out
unsigned add plus carry,

propagate carry out
unsigned add with immediate

(without carry)

Exceptions: None

Description: The addu instruction adds the contents of the 51 register to either the
contents of the 82 register or to a 16-bit, zero-extended immediate operand. Binary
addition is performed, and the result is placed in the D register. The .ci option causes
the carry bit to be added to the result (Le., D =81 + 82 + carry). The .co option causes
the generated carry bit to be written to the P5R. The .cio option causes the carry bit to
be added to the result and also causes the generated carry bit to be written to the PSR.

The addu instruction does not cause an overflow exception when the sum of the
operands cannot be represented as an unsigned 32-bit integer (see the add
instruction).

Instruction Encoding:

Integer Category-Register with 16-Bit Immediate

31 26 25

10 1 1 0 0 0 I o

21 20

81

16 15

t£116

o

Integer Category-Triadic Register

31 26 25 21 20 16 15 10 9 8 7 5 4 0 •1
1 1 1 1 0 1 I 0 81 10 1 1 0 0 o EEl 0 0 oI 82

0:

51:

IMM16:

I:

0:

52:

MOTOROLA

Destination Register (rD)

Source 1 Register (r51)

16-Bit Unsigned Immediate Operand

o-Disable Carry In

1-Add Carry to Result

o-Oisable Carry Out

1-Generate Carry

Source 2 Register (r52)

MC88110 USER'S MANUAL 10-3

and Logical AND and
Destination ~ Source 1 A Source 2Operation:

Assembler
Syntax:

and
and.c
and
and.u

rD,rS1,rS2
rD,rS1,rS2
rD,r51,IMM16
rD,r81,IMM16

Exceptions: None

Description: For triadic register addressing, the and instruction logically ANDs the
data contained in the 81 and 82 registers. The result is stored in the D register. If the .c
(complement) option is specified, the 52 operand is complemented before being
ANDed.

For register with immediate addressing, the and instruction logically ANDs the lower 16
bits of the 81 register with the 16-bit unsigned immediate operand encoded in the
instruction. The result is stored in the D register, and the upper 16 bits of the 81 register
are copied unchanged into the D register. If the .u (upper word) option is specified, the
upper 16 bits of the 81 operand are ANDed with the immediate operand. The result is
stored in the D register, and the lower 16 bits of the 51 register are copied unchanged
into the D register.

Instruction Encoding:

Logical Category-Register with 16-bit Immediate

16 1521 2031 27 26 25
10 1 0 0 0 G~--0--~---S1---r----------1JM-1-6--------

Logical Category-Triadic Register

•

31 26 25 21 20 16 15 11 10 9 5 4

• 1-1-1-1-1-0-1--.....1---0--..........--s-1--....1-0-1-0-0-0[~Jo 0 0 0 0 I S2

U:

D:
Sl:

IMM16:

c:

S2:

o-AND IMM16 to bits 15-0 of Sl

1-AND IMM16 to bits 31-16 of Sl

Destination Register (rD)

Source 1 Register (rS1)

16-bit Unsigned Immediate Operand

o-Second operand not complemented before the operation

l-Second operand complemented before the operation

Source 2 Register (rS2)

10-4 MC88110 USER'S MANUAL MOTOROLA

If bit clear, transfer program flow to (D16«2) + (address of bbO)

bbO

Operation:

Assembler
Syntax:

bbO
bbO.n

Branch On Bit Clear

B5, r51,D16
B5, rS1, D16

bbO

Exceptions: None

Description: The bbO instruction examines a bit in the 51 register specified by the
85 field. If the bit is clear, the branch is taken. To calculate t.he branch target address, the
16-bit displacement is sign-extended and shifted left two bits to form a word
displacement, and this displacement is added to the address of the bbO instruction. The
.n (delayed branch) option causes the instruction following the bbO instruction to be
executed before the branch target instruction is executed.

To ensure future compatibility, the instruction following a bbO.n instruction should not be
a trap, jump, branch or any other instruction that modifies the instruction pointer. Using
such an instruction constitutes a programming error which is not detected.

Use of the bbO instruction indicates to the processor for static branch prediction
purposes that the branch is not likely to be taken.

Instruction Encoding:

Flow Control Category-Register with 16-8it Displacement

31 27 26 25 21 20 16 15 011 10 1 0 0---8-5--...---5-1--....--------0-1-6-------.....,1

N:

B5:

S1:

016:

MOTOROLA

o-Next sequential instruction suppressed

1-Next sequential instruction executed before branch is taken

5-bit unsigned integer denoting a bit number in the 51 operand

Source 1 Register (rS1)

16-Bit Sign-Extended Displacement

MC88110 USER'S MANUAL 10-5

bb1 Branch On Bit Set bb1

If bit set, transfer program flow to (016«2) + (address of bb1)Operation:

Assembler
Syntax:

bb1
bb1.n

85,r81,D16
85, rS1, D16

Exceptions: None

Description: The bb1 instruction examines a bit in the 81 register specified by the
85 field of the instruction. If the bit is clear, the branch is taken. To calculate the branch
target address, the 16-bit displacement is sign-extended and shifted left two bits to form
a word displacement, and this displacement is added to the address of the bb1
instruction. The .n (delayed branch) option causes the instruction following the bb1
instruction to be executed before the branch target instruction.

To ensure future compatibility, the instruction following a bb1.n instruction should not be
a trap, jump, branch or any other instruction that modifies the instruction pointer. Using
such an instruction constitutes a programming error which is not detected.

Use of the bb1 instruction indicates to the processor for static branch prediction
purposes that the branch is likely to be taken.

Instruction Encoding:

Flow Control Category-Register with 16-8it Displacement

o16 1521 20

~ext sequential instruction suppressed.

1-Next sequential instruction executed before branch is taken

5-bit integer denoting a bit number in the S1 operand

Source 1 Register (rS1)

16-8it Sign-Extended Displacement

N:

85:

S1:

016:

31 27 26 25
1~1-1-0-1-1"""G---B-5 --......---S-1--..--------0-1-6--------

..

10-6 MC88110 USER'S MANUAL MOTOROLA

bend Conditional Branch bend

Operation:
bend)

If condition true, transfer program flow to (016«2) + (address of

Assembler
Syntax:

bend
bend
bend
bend
bend
bend
bend

eqO,rS1,016
neO,rS1,016
gtO,r81 ,016
ItO,r81 ,016
geO,r81,016
leO,r81,016
M5,rS1,016

bend.n
bend.n
bend.n
bend.n
bend.n
bend.n
bend.n

eqO,rS1,016
neO,rS1,016
gtO,r81 ,016
ItO,rS1,016
geO,rS1,016
leO,r81 ,016
M5,rS1,016

Exceptions: None

Description: The bend instruction provides conditional branching in one instruction
without requiring an explicit compare instruction. The bend instruction examines the
data contained in the 81 register and branches if the value in the register meets the
specified condition (eqO for equals zero, etc.). To form the branch target address, the 16
bit displacement is shifted left two bits and sign-extended to form a word displacement,
and then this displacement is added to the address of the bcnd instruction. The .n
(delayed branch) option causes the instruction following the bend.n instruction to be
executed before the branch target instruction.

The MC88110 assembler provides mnemonics for commonly used comparison
conditions. The following chart lists these mnemonics and their corresponding bit values
for the M5 field. The MS field may also be indicated explicitly by a literal value.

Bit: 25 24 23 22 21
eqO (equals zero) 0 0 0 1 0 Not Taken
neO (not equal to zero) 0 1 1 0 1 Taken
gtO (greater than zero) 0 0 0 0 1 Taken
ItO (less than zero) 0 1 1 0 0 Not Taken
geO (greater than/equals zero) 0 0 0 1 1 Taken
leO (less than/equals zero) 0 1 1 1 0 Not Taken

Static branch prediction conventions have been added such that specifying the not
equal to zero, greater than zero, and greater than/equals zero conditions indicates that
the branch is likely to be taken. Specifying the equals zero, less than zero, and less
than/equals zero conditions indicates that the branch is not likely to be taken.

To ensure future compatibility, the instruction following a bend.n instruction should not
be a trap, jump, branch or any other instruction that modifies the instruction pointer.
Using such an instruction constitutes a programming error which is not detected.

II

MOTOROLA MC88110 USER'S MANUAL 10-7

Instruction Enco'ding:

Flow Control Category-Register with 16-8it D·isplacement

o

~6 I_---.Ioo-_---....a.- -""

31 27 26 25 21 20 16 15

11 1 1 0 1GJ M> 51 I

[Sign and Zero]

[Sign and (not Zero)]

[(not Sign) and Zero]

[(not Sign) and (not Zero)]

N:

M5:

81:

D16:

o-Next sequentialinstruetion suppressed.

1-Next sequential instruction executed before l:>ranch is taken

5-Bit Condition Match Field:

bit 25-reserved, unused by the branch selection logic

(must be zefO for future compatibility)

bit 24-maxim,um negative number

bit 23-1es-s than zero

bit 22-equal to zero

bit 21-g,reate-r than zero

Source 1 Register (rS1)

16..Bit Sign-Extended Disp'lacement

•

10-8 MC88110 USER'S MANUAL MOTOROLA

br Un,conditional Branch br

Transfer program flow to (026«2) + (address of br)Operation:

Assembler
Syntax:

br
br.n

026
026

Exceptions: None

Description: The b·r instruction causes an unconditional transfer ofprogra,m flow to
the branch target address. To form the branch target address, the 26...oit displ.ace,m·ent is
sign-extended and shifted left two bits to form a' word displacement, and this
d·isplacement is added to the address of the br instruction. The .n (detaye.d ~ranch)

option caUS'8S the instruction foUowing the br.n instruction to be executed be·fore the
branch target instruction.

To ensure future compatibility, the instruction fonowing a b;r.n i·nstructionshould notoe a
trap, jump, branch or any other instruction that modifies the instruction pointer. Using
such an instruction constitutes a program,ming error which is not detected.

Instruction Encoding:

Flow Control Category-26-Bit Displ·acement

31 27 26 25 0

11
1 0 0 0 G ------- D_26 ~----------1

N: ~·ext sequennal instruction suppressed.

1-Next sequential instruction executed before branch is taken

026: 26-Bit Sign-Extended Displacement

•

MOTOAOLA MC81110 USER'S M.ANUAL 10-9

bsr

Operation:

Branch To Subroutine

Transfer program flow to (D26«2) + (address of b$r)
r1 f- address of first instruction (second if .n) after bsr

bsr

Assembler
Syntax:

bsr
bsr.n

026
026

31

Exceptions: None

Description: The bsrinstruction unconditionally transfers program flow to the
branch target address and saves the return address in register r1. To form the branch
target address, the 16-bit displacement is sign-extended and shifted left two bits to form
a word displacement, ~nd this displacement is added to the address of the bsr
instruction. If the .n option is not specified, the return address is the address of the
instruction following the bsr instruction. The .n (delayed branch) option causes the
instruction following the bsr.n instruction to be executed before the branch target
instruction.

When the .n option is specified, the return address written to rt is the address of the
s·econd instruction following the bsr.n instruction. If the instruction in the delay slot uses
r1 as an operand, the contents of r1 will be the new return address. If the instruction in
the delay slot modifies r1, its result will supersede the bsr return address.

To ensure future compatibility, the instruction foHowtng a bsr.n instruction should not be
a trap, jump, branch or any other instruction that modifies the instruction pointer. Using
such an instruction constitutes a programming error which is not detected.

Instruction Encoding:

Flow Control Category-26-BitDisplacement

27 26 25 0

• 1-1-1-N-~-O-1-G-o-N--ex-t-se-q-Ue-n-tia-l-in-st-ru-ct-io-n-s-up-p-re-ss-e-d-0-26-------------1

1-Next sequential instruction executed before branch is taken

026: 26-Bit Sign-Extended Displacement

10-10 MC88110 USER'S MANUAL MOTOROLA

clr Clear Bit Field clr

Destination ~ (Source 1 A (Bit Field of O's))Operation:

Assembler
Syntax:

clr
elr

rD,rS1, WS<05>
rD,r81,r82

Exceptions: None

Description: The elr instruction reads the data from the 81 register and inserts a
field of zeros into the data. The result is placed in the 0 register. The width of the bit field
is specified by the W5 field, and the offset of the bit field from bit zero of the 81 data is
specified by the 05 field. A W5 field of all zeros specifies a 32-bit wide bit field. If the
specified field extends beyond bit 31 of the 81 data, those bits are ignored.

For triadic register addressing, bits 9-5 and bits 4-0 of the S2 register are used as the
WS and OS fields, respectively, and the rest of the 82 register is ignored.

The following illustration shows the operation of the clr rD, rS1, S<16> instruction. In
this example, W5 contains Sand 05 contains 16, thereby placing a field of five zeros in
bits 16 through 20 of the 81 data.

31 0

rS1 I0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1I

31 21 20 1615

rD 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1

~-------OFffiET >1
WIDTH

•

MOTOROLA MC88110 USER'S MANUAL 10-11

Instruction Encoding:

Bit Field Category-Register with 10-Bit Immediate

31 26 25 21 20 16 15 11 10 5 4 0

11...1_1__1 _1_0_0.......1 D 8_1__-a-11__O_O_O__O_0-a-I w_5__........ C6 1

Bit Field Category-Triadic Register

31 26 25 21 20 16 15 5 4 °
11 1 1 1 0 1 I o 81 11 0 0 0 0 0 0 0 0 0 01 82

m

D:
S1:

W5:

05:

S2:

10-12

Destination Register (rD)

Source 1 Register (rS1)

5 bit unsigned integer denoting a bit-field width (0 denotes 32 bits)

5-bit unsigned integer denoting a bit-field offset

Source 2 Register (rS2)

MC88110 USER'S MANUAL MOTOROLA

cmp Integer Compare cmp

Destination +- Source 1 :: Source 2Operation:

Assembler
Syntax:

Exceptions:

cmp
cmp

None

rD,rS1,rS2
rD,rS1,SIMM16

Description: The cmp instruction compares the data contained in the 81 register
with either the data in the 82 register or with the specified 16-bit immediate operand.
The immediate operand is sign-extended if the processor is in signed immediate mode
or zero-extended if it is in unsigned mode. The instruction returns the evaluated
conditions as a bit string in the D register. The format and interpretation of the returned
bit string is as follows:

Returned String:

31 16 15 14 13 12 11 10 9 8

000 000 0 0 0 0 0 0 0 000

Bits 31-16 and 1-0 are not guaranteed to be zeros in future implementations.

eq:
ne:

9 t :

Ie:

It:

ge:

hi:

Is:

10:

hs:

be:

nb:

he:

nh:

true (1) if and only if 81 = 82 (equal)

true (1') if and only if 81 * 82 (not equal)

true (1) if and only if (rS1) > (rS2) (signed greater than)

true (1) if and only if (rS1) $ (rS2) (signed less than or equal)

true (1) if and only if (rS1) < (rS2) (signed less than)

true (1) if and only if (rS1) ::?: (rS2) (signed greater than or equal)

true (1) if and only if (rS1) U > (rS2) (unsigned greater than)

true (1) if and only if (r51) U $ (r52) (unsigned less than or equal)

true (1) if and only if 81 U < 52 (unsigned less than)

true (1) if and only if 81 U ~ 52 (unsigned greater than or equal)

true (1) if and only if any byte equal

true (1) if and only if no byte equal

true (1) if and only if any half-word equal

true (1) if and only if no half-word equal •
Comparison results can be used by branch on bit instructions (bbO and bb1) to
synthesize compare and branch on condition operations. The results can also be used
by trap on bit instructions (tbO and tb1). Note that for out-at-bounds array access
checking, it is more efficient to use the trap on bounds check instruction (tbnd) than to
use a cmp/trap on bit instruction combination.

MOTOROLA MC88110 USER'S MANUAL 10-13

Instruction Encoding:

Integer Category-Register with 16-Bit Immediate

31 26 25 21 20 16 15 0

11.-0_ 1_ 1__1 _1_1.........1 D__---a. 5_1__...a..- S_N_M_16 1

Integer Category-Triadic Register

10 1 1 1 1 1 0 0 0 0 0 I
31 26 25

11 1 1 1 0 1 I D

21 20

51

16 15 5 4 o

52

•

D:
S1:

SIMM16:

S2:

10-14

Destination Register (rD)

Source 1 Register (rS1)

16-Bit Signed Immediate Operand

Source 2 Register (rS2)

MC88110 USER'S MANUAL MOTOROLA

divs Signed Integer Divide divs

rD,rS1,r52
rD,rS1,SIMM16

Destination ~ Source 1 / Source 2

divs
divs

Integer Divide-By-Zero
Integer Overflow

Description: The divs instruction divides the data contained in the 51 register by
the data- in the S2 register or by the specified 16-bit immediate operand. The immediate
operand is zero-extended in unsigned mode or sign-extended in signed immediate
mode. A 32-bit two's complement binary division is performed. The quotient is stored in
the D register.

Operation:

Assembler
Syntax:

Exceptions:

If the divisor is zero, the integer divide-by-zero exception is generated. An integer
overflow exception can only be caused by dividing the largest magnitude representable
(32-bit) negative integer by a negative one. If an integer overflow exception occurs, the
rD is not updated.

NOTE

Unlike the MC88100, this instruction does not cause a
floating-point unimplemented exception when SFU1 is
disabled.

Instruction Encoding:

Integer Category-Register with 16-8it Immediate

31 26 25 21 20 16 15 0

1_o_1_1_1_1_°......1 0 __.......-__S1 S_M_M1_6 ---...1

Integer Category-Triadic Register

31 26 25 21 20 16 15 5 4 °

1_1_1_1_1_0_1--a..1--_o__....I s1__.....I_o_1_1_1_1_0_0_0_0_0_0-........1__s_2_---...1

D:
S1:

SIMM16:

52:

Destination Register (rD)

Source 1 Register (rS1)

16-Bit Signed Immediate Operand

Source 2 Register (rS2)

MOTOROLA MC88110 USER'S MANUAL 10-15

divu Unsigned Integer Divi·de divu

Destination f- Source 1 I Source 2O'p.ratio'n:

Asse,mbler
Syntax:

divu
divu
d;i·vu.d

rD,rS1,.,52
rD,rS1,IMM16
rD,rS1,r52

Exception's: Integer Divide-By-Zero

D'.scrlption: The divu instructi·on divides the data contained in the 81 register by
eithe'r the dlita in the 52 re·~:ister or by the specified zero-extend·ed, 16-bit im'med:iate
o:pe-rand. A 3:2"bit two's complement binary division is performed. The quotient is stored
in the 0 regi·ster.

If the .d option is sp,ecified, the unsigned 64-bit value in the double reg,ister 81 :81 +1 is
divi~ded.by the uns·ig·n·ed 32-bit value in the 52 register and the 54-bit unsigned quotient
is placed in reg,ister pair D:0+1.

If the divisor is zero, an integ,ar divide...by-zero exception is generated.

NOTE

Unlike the MCa8100, this instruct.on does not cause a
floating-point unimplemented exception when SFU1 is
dis:abled.

Instruction Encoding:

Integer Category-Reg·ister with 16-8it Immediate

31 26 25 21 20 t6 15 0

I~O_1_1__0_1_.°_......1_-0_----.1__8_1__·.....I W-16- ---....j1

$2 I-----...._-

Integer Category-Triadic Register

31 26 25 21 20 16 15 9 8 7 5 4

11 1 1 1 0 1 I 0 $1 10 1 1 0 1 0 o [~Jo 0 o I
0: Destinatio'n Begister (rO)

S1: Source 1 Registe:r (rS1)

IMM16: 16-Bit Zero-Extended Immediate Operand

d: 0-5ingle-Word Divide

1--Double-Word Divide

52: Source 2 Register (r52)

10-16 MC88110 USER'S MANUAL MOTOROLA

ext Extract Signed Bit Field ext

Destination ~ (sign-extended bit field) of Source 1Operation:

Assembler
Syntax:

ext
ext

rD,rS1,WS<OS>
rD,rS1,rS2

Exceptions: None

Description: The ext instruction extracts a bit field from the 51 register. Thebit-fiekJ
width is specified by the W5 field, and the offset of the bit field from bit 0 0,1 the 81 register
is specified by the 05 field. The extracted bit field is sign-extended to 32 bits and placed
in the D register. If the bit field extends beyond bit 31 of the 81 regis.ter, then bn 31 is
used as the sign bit and is extended in the D reg,ister.

For triadic register addressing, bits 9-5 and 4-0 of the 52 register are used for the W5
and 05 fields, respectively and the rest of the 82 register is ig.nored.

The following illustration shows the operation of the ext instruction:

SIGNED
BIT

FIELD

I

rS1 X X X X X X X X X X X S Y Y Y Y x x x x x x x x x x x x x x x x

~--- OFFSET --~..-.t

WIDTH SIGNED
BIT FIELD

I

rD S Y Y Y Y

WIDTH

~hen t.he W5 field contains ~Ihl zer?s (hs.Pft'e~ifYhin~ a bit .fieldTwh,'idtohSOff,32
1d
, bits), 'ft~e ehxt •...,"I:,.,"'" .

Instruction operates as an ant metlc Sing t Instruction. ;, e; Ie, '.' speciles te
number of positions to shift, and the high-order bits are sign fil,led in the 0 register. The
following illustration shows an example of a shift operation performed by the ext
instruction:

MOTOROLA MC88110 USER'S MANUAL 10-17

WIDTH =32, OFFSET = 5

rS1 11 1 1 1 1 1 0 1 f 1 1 1 1 1 0 1 1 1 1

rD 1 1 1 1 1 1 a 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1

I
EXTENDED
SIGN SIT

Instruction Encoding:

Bit Field Category-Register with 10-Bit Immediate

31 26 25 21 20 16 15 11 10 5 4 °
11""""1-1---1-0-........0 -, 0 1 51__-..4.1_1_0__0 _1__0__0...1 W_5__....... a; 1

Bit Field Category-Triadic Register

31 26 25

1 0 1 I o
21 20

51

16 15 5 4

1100100000001
°

82

0:

81:

W5:

05:

82:

10-18

Destination Register (rD)

Source 1 Register (rS1)

5-bit unsigned integer denoting a bit-field width (0 denotes 32 bits)

5-bit unsigned integer denoting a bit-field offset

Source 2 Register (rS2)

MC88110 USER'S MANUAL MOTOROLA

extu Extract Unsigned Bit Field extu

Destination f- (zero-extended bit field) of Source 1Operation:

Assembler
Syntax:

extu
extu

rD,r51,WS<OS>
rD,rS1,rS2

Exceptions: None

Description: The extu instruction extracts a bit field from the 51 register. The bit-
field width is specified by the W5 field, and the offset of the bit field from bit 0 of the S1
register is specified by the OS field. The extracted bit field is zero-extended to 32 bits and
placed in the D register. If the bit field extends beyond bit 31 of the 81 register, then the
portion of the bit field contained in bits 31 and lower is extracted and zero-extended in
the D register.

For triadic register addressing, bits 9-S and 4-0 of the 82 register are used for the W5
and 05 fields, respectively and the rest of the 82 register is ignored.

The following illustration shows the operation of the extu instruction:

31

rD Ix x x x x x x x x xI BIT FIELD IX x x x x x x x x x x x x xI
~ WIDTH ~< OFFSET >1

31

rS1 I0 I BIT FIELD I
~ WIDTH ~

When the WS field contains all zeros (specifying a bit field width of 32 bits), the extu
instruction operates as a logical shift right instruction. The 05 field specifies the number
of positions to shift, and the high-order bits are zero filled in the D register. The following
illustration shows an example of a shift operation performed by the extu instruction:

MOTOROLA

rS1

rD

ZERO FILL

1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1

MC88110 USER'S MANUAL 10-19

•

Instruction Encoding:

Bit Field Category-Register with 10-Bit Immediate

31 26 25 21 20 16 15 11 10 5 4 o

o 81 W5

Bit Field Category-Triadic Register

31 26 25 21 20 16 15 5 4 o

11 1 1 1 0 1 I o 81 1100110000001 82

D:
S1:

W5:

05:

S2:

10-20

Destination Register (rD)

Source 1 Register (rS1)

5-bit unsigned integer denoting a bit-field width (0 denotes 32 bits)

5-bit unsigned integer denoting a bit~field offset

Source 2 Register (rS2)

MC88110 USER'S MANUAL MOTOROLA

fadd Floating-Point Add fadd

Destination ~ Source 1 + Source 2Operation:

Assembler
Syntax:

fadd.sss
fadd.ssd
fadd.sds
fadd.sdd
fadd.dss
fadd.dsd
fadd.dds
fadd.ddd

rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2

fadd.sss
fadd.ssd
fadd.sds
fadd.sdd
fadd.dss
fadd.dsd
fadd.dds
fadd.ddd
fadd.ssx
fadd.sdx
fadd.sxs
fadd.sxd
fadd.sxx
fadd.dsx
fadd.ddx
fadd.dxs
fadd.dxd
fadd.dxx
fadd.xss
fadd.xsd
fadd.xsx
fadd.xds
fadd.xdd
fadd.xdx
fadd.xxs
fadd.xxd
fadd.xxx

xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,x52
xD,xS1,xS2
xD,xS1,x52
xD,xS1,X52
xD,xS1,xS2
xD,xS1,x52

Exceptions: Floating-Point Reserved Operand
Floating-Point Overflow
Floating-Point Underflow
Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

Description: The fadd instruction checks the data in the 51 and 82 registers for
reserved operands (NaNs, denormalized or unnormalized numbers). If reserved
operands are found, a floating-point reserved operand exception is taken. If no reserved
operands are found, the 51 and 52 operands are added according to the IEEE 754
standard, and the result is placed in the D register. Exception conditions occur when an
overflow, underflow, or inexact result is detected. If execution of fadd is attempted while
SFU1 is disabled, a floating-point unimplemented exception is taken.

m

MOTOROLA MC88110 USER'S MANUAL 10-21

Any combination of single- and double-precision operands can be specified in the
general register file and any combination of single-, double-, or double-extended
precision operands can be specified in the extended register file.

NOTE

The MC88110 performs IEEE 754 infinity arithmetic directly in
hardware. Thus, unlike the MC88100, the MC8811 0 does not
treat infinity (00) as a reserved operand and infinity does not
cause an exception.

When the processor is in TCFP mode (Le., one of the TCFP bits in the FPCR is set),
reserved operands do not cause SFU1 exceptions; instead, when a reserved operand is
detected, the hardware delivers a default result approximating the IEEE defined result.
See Section 4 Floating-Point Implementation for more details on TCFP mode.

Instruction Encoding:

Floating-Point Category-Triadic Register

31 26 25 21 20 16 15 14 11 10 9 8 7 6 5 4 0

l-l-0-0-0-0-1.......1---D--~--S-1--0 0 1 0 1 ~---S-2--I

II

0:
51:

R:

T1:

T2:

TO:

S2:

10-22

Destination Register (rD or xD)

Source 1 Register (rS1 or xS1)

O-Source Operands in GRF

1-8ource Operands in XRF

Source 1 Operand Size

Source 2 Operand Size

Destination Operand Size

Note: For the T1, T2, and TO Fields:

OQ-Single-Precision

01-0ouble-Precision

10-0ouble-Extended-Precision

11-Unused

Source 2 Register (rS2 or xS2)

MC88110 USER'S MANUAL MOTOROLA

temp Floating-Point Compare temp

Destination f- Source 1 :: Source 2Operation:

Assembler
Syntax:

femp.sss
fcmp.ssd
fcmp.sds
fcmp.sdd

rD,rS1,rS2
rD,r51,rS2
rD,rS1,rS2
rD,r51,r52

fcmp.sss
fcmp.ssd
fcmp.sds
fcmp.sdd
fcmp.ssx
fcmp.sdx
fcmp.sxs
fcmp.sxd
fcmp.sxx

rD,xS1,xS2
rD,xS1,xS2
rD,xS1,xS2
rD,xS1,xS2
rD,xS1,xS2
rD,xS1,xS2
rD,xS1,xS2
rD,xS1,xS2
rD,xS1,xS2

Exceptions: Floating-Point Reserved Operand
Floating-Point Unimplemented

Description: The femp instruction checks the contents of the 51 and S2 registers
for reserved operands (NaNs, denormalized or unnormalized numbers). If a reserved
operand is found, a floating-point reserved operand exception is taken.

NOTE

If the reserved operand is a NaN, the reserved operand
exception handler sets the FINV bit in the FPSR if either a
nonsignaling or signaling NaN is found. For the fcmpu
instruction, the handler only sets the FINV bit when a
signaling NaN is found. This is the only difference between
the fcmp and fcmpu instructions.

If no reserved operands are found, the fcmp instruction subtracts the S2 operand from
the 51 operand, and based on the result of this subtraction, evaluates a number of
conditions according to the IEEE 754 standard. The evaluation results are returned as a
bit string in the D register and the subtraction result is discarded (no arithmetic overflow
or underflow exceptions are ever generated). A comparison to zero and to the bound ..
value in register 52 is also performed, returning bits in the bit string that correspond to .. ,
the following conditions: ou (out of range or unordered), ib (in range or on boundary), in
(in range), and ob (out of range or on boundary or unordered). If the 82 operand is
negative, ou, ib, in, and ob are set to zero. If execution of fcmp is attempted while SFU1
is disabled, a floating-point unimplemented exception is taken.

The returned comparison results can be used by branch on bit instructions (bbO, bb1) to
synthesize conditional branch on comparison operations (branch equal, branch greater,
etc).

MOTOROLA MC88110 USER'S MANUAL 10-23

NOTE

The MC88110 performs IEEE 754 infinity arithmetic directly in
hardware. Thus, unlike the MC881 00, the MC88110 does not
treat infinity (00) as a reserved operand and infinity does not
cause an exception.

When the processor is in TCFP mode (Le., one of the TCFP bits in the FPCR is set),
reserved operands do not cause SFU1 exceptions; instead, when a reserved operand is
detected, the hardware delivers a default result approximating the IEEE defined result.

See Section 4 Floating-Point Implementation for more information on the
floating-point implementation.

Result String:

31 18 17 16 15 14

000 0 0 0 0 0 0 0 0 0 0

Bits 31-18 are not guaranteed to be zeros in future implementations.

12 11 10 9 8 7 4 3 2 1 0

uge:
ul:
ule:
ug:
Ig:
ue:

unordered or greater than or equal
unordered or less than
unordered or less than or equal
unordered or greater than
less than or greater than
unordered or equal

ob

in

ib

out of range or on boundary

o (r52)

in range --0-----:>--

in range or on boundary •

•
(rS2)

•

(rS2)

•

ou

ge:

It:

Ie:

gt:

ne:

eq:
leg:

un:

o (r52)

out of range --0---0--

true (1) if and only if (rS1) ~ (rS2) (signed greater than or equal)

true (1) if and only if (rS1) < (rS2) (signed less than)

true (1) if and only if (rS1) $ (rS2) (signed less than or equal)

true (1) if and only if (rS1) > (rS2) (signed greater than)

true (1) if and only if (rS1)"* (rS2) (not equal)

true (1) if and only if (rS1) = (rS2) (equal)

true (1) if and only if the two operands are less than, greater than, or equal

true (1) if and only if the two operands are unordered (Le., one or both operands is a NaN).

10-24 MC88110 USER'S MANUAL MOTOROLA

o

Instruction Encoding:

Floating-Point Category-Triadic Register

31 26 25 21 20 16 15 14 11 10 9 8 7 654
1=1===0==0==0===0==1==1=====0=======1=====S=1=====0~0-1--1-1-~---S-2---

D:

S1:

R:

T1:

T2:

S2:

MOTOROLA

Destination Register (rD)

Source 1 Register (rS1 or xS1)

Register File:

O-Source Operands in GRF

1--source Operands in XRF

Source 1 Operand Size

Source 2 Operand Size

Note: For the T1 and T2 Fields:

OO-Single-Precision

01-Double-Precision

1()-[)ouble-Extended-Precision

11-Unused

Source 2 Register (rS2 or xS2)

MC88110 USER'S MANUAL 10-25

•

fcmpu Unordered Floating-Point Compare fcmpu

Destination ~ Source 1 :: Source 2Operation:

Assembler
Syntax:

fcmpu.sss rD,r81,rS2
fcmpu.ssd rD,r81,rS2
fcmpu.sds rD,rS1,rS2
fcmpu.sdd rD,rS1,rS2

fcmpu.sss rD,xS1,xS2
fcmpu.ssd rD,xS1,xS2
fcmpu.sds rD,xS1,xS2
fcmpu.sdd rD,xS1,xS2
fcmpu.ssx rD,x81,xS2
fcmpu.sdx rD,xS1,xS2
fcmpu.sxs rD,xS1,xS2
fcmpu.sxd rD,xS1,xS2
fcmpu.sxx rD,xS1,xS2

Exceptions:

•

Floating-Point Reserved Operand
Floating-Point Unimplemented

Description: The fcmpu instruction checks the contents of the S1 and 52 registers
for reserved operands (NaNs, denormalized or unnormalized numbers). If a reserved
operand is found, a floating-point reserved operand exception is taken.

NOTE

If the reserved operand is a NaN, the reserved operand
exception handler only sets the FINV bit when a signaling
NaN is found. For the femp instruction, the handler sets the
FINV bit in the FPSR if either a nonsignaling or signaling NaN
is found. This is the only difference between the femp and
fempu instructions.

If no reserved operands are found, the fcmpu instruction subtracts the 82 operand from
the 51 operand, and based on the result of this subtraction, evaluates a number of
conditions according to the IEEE 754 standard. The evaluation results are returned as a
bit string in the D register and the subtraction result is discarded (no arithmetic overflow
or underflow exceptions are ever generated). A comparison to zero and to the bound
value in register 82 is also performed, returning bits in the bit string that correspond to
the following conditions: ou (out of range or unordered), ib (in range or on boundary), in
(in range), and ob (out of range or on boundary or unordered). If the 82 operand is
negative, ou, ib, in, and ob are set to zero. If execution of fcmpu is attempted while
SFU1 is disabled, a floating-point unimplemented exception is taken.

The returned comparison results can be used by branch on bit instructions (bbO, bb1) to
synthesize conditional branch on comparison operations (branch equal, branch greater,
etc).

10-26 MC88110 USER'S MANUAL MOTOROLA

NOTE

The MC88110 performs IEEE 754 infinity arithmetic directly in
hardware. Thus, unlike the MC88100, the MC8811 0 does not
treat infinity (00) as a reserved operand and infinity does not
cause an exception.

When the processor is in TCFP mode (Le., one of the TCFP bits in the FPCR is set),
reserved operands do not cause SFU1 exceptions; instead, when a reserved operand is
detected, the hardware delivers a default result approximating the IEEE defined result.

See Section 4 Floating-Point Implementation for more information on the
floating-point implementation.

Result String:

31 18 17 16 15 14

000 0 000 0 0 0 0 0 0

Bits 31-18 are not guaranteed to be zeros in future implementations.

12 11 10 9 8 3 2 1 0

uge:

ul:

ule:

ug:

Ig:

ue:

ob

in

unordered or greater than or equal

unordered or less than

unordered or less than or equal

unordered or greater than

less than or greater than

unordered or equal

o (r52)

out of range or on boundary - ..e.----4e_-

o (r52)

in range --0----0-

out of range --0 ~

o (r52)

in range or on boundary -~--.__-

true (1) if and only if (rS1) ~ (rS2) (signed greater than or equal)

true (1) if and only if (rS1) < (rS2) (signed less than)

true (1) if and only if (rS1) ~ (rS2) (signed less than or equal)

true (1) if and only if (rS1) > (rS2) (signed greater than)

true (1) if and only if (rS1) *- (rS2) (not equal)

true (1) if and only if (rS1) = (rS2) (equal)

true (1) if and only if the two operands are less than, greater than, or equal

true (1) if and only if the two operands are unordered (Le., one or both operands is a NaN).

ib

ou

ge:

It:

Ie:

gt:

ne:

eq:
leg:

un:

o (r52)

•

MOTOROLA MC88110 USER'S MANUAL 10-27

Instruction Encoding:

Floating-Point Category-Triadic Register

26 2531 21 20 16 15 14 11 10 9 8 7 6 5 4 0

1-1-0--0-0-0--1-1---D---"'I---S-1--~0-o-1---1~~ S_2 1

T1:

T2:

Destination Register (rD)

Source 1 Register (rS1 or xS1)

Source 2 Register (rS2 or xS2)

O-Source Operands in GRF

1-Source Operands in XRF

Source 1 Operand Size

Source 2 Operand Size

Note: For the T1 and T2 Fields:

OO-Single-Precision

01-Double-Precision

1()-()ouble-Extended-Precision

11-Unused

II

10-28 MC88110 USER'S MANUAL MOTOROLA

fevt Convert Floating-Point Precision fevt

Destination ~ Convert (Source 2)Operation:

Assembler
Syntax:

fcvt.sd
fcvt.ds

rD,rS2
rD,rS2

fcvt.sd
fcvt.ds
fcvt.sx
fcvt.dx
fcvt.xs
fcvt.xd

xD,xS2
xD,xS2
xD,xS2
xD,xS2
xD,xS2
xD,xS2

Exceptions: Floating-Point Reserved Operand
Floating-Point Overflow
Floating-Point Underflow
Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

Description: The fcvt instruction checks the contents of the 82 register for a
reserved operand (NaN, denormalized, or unnormalized number). If a reserved operand
is found, a floating-point reserved operand exception is taken. If no reserved operand is
found, the floating-point value contained in the S2 register is converted from the
precision designated by the source type specifier to the precision designated by the
destination type specifier with the sign of the source operand being strictly preserved.
The result of the conversion is placed in the D register. Both the original operand and the
converted operand must reside in the same register file.

Instruction Encoding:

Floating-Point Category-Triadic Register

Destination Register (rD or xD)

Source 2 Register (rS2 or xS2)

O-Source Operand in GRF

1-Source Operand in XRF

Source 2 Operand Size

Destination Operand Size

Note: For the T2 and TO Fields:

OO-Single-Precision

01-Double-Precision

1()-()ouble-Extended-Precision

11-Unused

D:
52:

R:

T2:
TO:

26 25

o 0 1 I o

21 20 16 15 14 9 8 7 6 5 4 0

100 00oG~0-O-·-O-1-0-0-~---S-2-~1

•

MOTOROLA MC88110 USER'S MANUAL 10-29

fdiv Floating-Point Divide fdiv

Destination f- Source 1 / Source 2Operation:

Assembler
Syntax:

fdiv.sss
fdiv.ssd
fdiv.sds
fdiv.sdd
fdiv.dss
fdiv.dsd
fdiv.dds
fdiv.ddd

rD,r81,r82
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,r81,r82
rD,rS1,r82
rD,rS1,rS2
rD,rS1,rS2

fdiv.sss
fdiv.ssd
fdiv.sds
fdiv.sdd
fdiv.dss
fdiv.dsd
fdiv.dds
fdiv.ddd
fdiv.ssx
fdiv.sdx
fdiv.sxs
fdiv.sxd
fdiv.sxx
fdiv.dsx
fdiv.ddx
fdiv.dxs
fdiv.dxd
fdiv.dxx
fdiv.xss
fdiv.xsd
fdiv.xsx
fdiv.xds
fdiv.xdd
fdiv.xdx
fdiv.xxs
fdiv.xxd
fdiv.xxx

xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,x82
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,x51,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,x52
xD,xS1,xS2
xD,xS1,xS2

Exceptions: Floating-Point Reserved Operand
Floating-Point Divide-by-Zero
Floating-Point Overflow
Floating-Point Underflow
Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

Description: The fdiv instruction checks the contents of the 81 and 82 registers for
reserved operands (NaNs, denormalized or unnormalized numbers). If reserved
operands are found, a floating-point reserved operand exception is taken. If no reserved
operands are found, the 51 operand is divided by the S2 operand according to the IEEE
754 standard, and the result is placed in the D register. Any combination of single-,
double-, and double-extended-precision operands can be specified. Attempting to divide
by zero causes a floating-point divide-by-zero exception. Exception conditions also

10-30 MC88110 USER'S MANUAL MOTOROLA

occur when an overflow, underflow, or inexact result is detected. If execution of fdiv is
attempted while SFU1 is disabled, a floating-point unimplemented exception is taken.

NOTE

The MC8811 0 performs IEEE 754 infinity arithmetic directly in
hardware. Thus, unlike the MC88100, the MC88110 does not
treat infinity (00) as a reserved operand and infinity does not
cause an exception.

See Section 4 Floating-Point Implementation for more information on the
floating-point implementation.

Instruction Encoding:

Floating-Point Category-Triadic Register

o21 2026 2531 16 15 14 11 10 9 8 7 6 5 4

1-1-0-0-0-0--1......1---D--........---S1--.-.,G-1-1-1-0-~---S-2-----.,

D:
S1:

R:

T1:

T2:

TO:

S2:

Destination Register (rD or xD)

Source 1 Register (rS1 or xS1)

O-Source Operands in GRF

1-8ource Operands in XRF

Source 1 Operand Size

Source 2 Operand Size

Destination Operand Size

Note: For the T1, T2, and m Fields:

OO-Single-Precision

01-Double-Precision

10-0ouble-Extended-Precision

11-Unused

Source 2 Register (rS2 or xS2)

II

MOTOROLA MC88110 USER'S MANUAL 10-31

Destination f- (bit number) of Source 2 Scanned for First Bit Clear

f10

Operation:

Assembler
Syntax:

ffO

Find First Bit Clear

rD,rS2

ffO

Exceptions: None

Description: The ffO instruction scans the S2 register from the most significant bit to
the least significant bit. The D register is loaded with the bit number of the first bit that is
found clear. Zero corresponds to the least significant bit and 31 corresponds to the most
significant bit. If no bits are found clear, the D register is loaded with 32.

Instruction Encoding:

Bit Field Category-Triadic Register

31

11 1 1
26 25

1 0 1 I o

21 20 16 15 5 4

1000001111011000001 82

II

D:
S2:

10-32

Destination Register (rD)

Source 2 Register (rS2)

MC88110 USER'S MANUAL MOTOROLA

ff1 Find First Bit Set ff1

Destination ~ (bit number) of Source 2 Scanned for First Bit SetOperation:

Assembler
Syntax:

ff1 rD,rS2

Exceptions: None

Description: The ff1 instruction scans the 52 register from the most significant bit to
the least significant bit. The D register is loaded with the bit number of the first bit that is
found set. Zero corresponds to the least significant bit and 31 corresponds to the most
significant bit. If no bits are found set, the D register is loaded with 32.

Instruction Encoding:

Bit Field Category-Triadic Register

31

11 1 1

26 25

1 0 1 I o

21 20 16 15 5 4

1000001111010000001 S2

o

D:
S2:

MOTOROLA

Destination Register (rD)

Source 2 Register (rS2)

MC88110 USER'S MANUAL 10-33

fldcr Load From Floating-Point Control Register fldcr

rD,fcrSfldcr

Destination ~ Floating-Point Control RegisterOperation:

Assembler
Syntax:

Exceptions: Floating-Point Privilege Violation
Floating-Point Unimplemented

Description: The fldcr instruction moves the contents of the floating-point unit
control register specified by the FCRS field to .the specified D register. Floating-point
control register fcrO is a privileged register and can only be accessed in the supervisor
mode. Floating-point control registers fcr62 and fcr63 are floating-point control and
status registers, respectively, and can be accessed in either the supervisor or user
mode.

Floating-point control registers fcr1 through fcr61 are unimplemented and privileged.
An fldcr instruction which addresses these registers causes a floating-point
unimplemented exception in supervisor mode, or a floating-point privilege violation
exception in user mode.

Refer to Section 4 Floating-Point Implementation for more information on floating
point control registers.

Instruction Encoding:

Floating-Point Category-Control Register

31 26 25

D

21 20 16 15 11 10

FCRS

5 4 0

10 0 0 0 01

II
0:
FCRS:

Destination Register (rD)

Floating-Point Control Register Source (ferS)

MC88110 USER'S MANUAL MOTOROLA

fit Convert Integer To Floating-Point fit

Destination ~ Float (Source 2)Operation:

Assembler
Syntax:

flt.ss
flt.ds

rD,rS2
rD,rS2

flt.ss
flt.ds
flt.xs

xD,rS2
xD,rS2
xD,rS2

Exceptions: Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

Description: The fit instruction converts the signed integer contained in the 52
register to floating-point representation. The result is placed in the D register. Since the
S2 register contains an integer, it can only be specified as single precision; however, the
o register can be single-, double-, or double-extended-precision. Double-extended
precision results cannot be stored in the general register file.

See Section 4 Floating-Point Implementation for more information on the
floating-point implementation.

Instruction Encoding:

Floating-Point Category-Triadic Register, Destination in General Register File

o31 26 25

11 0 0 0 0 1 1 o

21 20 16 15 7 6 5 4

10000010010000000""'--5-2--'"

Floating-Point Category-Triadic Register, Destination in Extended Register File

31 26 25

11 0 0 0 0 1 I
Destination Register (rO or xD)

Destination Operand Size

Note: For the TO Field:

OO-Single-Precision

01-Double-Precision

10-0ouble-Extended-Precision

11-Unused

Source 2 Register (rS2)

D:
ID:

52:

o

21 20 16 15 7 6 5 4 0

10 0 0 0 0 10 0 1 0 0 0 1 0 0 0""'--5-2--1

•

MOTOROLA MC88110 USER'S MANUAL 10-35

fmul Floating-Point MUltiply fmul

xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,x52
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,x52
xD,xS1,xS2
xD,xS1,x52
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,x52
xD,xS1,xS2
xD,xS1,xS2
xD,xS1,x52
xD,xS1,xS2

fmul.sss
fmul.ssd
fmul.sds
fmul.sdd
fmul.dss
fmul.dsd
fmul.dds
fmul.ddd
fmul.ssx
fmul.sdx
fmul.sxs
fmul.sxd
fmul.sxx
fmul.dsx
fmul.ddx
fmul.dxs
fmul.dxd
fmul.dxx
fmul.xss
fmul.xsd
fmul.xsx
fmul.xds
fmul.xdd
fmul.xdx
fmul.xxs
fmul.xxd
fmul.xxx

rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2

Destination ~ Source 1 * Source 2

fmul.sss
fmul.ssd
fmul.sds
fmul.sdd
fmul.dss
fmul.dsd
fmul.dds
fmul.ddd

Operation:

Assembler
Syntax:

Exceptions: Floating-Point Reserved Operand
Floating-Point Overflow
Floating-Point Underflow
Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

Description: The fmul instruction checks the contents of the 51 and S2 registers for
reserved operands. If reserved operands are found, a floating-point reserved operand
exception is taken. If no reserved operands are found, the 51 and S2 operands are
multiplied according to the IEEE 754 standard, and the result is placed in the D register.
Exception conditions also occur when an overflow, underflow, or inexact result is
detected. If execution of fmul is attempted while SFU1 is disabled, a floating-point
unimplemented exception is taken.

..

10-36 MC88110 USER'S MANUAL MOTOROLA

NOTE

The MC8811 0 performs IEEE 754 infinity arithmetic directly in
hardware. Thus, unlike the MC88100, the MC8811 0 does not
treat infinity (00) as a reserved operand and infinity does not
cause an exception.

When the processor is in TCFP mode (Le., one of the TCFP bits in the FPCR is set),
reserved operands do not cause SFU1 exceptions; instead, when a reserved operand is
detected, the hardware delivers a default result approximating the IEEE defined result.
See Section 4 Floating-Point Implementation for more details on TCFP mode.

Instruction Encoding:

Floating-Point Category-Triadic Register

31 26 25 21 20 16 15 14 11 10 9 8 7 6 5 4 0

1-1-0-0-0-0-1.......1---o--...,....--S-1--G-O-o-o-o~~---S-2--I

D:

S1:

R:

T1:

T2:

TO:

S2:

MOTOROLA

Destination Register (rD or xD)

Source 1 Register (rS1 or xS1)

O-Source Operands in GRF

1-8ource Operands in XRF

Source 1 Operand Size

Source 2 Operand Size

Destination Operand Size

Note: For T1, T2, and TO Fields:

OO-Single-Precision

01-Double-Precision

10-0ouble-Extended-Precision

11-Unused

Source 2 Register (rS2 or xS2)

MC88110 USER'S MANUAL

fsqrt Floating-Point Square Root fsqrt

Destination ~ Square Root (Source 2)Operation:

Assembler
Syntax:

fsqrt.ss
fsqrt.sd
fsqrt.ds
fsqrt.dd

rD,rS2
rD,rS2
rD,rS2
rD,rS2

fsqrt.ss.
fsqrt.sd
fsqrt.ds
fsqrt.dd
fsqrt.sx
fsqrt.dx
fsqrt.xs
fsqrt.xd
fsqrt.xx

xD,x82
xD,xS2
xD,xS2
xD,xS2
xD,xS2
xD,xS2
xD,xS2
xD,xS2
xD,xS2

Exceptions: Floating-Point Unimplemented

Descri ption: The fsqrt instruction calculates the square root of the floating-point
value contained in the 52 register and places the result in the specified D register. The
82 and D registers must reside in the same register file.

NOTE

The MC8811 0 does not implement the square root instruction
in hardware. Instead, executing the fsqrt instruction causes a
floating-point unimplemented exception, and a software
handler is provided to emulate the square root operation.

Instruction Encoding:

Floating-Point Category-Triadic Register

o31 26 25

o

21 20 16 15 14 9 8 7 6 5 4

10 0 0 0 0 G~1-1-1-1-0-0-~~--S-2--

D:
S2:

R:

T2:

TO:

10-38

Destination Register (rD or xD)

Source 2 Register (rS2 or xS2)

O-Source Operand in GRF

1-8ource Operand in XRF

Source 2 Operand Size

Destination Operand Size

Note: For the T2 and TO Fields:

OO-Single-Precision

01-Double-Precision

10-0ouble-Extended-Precision

11-Unused

MC88110 USER'S MANUAL MOTOROLA

fstcr Store To Floating-Point Control Register fstcr

Floating-Point Control Register ~ DestinationOperation:

Assembler
Syntax:

fstcr r51,fcrD

Exceptions: Floating-Point Privilege Violation
Floating-Point Unimplemented

Description: The fster instruction moves the contents of the 51 register to the
floating-point unit control register specified by the FCRD field. Floating-point control
register ferO is a privileged register and can only be accessed in the supervisor mode.
Floating-point control registers fcr62 and fcr63 are the floating-point control and status
registers, respectively, and can be accessed in either the supervisor or user mode.

Floating-point control registers fcr1 through fcr61 are unimplemented and privileged.
An fster instruction which addresses any of these registers causes a floating-point
unimplemented exception in supervisor mode, or a floating ...point privilege violation
exception in user mode.

Instruction Encoding:

Floating-Point Category-Control Register

31 26 25 21 20

11 0 0 0 0 0 I0 0 0 0 0 I Sl

16 15 11 10

11 0 0 0 1 i FCRD

5 4

82

o

S1: Source 1 Register (rS1)

FCRD: Floating-Point Control Destination Register

52: Source 2 Register (rS2)

Note: 51 and 52 must contain the same value.

•

MOTOROLA MC88110 USER'S MANUAL 10-39

fsub Floating-Point Subtract fsub

Destination ~ Source 1-Source 2Operation:

Assembler
Syntax:

fsub.sss
fsub.ssd
fsub.sds
fsub.sdd
fsub.dss
fsub.dsd
fsub.dds
fsub.ddd

rD,rS 1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2

fsub.sss
fsub.ssd
fsub ..sds
fsub.sdd
fsub.ds·s
fsub.dsd
fsub.dds
fsub.ddd
fsub.ssx
fsub.sdx
fsub.sxs
fsub.sxd
fsub.sxx
fsub.dsx
fsub.ddx
fsub.dxs
fsub.dxd
fsub.dxx
fsub.xss
fsub.xsd
fsub.xsx
fsub.xds
fsub.xdd
fsub.xdx
fsub.xxs
fsub.xxd
fsub.xxx

xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,xS1,xS2
xD,XS1,XS2
xD,xS1,xS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,xS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS1,XS2
xD,XS 1,XS2
xD,XS1,XS2
xD,x51,XS2

Exceptions: Floating-Point Reserved Operand
Floating-Point Overflow
Floating-Point Underflow
Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

Description: The fsub instruction checks the contents of the 81 and 52 registers for
reserved operands. If reserved operands are found, a floating-point reserved operand
exception is taken. If no reserved operands are found, the S2 operand is subtracted from
the 51 operand according to the IEEE 754 standard, and the result is placed in the D
register. If execution of fsub is attempted while the FPU is disabled, a floating-point
unimplemented exception is taken. Exception conditions also occur when an overflow,
underflow, or inexact result is detected.

10-40 MC88110 USER'S MANUAL MOTOROLA

NOTE

The MC88110 performs IEEE 754 infinity arithmetic directly in
hardware. Thus, unlike the MC88100, the MC8811 0 does not
treat infinity (00) as a reserved operand and infinity does not
cause an exception.

When the processor is in TCFP mode (Le., one of the TCFP bits in the FPCR is set),
reserved operands do not cause SFU1 exceptions; instead, when a reserved operand is
detected, the hardware delivers a default result approximating the IEEE defined result.
See Section 4 Floating-Point Implementation for more details on TCFP mode.

Instruction Encoding:

Floating..Point Category-Triadic Register

o21 2026 2531 16 15 14 11 10 9 8 7 6 5 4

1-1-0-0-0--0-1.....1---o-----r----
S1
---G 0 1 1 0 ~r------S-2--

D:
S1:

R:

T1:

T2:

TO:

S2:

Destination Register (rD or xD)

Source 1 Register (rS1 or xS1)

O-Source Operands in GRF

1-Source Operands in XRF

Source 1 Operand Size

Source 2 Operand Size

Destination Operand Size

Note: For the T1, T2, and TD Fields:

OO-Single-Precision

01-Double-Precision

10-0ouble-Extended-Precision

11-Unused

Source 2 Reg ister (rS2 or xS2)

II

MOTOROLA MC88110 USER'S MANUAL 10-41

fxcr Exchange Floating-Point Control Register fxcr

Operation: Destination ~ Floating-Point Control Register
Floating-Point Control Register ~ Source 1

rD,rS1,fcrS/DfxcrAssembler
Syntax:

Exceptions: Floating-Point Privilege Violation
Floating-Point Unimplemented

Description: The fxcr instruction transfers the contents of the 81 register to the
floating-point unit control register specified by the FCRS/D field and transfers the
contents of the fcrS/D register to the 0 register. Floating-point control register fcrO is a
privileged register and can only be accessed in the supervisor mode. Floating-point
control registers fcr62 and fcr63 are the floating-point control and status registers,
respectively, and can be accessed in either the supervisor orthe user mode.

Floating-point control registers fcr1 through fcr61 are unimplemented and privileged.
An fxcr instruction which address any of these registers causes a floating-point
unimplemented exception in supervisor mode, or a floating-point privilege violation
exception in user mode.

Instruction Encoding:

Floating-Point Category-Control Register

31 26 25 21 20 16 15 11 10 5 4 0

1_1_o_0_0_o_° 1 o__'""--__s1__.....1_1_1_0~0-11....--FC-R-S/-D--..I.----S-2--1

II

D:
S1:

FCR5/D:

52:

Destination Register (rD)

Source 1 Register (rS1)

Floating-Point Control Register SourceIDestination (ferS/D)

Source 2 Register (rS2)

Note: The S1 and S2 fields must contain the same value.

10-42 MC88110 USER'S MANUAL MOTOROLA

illop

Operation:

Assembler
Syntax:

Exceptions:

Illegal Operation

None

illop1
illop2
illop3

Unimplemented Opcode

illop

Description: The three illop instructions perform no user visible operation but
unconditionally cause an unimplemented opcode exception to be taken.

Instruction Encoding:

Flow Control Category-Triadic Register

31 26 25 16 15 2 1 0

1""""1-1-1-1-0-1----1-0-0-0-'-0-0-0-·0-0-0--0....1-1-1-1-1-1-1-0-0-0-0-0-0-0-0-[;]

IL:

MOTOROLA

Identifies the illegal opcode instruction

01-lIIegal Opcode 1

10-IIIegai Opcode 2

11-lIIegal Opcode 3

MC88110 USER'S MANUAL 10-43

int Round Floating-Point To Integer int

Destination ~ Round (Source 2)Operation:

Assembler
Syntax:

int.ss
int.sd

rD,rS2
rD,rS2

int.ss
int.sd
int.sx

rD,xS2
rD,xS2
rD,xS2

Exceptions: Floating-Point Reserved Operand
Floating-Point Inexact (if not masked)
Floating-Point Integer Conversion Overflow
Floating-Point Unimplemented

Description: The int instruction converts the floating-point number in the S2
register to a signed 32-bit integer using the rounding mode specified in the floating-point
status register (FPSR). The result is placed in the D register. If the result exceeds 32-bits,
then a floating-point integer conversion overflow exception is taken. If reserved
operands are found, a floating-point reserved operand exception is taken. If execution of
int is attempted while the FPU is disabled, a floating-point unimplemented exception is
taken.

See Section 4 Floating-Point Implementation for more information on the
floating-point implementation.

Instruction Encoding:

Floating-Point Category-Triadic Register

31 26 25 21 20 16 15 14 9 8 7 6 5 4

1.....1_°_°_°_°_1......1.....__°__.....1..-.°_°_°_°_°.....0-1-0-0-1-0-0-~~--S-2--

II
D:
R:

T2:

S2:

10-44

Destination Register (rD)

o-Source Operand in GRF

1-8ource Operand in XRF

Source 2 Operand Size

OO-SingIe-Precision

01-Double-Precision

10-0ouble-Extended-Precision

11-Unused

Source 2 Register (rS2 or xS2)

MC88110 USER'S MANUAL MOTOROLA

jmp Unconditional Jump jmp

Transfer program flow to Source 2Operation:

Assembler
Syntax:

Exceptions:

jmp
jmp.n

None

rS2
rS2

Description: The jmp instruction performs an unconditional transfer of program flow
to the absolute address contained in the 82 register. The two least significant bits of that
register are masked in order to force the target address to an instruction (word)
boundary. The .n (delayed branch) option causes the instruction following the jmp.n
instruction to execute before the target instruction.

To ensure future compatibility, the instruction following a jmp.n instruction should not be
a trap, jump, branch or any other instruction that modifies the instruction pointers. Using
such an instruction constitutes a programming error which is not detected.

The jmp instruction can be used to return from subroutines as shown in the following
example:

jmp r1

When branching or jumping to a subroutine, the bsr and jsr instructions, respectively,
place the return address in register r1 as a hardware convention; therefore, specifying
register r1 as the 82 register for a subroutine jmp instruction causes program flow to be
transferred to the return address.

Instruction Encoding:

Flow Control Category-Triadic Register

II
o

o-Next sequential instruction suppressed

l-Next sequential instruction executed before branch is taken

Source 2 Register (rS2)S2:

N:

31 26 25 16 15 11 10 9 5 4

1~1-1-1-1-0-1""""'1-0-0-0-0-0-0-0-0-0--0....1-1-1-0-0-00-0-0-0-0-0-1.....--8-2--

MOTOROLA MC88110 USER'S MANUAL 10-45

jsr

Operation:

Jump To Subroutine

Transfer program flow to Source 2
r1 ~ address of first instruction (second if .n) after jsr

jsr

Assembler
Syntax:

jsr
jsr.n

rS2
rS2

Exceptions: None

Description: The jsr instruction performs an unconditional transfer of program
control to a target address and saves the return address in register r1. The jsr target
address is contained in the S2 register. The two least-significant bits of that register are
masked, forcing the target address to an instruction. (word) boundary. The return address
is the address of the instruction following the jsr instruction. The .n (delayed branch)
option causes the instruction following the jsr.n instruction to execute before the jump
target instruction.

When the .n option is specified, the return address written to r1 is the address of the
second instruction following the jsr.n instruction. If the instruction in·the delay slot uses
r1 as an operand, the contents of r1 will be the new return address. If the instruction in
the delay.slot modifies r1 , its result will supersede the jsr return address.

To ensure future compatibility, the instruction following a jsr.n instruction should not be
a trap, jump, branch or any other instruction that modifies the instruction pointers. Using
such an instruction constitutes a programming error which is not detected.

Instruction Encoding:

Flow Control Category-Triadic Register

31 26 25 16 15 11 10 9 5 4

1,...1-1-1-1-0-1....,1,...0-0-0-0-0-0-0-0-0-0....,1...1-1-0-0-1--,G 0 00 0 0 I

• N:

52:

o-Next sequential instruction suppressed

1-Next sequential instruction executed before branch is taken

Source 2 Register (r52)

52

o

1

10-46 MC88110 USER'S MANUAL MOTOROLA

Id load Register From Memory Id

Operation: Destination Register f- Memory Location

Assembler Syntax:

SCALED
rD,rS1 [r52]
rD,rS1 [r52]
rD ,r51[r52]
rD,r81 [r82]
rD,rS1 [r52]
rD,rS1 [r82]
rD ,rS1[r52]
rD,r81 [rS2]
rD ,rS1[r52]
rD,rS1 [r52]
rD,rS1 [r52]
rD,r81 [r82]
xD,rS1 [r82]
xD,r51 [r82]
xD,r81 [r82]
xD,rS1 [r52]
xD,rS1 [r82]
xD,r81 [rS2]

Id.b
Id.bu
Id.h
Id.hu
Id
Id.d
Id.b.usr
Id.bu.usr
Id.h.usr
Id.hu.usr
Id.usr
Id.d.usr
Id
Id.d
Id.x
Id.usr
Id.d.usr
Id.x.usr

UNSCAlED
rD,r81,r82
rD,r81,r82
rD,r81,r82
rO,rS1,rS2
rD,rS1,r52
rD,r81,r82
rD,r81,r82
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,r52
rD,rS1,rS2
rD,rS1,r52
xD,r81,r82
xD,rS1,rS2
xD,rS1,rS2
xD,r51,r52
xD,r81,rS2
xD,rS1,rS2

Id.b
Id.bu
Id.h
Id.hu
Id
Id.d
Id.b.usr
Id.bu.usr
Id.h.usr
Id.hu.usr
Id.usr
Id.d.usr
Id
Id.d
Id.x
Id.usr
Id.d.usr
Id.x.usr

Id xD,rS1,SI16
Id.d xD,r81,5116
Id.x xD,rS1,8116

UNSCAlED
Id.b rD,r81,8116
Id.bu rD,r81,8116
Id.h rD,rS1,SI16
Id.hu rO,rS1,8116
Id rO,r81,8116
Id .. d rD,r81,8116

Exceptions: Data Access Exception
Misaligned Access Exception (if not masked)
Privilege Violation (.usr option only)

Description: The Id instruction reads data from the specified memory location and
loads it into the 0 register. The memory base address is contained in the 81 register.
Added to this base is either an unsigned 32-bit word index contained in the 82 register
or a 16-bit immediate index. An immediate index is sign-extended if the processor is in m.".,.1..... ,'
signed immediate mode or zero-extended if the processor is in unsigned mode. An .
index in the 82 register can be scaled or unsealed. Scaled index mode is indicated by
enclosing the 82 register within square brackets. When a Id instruction is being
executed, the D register is marked "in use" in the register scoreboard until the memory
fetch completes.

The Id instruction with no options specifies word (32-bit) operation. The .b option
specifies signed byte (8-bit) operation, .bu specifies unsigned byte (8-bit), .h specifies
signed half-word (16-bit), .hu specifies unsigned half-word (16-bit), .d specifies double
word (64-bit), and .x specifies quad word (128-bit). For the scaled index modes, the
scale factor is determined by the size option of the instruction. Operations that are byte,
half-word, word, double word, and quad word in size have scale factors of 1, 2, 4, 8, and
16, respectively.

MOTOROLA MC88110 USER'S MANUAL 10-47

NOTE

Although the extended register file is 80 bits wide in the
MC88110, all memory accesses from the extended register
file must be aligned to quad-word (128-bit) boundaries. Thus,
the Id.x instruction provides a scale factor of 16.

When the MODE bit of the PSR is set, the memory access is normally to supervisor
memory space; when MODE is clear, the memory access is normally to user memory
space. The .usr option specifies that the memory access must be to the user address
space regardless of the MODE bit. The .usr option is only available in supervisor mode.

If the D register is rD, a special cache control operation (tOUCh, allocate, or flush) may be
performed. See Section 6 Instruction and Data Caches for more information on
these operations.

Instruction Encoding:

Load/Store/Exchange Category-Register Indirect with Immediate Index (GRF)

o16 1521 2031 28 27 26 25
10 0 0 1 0~--D--~--S-1-..--,r---------

SI
-
16

Load/Store/Exchange Category-Register Indirect with Immediate Index
(GRF-Unsigned Load)

o16 1521 2031 27 26 25
10 0 0 0 1 ~~--D--~--S-1---,,--------SI-16--------

Load/Store/Exchange Category-Register Indirect with Immediate Index (XRF-Single)

31 26 25

10 0 0 0 0 1 I D

21 20

S1

16 15

SI16

o

III Load/Store/Exchange Category-Register Indirect with Immediate Index (XRF-Double)

31 26 25

10 0 0 0 0 01 D

21 20

I S1

16 15

SI16

o

10-48 MC88110 USER'S MANUAL MOTOROLA

Load/Store/Exchange Category-Register Indirect with Immediate Index
(XRF-Extended)

31 26 25

10 0 1 1 1 1 I o

21 20

S1

16 15

SI16

o

o

Load/Store/Exchange Category-Register Indirect with Scaled or Unsealed Index
(Signed Load)

31 27 26 25 21 20 16 15 12 11 10 9 8 7 5 4 0

11 1 1 1 0 G~---0--~---s1----r-1o--0-0-1-~-0-o--o""'I---S-2---1

Load/Store/Exchange Category-Register Indirect with Scaled or Unsealed Index
(Unsigned Load)

31 26 25 21 20 16 15 11 10 9 8 7 5 4

11""-1-1--1-1-0-1---1---0-------s1------1-o-o-o-0--l~1""-0-0--0....1---S-2---

TV (GRF, R=1):

TV (R=O):

8:

R:

s:

D:

S1:

SIMM16:

U:

S2:

MOTOROLA

Oo-Double Word

01-Word

1o-Half-Word

11-Byte

Oo-Double Word

01-Word

10-0uad Word

11-Unused

o-Half-Word

1-Byte

o-Destination Register in XRF

1-Destination Register in GRF

D-Unscaled Index

1-8caled Index

Destination Register (rD or xD)

Source 1 Register (rS1)

16-Bit Immediate Index

o-access per user/supervisor bit in PSR (normal mode)

1-access user space regardless of PSR

Source 2 Register (r52)

MC88110 USER'S MANUAL 10-49

Ida Load Address Ida

Destination ~ Source 1 + Source 2Operation:

Assembler
Syntax:

Ida.h
Ida
Ida.d
Ida.x

rD,rS1 [r82]
rD,rS1 [rS2]
rD,rS1[rS2]
rD,rS1 [rS2]

II

Exceptions: None

Description: The Ida instruction creates a memory address from the specified
operands. The memory base address is contained in the S1 register. Added to this base
is an unsigned 32...bit scaled word index contained in the S2 register. Note that scaled
index mode is indicated by square brackets enclosing the S2 register. The resulting
address is placed in the D register. This address is not checked for alignment relative to
the operation type.

The Ida instruction with no options specifies word (32-bit) operation. The .h option
specifies half-word (16-bit), .d specifies double word (64-bit), and .x specifies quad word
(128-bit) operation. The scale factor is determined by the size option of the instruction.
Operations that are half-word, word, double word, and quad word in size have scale
factors of 2,4,8, and 16, respectively.

NOTE

Although the extended register file is 80 bits wide in the
MC88110, all memory accesses from the extended register
file must be aligned to quad-word (128-bit) boundaries. Thus,
the Ida.x instruction has been added to provide a scale factor
of 16. (The .b option, along with all unsealed versions of the
Ida instruction, is not included in the MC88110 instruction
set).

10-50 MC88110 USER'S MANUAL MOTOROLA

Instruction Encoding:

Load/Store/Exchange Category-Register Indirect With Scaled Index

31 26 25 21 20 16 15 12 11 10 9 5 4 01-
1
-

1
-

1
--

1
-0-1.......1---0-----.,.---81------1-0-0-.-1-1.....,0-

1
-

0
--

0
-0-0...,1r----

82
---1

TV: OO-Oouble Word

01-Word

1o-Half-Word

11-Quad Word·

0: Destination Register (rD)

S1: Source 1 Register (rS1)

S2: Source 2 Register (rS2)

*'Encoding for Ida.x on the MC88110 replaces the encoding for Ida.b on the MC881 00.

•

MOTOROLA MC88110 USER'S MANUAL 10-51

Idcr Load From Control Register
(Privileged Instruction)

Idcr

rD,crS

Destination Register r Control Register

Idcr

Privilege Violation
Unimplemented Opcode

Description: The Idcr instruction moves data to the D register from the integer unit
control register specified by the CRS field. Integer unit control registers may only be
accessed in the supervisor mode; a privilege violation occurs if they are accessed in
user mode. If the crS field specifies a reserved control register, then an unimplemented
opcode exception occurs.

Operation:

Assembler
Syntax:

Exceptions:

Instruction Encoding:

Load/Store/Exchange Category -Control Register

31 26 25 21 20 16 15 11 10 5 4 o

o 1000001010001 CRS 10 0 0 0 0 I
D: Destination Register (rD)

CRS: Control Register Source (crS)

..

10-52 MC88110 USER'S MANUAL MOTOROLA

mak Make Bit Field mak

(bit field) Destination ~ (bit field) of Source 1Operation:

Assembler
Syntax:

mak
mak

rD,rS1,WS<05>
rD,r51,rS2

Exceptions: None

Description: The mak instruction extracts a bit field from the 81 register. The bit
field, whose width is specified by the W5 field, begins with the least significant bit of the
S1 register. The extracted field is placed in the D register, offset from the least significant
bit by the amount specified in the 05 field. Any bits outside of the field are cleared. If any
bits of the extracted field fall outside of the D register, those bits are ignored.

For triadic register addressing, bits 9-5 and bits 4-0 of the S2 register are used for the
W5 and 05 fields, respectively, and the rest of 52 is ignored.

The following illustration shows the operation of the mak instruction:

31

rS1 Ix I BIT-FIELD

31

rD 0 0 0 0 0 0 0 0 0 0 0 BIT-FIELD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~ WIDTH ---+-- OFFSET :>I

rD 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1

When the W5 field contains all zeros (specifying a width of 32 bits), the mak instruction
operates as a shift left instruction. The 05 field specifies the number of positions to shift,
and the low-order bits are zero filled in the D register. The following illustration shows an
example of a shift left operation using the mak rD,rS1 ,30<5> instruction:

•1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

IGNORED

rS1

ZERO FILL

MOTOROLA MC88110 USER'S MANUAL 10-53

Instruction Encoding:

Bit Field Category-Register with 10-Bit Immediate

31 26 25 21 20 16 15 10 9 5 4 o

11 1 1 1 0 0 I o 81 W5

Bit Field Category-Triadic Register

31 26 25 21 20 16 15 5 4 o

11 1 1 1 0 1 I o 81 1101000000001 82

D:
S1:

W5:

05:

S2:

10-54

Destination Register (rD)

Source 1 Register (rS1)

5-bit unsigned integer denoting a bit-field width (0 denotes 32 bits)

5-bit unsigned integer denoting a bit-field offset

Source 2 Register (rS2)

MC88110 USER'S MANUAL MOTOROLA

mask Logical Mask Immediate mask

Destination ~ Source 1 A IMM16Operation:

Assembler
Syntax:

mask
mask.u

rD,rS1,IMM16
rD,rS1,IMM16

Exceptions: None

Description: The mask instruction logically ANDs the lower 16 bits of the 51
register with the unsigned 16...bit immediate value encoded in the instruction and places
the result in the lower 16 bits of the 0 register. The upper 16 bits of the D register are
cleared. If the .u (upper word) option is specified, the upper 16 bits of the 51 register are
ANDed with the 16...bit immediate value and the result is placed in the upper 16 bits of
the D register. In this case, the lower 16 bits of the D register are cleared.

Instruction Encoding:

Logical Category-Register with 16...8it Immediate

31 27 26 25 21 20 16 15 0

10 1 0 0 1 1~1....__D__....Ioo-__S_1_--'1ooo..- M.1_16 1

U: o-Apply IMM16 to Bits 15-0 of 51

1-Apply IMM16 to Bits 31-16 of S1

0: Destination Register (rD)

51: Source 1 Register (rS1)

IMM16: 16-Bit Unsigned Immediate Operand

•

MOTOROLA MC88110 USER'S MANUAL 10·55

mav Register-To-Register Move mav

Destination f- Source 2Operation:

Assembler
Syntax:

mov.s
mov.d
moy.s
moY.d
mov

rD,xS2
rD,xS2
xD,rS2
xD,rS2
xD,x52

Exceptions: Floating-Point Unimplemented

..

Description: The moy instruction moves the data from the 52 register to the D
register using the specified precision for both the source and destination registers. When
data is moved within the extended register file, the entire contents of the register are
moved, so it is not necessary to specify an operand precision. When single- or double
precision data is moved from the general register file to the extended register file, the
value of the unused bits is undefined. Double-precision operands require a register pair
when moved into the general register file, and no double-extended-precision values
may be moved into or out of the general register file.

The mov instruction may not be used to move data between registers in the general
register file. Also, the movinstruction may not be used to move double-extended
precision data between the two register files. If a double-extended-precision value must
be stored in the general register file, it should be moved via memory using st and Id
instructions.

10-56 MC88110 USER'S MANUAL MOTOROLA

Instruction Encoding:

Floating-Point Category-Triadic Register (Destination Operand in GRF)

26 2531 21 20 16 15 9 8 7 6 5 4 0

1~1-0--0-0-0--1"'I---D--~I"'o--o-o-O-O-I-1-1-0-0--o-o-o~~ S2__.....,j1

Floating-Point Category-Triadic Register (Destination Operand in XRF)

31 26 25

o

21 20 16 15 14 9 8 7 6 5 4 0

10 0 0 0 0 Gl~~-o-o--O-O-1""~ S2__.....1

0:
S2:

R:

T2:

T2*:

Destination Register (rD or xD)

Source 2 Register (rS2 or xS2)

O-Source Operand in GRF

1-Source Operand in XRF

Source 2 Operand Size

ao-Single Precision

a1-Double Precision

1o-Unused

11-Unused

If R = 1 then T2* = 10 (Double-Extended-Precision in XRF). else T2* = T2

m

MOTOROLA MC88110 USER'S MANUAL 10-57

muls Signed Integer Multiply muls

Integer Overflow

Destination +- Source 1 * Source 2Operation:

Assembler
Syntax:

Exceptions:

muls rD,rS1,rS2

Description: The muls instruction multiplies the signed 32-bit integer value in the
81 register by the signed 32-bit integer value in the 82 register using 32-bit two's
complement multiplication. The result is written into the 0 register. If the product cannot
be represented as a signed 32..bit result; an overflow exception is taken and no result is
written into D.

Instruction Encoding:

Integer Category-Triadic Register

10 1 1 0 1 1 1 0 0 0 0 I
31

11 1 1

26 25

1 0 1 I o

21 20

81

16 15 5 4 o

82

II

D: Destination Register (rD)

S1: Source 1 Register (rS1)

S2: Source 2 Register (rS2)

10-58 MC88110 USER'S MANUAL MOTOROLA

mulu Unsigned Integer Multiply mulu

Destination +- Source 1 * Source 2Operation:

Assembler
Syntax:

mulu
mulu
mulu.d

rO,rS1,rS2
rO,rS1,IMM16
rO,rS1,rS2

Exceptions: None

Description: The mulu instruction multiplies the data in the 81 register by either the
data in the 82 register or by the unsigned, zero-extended 16-bit immediate value. Thirty
two-bit two's complement multiplication is used. The least significant 32 bits of the
product are stored into the D register. This instruction was referred to as "mul" in the
MC88100 User's Manual.

If the .d (double) option is specified, the 64-bit product is placed in register pair 0:0+1.

NOTE

Unlike the MC881 00, this instruction does not cause a
floating-point unimplemented exception when SFU1 is
disabled.

Instruction Encoding:

Integer Category-Register with 16-Bit Immediate

31 26 25

10 1 1 0 1 1 I o

21 20

81

16 15

Mvt16

Integer Category-Triadic Register

o31

11 1 1

26 25

1 0 1 I o

21 20

81

16 15 9 8 7 5 4·I0 1 1 0 1 1 0 0-0-0-0....,1.....--8-2-- II
0:

81:

IMM16:

d:

82:

MOTOROLA

Destination Register (rD)

Source 1 Register (rS1)

16-Bit Zero-Extended Immediate Operand

(}-Single-Word Destination

1-Double-Word Destination

Source 2 Register (rS2)

MC88110 USER'S MANUAL 10-59

nint Floating-Point Round To Nearest Integer nint

Destination +- Round-Nearest (Source 2)Operation:

Assembler
Syntax:

nint.ss
nint.sd

rD,rS2
rD,rS2

nint.ss
nint.sd
nint.sx

rD,xS2
rD,xS2
rD,xS2

Exceptions: Floating-Point Reserved Operand
Floating-Point Integer Conversion Overflow
Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

o

Description: The nint instruction converts the floating-point number contained in
the 52 register to a signed 32-bit integer using the IEEE 754 round-to-nearest rounding
method and places the result in the D register. If the result exceeds 32-bits, a floating
point integer conversion overflow exception is taken. If a reserved operand is found, a
floating-point reserved operand exception is taken.

See Section 4 Floating-Point Implementation for more information on the
floating-point implementation.

Instruction Encoding:

Floating-Point Category-Triadic Register

31 26 25 21 20 16 15 14 9 8 7 6 5 4

1r--1-0-0-0-0-1""1r---o--""Ir-o-o-o-O-O""Gr--1-0-1-0-0-0-~---S-2--

II

D:
R:

T2:

S2:

10-60

Destination Register (rD)

O-Source Operand in GRF

1-8ource Operand in XRF

Source 2 Operand Size

OO-Single-Precision

01-Double-Precision

1O-Double-Extended-Precision

11-Unused

Source 2 Register (rS2 or xS2)

MC88110 USER'S MANUAL MOTOROLA

or Logical OR or

Destination f- Source 1 V Source 2Operation:

Assembler
Syntax:

Exceptions:

or
or.c
or
or.u

None

rD,rS1,rS2
rD,rS1,rS2
rD,r51,IMM16
rD,rS1,IMM16

Description: For triadic register addressing, the contents of the 51 register are
logically ORed with the contents of the 82 register. The result is stored in the D register. If
the .c (complement) option is specified, the 82 operand is complemented before being
ORed.

For register with immediate addressing, the contents of the 81 register are ORed with
the unsigned 16-bit immediate operand. The result is stored in the lower 16 bits of D,
and the upper 16 bits of 81 are copied unchanged to D. If the .u (upper word) option is
specified, the upper 16 bits of the 81 operand are ORed with the immediate operand,
and the result is stored in the upper 16 bits of D. In this case, the lower 16 bits of 81 are
copied unchanged to D.

Instruction Encoding:

Logical Category-Register with 16-Bit Immediate

31 27 26 25 21 20 16 15 0
10 1 0 1 1 G---o----..----s1--....---------W-1-6--------1

Logical Category-Triadic Register

31 26 25 21 20 16 15 11 10 9 5 4

1P--1-1-1-1-0-1-......1---O--...........--S-1--.....1-0-1-0-1-1Goo 0 0 0 I S2

o

I •U:

D:
S1:

IMM16:

c:

S2:

MOTOROLA

O-OR IMM16 with Bits 15-0 of S1

1-QR IMM16 with Bits 31-16 of 81

Destination Register (rO)

Source 1 Register (r81)

16-Bit Unsigned Immediate Operand

o-Second operand not complemented before the operation

1-Second operand complemented before the operation

Source 2 Register (r52)

MC88110 USER'S MANUAL 10-61

padd Pixel Add padd

Destination f- SourGe 1 + Source 2Operation:

Assembler
Syntax:

padd.b
padd.h
padd

rD,r51,r52
rD,r81,r82
rD,r81,r82

Exceptions: Graphics (8FU2) Unimplemented

•

Description: The padd instruction adds the 8-, 16~, or 32-bit pixel fields contained
in the 81 :81+1 register pair to equivalent fields in the 82:82+1 register pair and places
the result in the registers D:D+1. The addition is carried out using modulo 2T arithmetic,
where T is the number of bits in each field. Overflow and underflow conditions wrap
around within the fields rather than causing exceptions.

Instruction Encoding:

Graphics Category-Triadic Register

31 26 25 21 20 16 15 11 10 7 6 5 4 0
1-1-0-0-0-1-,-o..,Ir----o---,Ir----

S
-1--..,Ir--O-O-1-0-o....,I....?-O-0-o-Q~--S2-~1

D: Destination Register (rD)

S1: Source 1 Register (rS1)

S2: Source 2 Register (rS2)

T: Bit Field Size

Oo-Unused

01-8-bit

1O-16-bit

11-32-bit

10-62 MC88110 USER'S MANUAL MOTOROLA

padds

Operation:

Assembler
Syntax:

Exceptions:

Pixel Add and Saturate

Destination f- Source 1 + Source 2

padds.u.b rD,rS1,rS2
padds.u.h rD,rS1,rS2
padds.u rD,rS1,rS2
padds.us.b rD,rS1,rS2
padds.us.h rD,rS1,rS2
padds.us rD,rS1,rS2
padds.s.b rD,r81,r82
padds.s.h rD,rS1,rS2
padds.s rD,rS1,rS2

Graphics (SFU2) Unimplemented

padds

Description: The padds instruction adds the 8-, 16-, or 32-bit pixel fields contained
in the 81 :81 +1 register pair to equivalent fields in the 82:82+1 register pair and places
the result in the registers D:D+1. The addition is carried out using signed (.5), unsigned
(.u), or mixed (.us) saturation arithmetic. See Section 5 Graphics Processing Unit
for more information on saturation arithmetic.

Instruction Encoding:

Graphics Category-Triadic Register

31 26 25 21 20 16 15 11 10 9 8 7 6 5 4 0

1-~-0-0-0-1-0---'-1---D------S-1--""I-o-0-1-0-0~---S-2--I

S:

MOTOROLA

Destination Register (rD)

Source 1 Register

Source 2 Register

Bit Field Size

CO-Unused

01-8-Bit

1o-16-Bit

11-32·Bit

Saturation Mode

Oo-Nonsaturating (Unused for padds)

01-Unsigned + Unsigned = Unsigned Saturation

1O-Unsigned + Signed = Signed Saturation

11-8igned + Signed = Signed Saturation

MC88110 USER'S MANUAL 10-63

•

pcmp Pixel Compare pcmp

Destination ~ Source 1 :: Source 2

Graphics (8FU2) Unimplemented

Operation:

Assembler
Syntax:

Exceptions:

pcmp rD,r51,r52

Description: The pcmp instruction compares the two 32-bit fields contained in the
S1 :81 +1 register pair to the corresponding fields in the 82:82+1 register pair using
unsigned arithmetic. An 8-bit result string is returned in the D register. The format of the
result string is as follows:

rO[3:0]:
rO[4]:
rO[5]:
rO[6]:
rD[7]:
rD[8]:
rD[9]:
rO[10]:
rD[11]:
rD[31 :12]:

o
(r81 [63:32]
(r81 [63:32]
(r81 [63:32]
(r81 [63:32]
IrO[4]
IrO[5]
IrD[6]
IrO[7]
o

~ r82[63:32]) and (r81 [31 :0]
< r82[63:32]) and (r81 [31 :0]
~ r82[63:32]) and (r81 [31 :0]
< r82[63:32]) and (r81 [31 :0]

~ r82[31 :0]])
< r82[31 :0]])
< r82[31 :0]])
~ r82[31 :0]])

Instruction Encoding:

Graphics Category-Triadic Register

31 26 25

11 0 0 0 1 0 I
o21 20 16 15 11 10 7 6 5 4

o 81 10 0 1 1 1 10 0 0 0 B--S-2-~

Destination Register (rD)

Source 1 Register (rS1)

Source 2 Register (rS2)

0:

51:

S2:•

10-64 MC88110 USER'S MANUAL MOTOROLA

pmul Pixel Multiply pmul

Destination f- Source 1 x Source 2Operation:

Assembler
Syntax:

pmul rD,rS1,rS2

Exceptions: Graphics (SFU2) Unimplemented

Description: The pmul instruction multiplies the .32-bit value in the 81 register by
the 64-bit value in the 82:82+1 register pair and places the 64 least significant bits of the
result in the D:D+1 register pair. The multiplication is carried out using unsigned
arithmetic.

NOTE

The pmul instruction is intended to be used in conjunction
with the punpk and ppack instructions. See Section 5
Graphics Processing Unit for further details and an
illustration of typical usage.

Instruction Encoding:

Graphics Category-Triadic Register

31 26 25

11 0 0 0 1 0 I D

21 20

51

16 15 11 10 7 6 5 4

10 0 0 0 010 0 0 0 ~---5-2--

MOTOROLA

Destination Register (rD)

Source 1 Register (rS1)

Source 2 Register (rS2)

MC88110 USER'S MANUAL 10-65

•

ppack Pixel Truncate, Insert and Pack ppack

Destination f- Truncated and Packed (Source 1 and Source 2)Operation:

Assembler
Syntax:

ppack.32.b
ppack.16.h
ppack.32.h
ppack.8
ppack.16
ppack.32

rD,rS1,r82
rD,rS1,r52
rD,rS1,r52
rD,rS1,r82
rD,rS1,r82
rD,rS1,r82

Exceptions: Graphics (8FU2) Unimplemented

..

Description: The ppack instruction takes the (t*r)/64 most significant bits of each of
the fields (field size =t) in the 82:82+1 register pair and concatenates them, resulting in
a field of width r. This field replaces the most significant bits of the data from the 81 :51 +1
register pair and the result is stored in the 0 :0+1 register pair. The data in the O:D+1
register pair is then rotated left by r bits.

The values of t and r are specified in the instruction. The value of r can be 8, 16, or 32
bits, and is specified in the first option field after the mnemonic. The value of t can be
byte, half-word, or word. Byte and half-word are specified in the second option field by b
or h, respectively. Word is specified by leaving the second option field empty. The
following table shows the possible values of (l*r)/64 for all possible combinations of 1
and r.

r

8 16 32

8 x x 4

t 16 x 4 8

32 4 8 16

x = undefined operation

.....<~>~<r---------iIII>~<~--- t=32 ------.:>~
8

r52: r52+2

rS1:rS1+1

rD:rD+1

10-66 MC88110 USER'S MANUAL MOTOROLA

Instruction Encoding:

Graphics Category-Triadic Register

21 2026 2531 16 15 11 10 7 6 5 4 0

1-1--0-0-0--1-0--.-1---0---...---S-1--.......10--1-1-0--o-I'---R--[2J... S2 1

D:
81:

82:

T:

R:

Destination Register (rD)

Source 1 Register (rS1)

Source 2 Register (rS2)

Bit-Field Size

Oo-Unused

01-8-8it

1o-16-Bit

11-32-Bit

Rotation Size

OOOo-Rotate 64-bit register pair left 0 (or 64) bits

000l-Rotate left 4 bits

0010-Rotate left 8 bits

r r r r-Rotate left (r r r r x 4) bits

Note: Only rotations of 8, 16, and 32 are valid for ppack

III

MOTOROLA MC88110 USER'S MANUAL 10-67

prot Pixel Rotate Left prot

Destination ~ Source 1 rotated leftOperation:

Assembler
Syntax:

prot
pr~t

rD,r81 ,<06>
rD,rS1,rS2

Exceptions: Graphics (8FU2) Unimplemented

Description: The prot instruction rotates the value in the 81 :81+1 register pair to
the left by either the number of bits specified in the 82 register or by the 6-bit immediate
value specified in the 06 field, with the result being placed in the D:0+1 register pair.
The rotation count must be an integral multiple of 4 bits in the range of a to 60 bits. If a
nonintegral multiple of 4 bits is specified, the rotation count will be truncated to the next
lower integral multiple of 4 bits. A count greater than 60 bits will be truncated to less than
or equal to 60 bits.

Instruction Encoding:

Graphics Category-Triadic Register

31 26 25 21 20 16 15 11 10 7 6 5 4 0

11 0 0 0 1 oI 0 51 I0 1 1 1 1
1

0 0 0 oG 52 I
Graphics Category-Register with 6-Bit Immediate

31 26 25 21 20 16 15 11 10 7 6 5 4

1
1 0 0 0 1 oI 0 51 10 1 1 1 oI R Go 0 0 0 oI

D:
51:

52:

R:

10-68

Destination Register (rD)

Source 1 Register (rS1)

Source 2 Register (rS2)

Rotation Size

OOOo-Rotate 64-bit register pair left a (or 64) bits

0001-Rotate left 4 bits

001O-Rotate left 8 bits

r r r r-Rotate left (r r r r x 4) bits

NOTE

The nibble-wise (4-bit) rotation count is specified in bits 5-2 of
rS2. Other bits (31-6, 1-0) are ignored, but should be set to
zero to assure future compatibility.

MC88110 USER'S MANUAL MOTOROLA

psub Pixel Subtract psub

Destination f- Source 1-Source 2Operation:

Assembler
Syntax:

psub.b
psub.h
psub

rD,rS1,rS2
rD,r51,rS2
rD,rS1,r52

Exceptions: Graphics (SFU2) Unimplemented

Description: The psub instruction subtracts the 8-, 16-, or 32-bit pixel fields in the
S2:52+1 register pair from equivalent fields in the 51 :S1 +1 register pair and places the
result in the 0:0+1 register pair. The subtraction is carried out using modulo 2T

arithmetic, where T is the number of bits in each field. Overflow and underflow conditions
wrap around within the fields, rather than causing exceptions.

Instruction Encoding:

Graphics Category-Triadic Register

o31 26 25

11 0 0 0 1 0 I o

21 20

51

16 15 11 10 7 6 5 4

100110100 0 0~---5-2--

MOTOROLA

Destination Register (rD)

Source 1 Register (rS1)

Source 2 Register (rS2)

Bit Field Size

DO-Unused

01-8-bit

1Q-16-bit

11-32-bit

MC88110 USER'S MANUAL 10-69

psubs Pixel Subtract and Saturate psubs

Destination +- Sourpe 1-Source 2Operation:

Assembler
Syntax:

psubs.u.b
psubs.u.h
psubs.u
psubs.us.b
psubs.us.h
psubs.us
psubs.s.b
psubs.s.h
psubs.s

rD,rS1,rS2
rO,rS1,rS2
rO,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2

Exceptions: Graphics (SFU2) Unimplemented

o

Description: The psubs instruction subtracts the 8-,16-, or 32-bit pixel fields in the
S2:S2+1 register pair from equivalent fields in the S1 :S1+1 register pair and places the
result in the 0:D+1 register pair. The subtraction is carried out using signed (.s),
unsigned (.u), or mixed (.us) saturation arithmetic. See Section 5 Graphics
Processing Unit for more information on saturation arithmetic.

Instruction Encoding:

Graphics Category-Triadic Register

31 26 25 21 20 16 15 11 10 9 8 7 6 5 4

1-1-0-0-0-1-
0
---r'1---o---r---

S
-
1
--"'I""I-o-0-1-1-0~r----S-2--

II

D:
S1:

S2:

T:

s:

10-70

Destination Register (rD)

Source 1 Register (rS1)

Source 2 Register (rS2)

Bit Field Size

Oo-Unused

01-8-bit

1O-16-bit

11-32-bit

Saturation Mode

Oo-Non-Saturating (Unused for psubs)

01-Unsigned-Unsigned = Unsigned Saturation

1O-Unsigned-Signed = Signed Saturation

11-Signed-Signed = Signed Saturation

MC88110 USER'S MANUAL MOTOROLA

punpk Pixel Unpack punpk

Destination ~ Unpack (Source 1)Operation:

Assembler
Syntax:

punpk.n
punpk.b
punpk.h

rD,rS1
rD,r51
rD,r51

Exceptions: Graphics (SFU2) Unimplemented

Description: The punpk instruction places 4-, 8-, or 16-bit fields from the 51
register into the lower half of fields twice as large (8, 16, or32 bits) with zero fill. These
fields are then concatenated to form a 54-bit result that is placed in the D:D+1 register
pair.

Instruction Encoding:

Graphics Category-Triadic Register

31 26 25 21 20 16 15 11 10 7 . 6 5 4 0

1-1-0-0-0--1-0...,1F""""--o----r---
S
-
1
--'-10-1-1-0-1--r"'10-0-0-·'-'o-I~r--o-o-o-0-0-1

0: Destination Register (rD)

S1: Source 1 Register (rS1)

T: Bit Field Size

0Q-4·8it (Nibble)

01-8-8it (Byte)

1o-16-Bit (Half-Word)

11-32-Bit (Word)

•

MOTOROLA MC88110 USER'S MANUAL 10-71

rot Rotate Register rot

Destination ~ Source 1 rotated by 05Operation:

Assembler
Syntax:

Exceptions:

rot
rot

None

rD,rS1,<OS>
rD,rS1,rS2

Description: The rot instruction rotates the bits in the S1 register to the right by the
number of bits specified in the 05 field. The result is placed in the D register. For triadic
register addressing, bits 4-0 of the 52 register are used as the 05 field. Bits 9-5 in the
52 register should be zero to guarantee future compatibility; the other bits in the 82
register are ignored.

Instruction Encoding:

Bit Field Category-Register with 10-Bit Immediate

31 26 25

11 1 j 1 0 0 I o

21 20

81

16 15 10 9 5 4 o

Bit Field Category-Triadic Register

1101010000001

31 26 25

11 1 1 1 0 1 I o

21 20

81

16 15 5 4 o

52

II

D:
S1:
05:

52:

10-72

Destination Register (rD)

Source 1 Register (r51)

5-bit unsigned integer denoting a bit-field offset

Source 2 Register (rS2)

MC88110 USER'S MANUAL MOTOROLA

rta

Operation:

Assembler
Syntax:

Exceptions:

Return From Exception
(Privileged Instruction)

PSR r- EPSR
XIP f- EXIP
NIP r- ENIP

rte

Privilege Violation

rta

Description: The rte instruction provides an orderly termination of exception
processing. First, the rte instruction causes the machine to be serialized to guarantee
that all exception handler instructions complete. Next, the PSR is restored from the
EPSR, and the machine is placed in the correct mode (user or supervisor). Finally, the
XIP is restored from the EXIP and the instruction at that address is fetched. If the
excepting instruction was in the delay slot of a branch as indicated by the D bit in the
EXIP, then the NIP is restored from the ENIP, the instruction at the address in the ENIP is
fetched, and normal execution resumes. If the instruction was not in a branch delay slot,
the NIP is calculated by normal instruction processing when execution resumes. An rte
instruction executed in the user mode causes a privilege violation.

See Section 7 Exceptions for more information on exceptions and the side effects of
executing an rte instruction.

Instruction Encoding:

Flow Control Category-Triadic Register

31 26 25 16 15 5 4 0

11 1 1 1 0 1 10 0 0 0 0 0 0 0 0 011 1 1 1 1 1 0 0 0 0 0 10 0 0 0 0 I

MOTOROLA MC88110 USER'S MANUAL 10-73

set Set Bit Field set

Destination f- (Source 1V (Bit Field of 1's))Operation:

Assembler
Syntax:

set
set

rD,rS1,W5<05>
rD,rS1,rS2

Exceptions: None

Description: The set instruction reads the data from register S1 and inserts a field
of ones into the data. The result is placed in the D register. The width of the bit field is
specified by the W5 field, and the offset of the bit field from bit zero of the 81 data is
specified by the 05 field. A W5 field of all zeros specifies a 32-bit wide bit field. If any bits
of the inserted bit field extend beyond bit 31 of the 81 data, those bits are ignored.

For triadic register addressing, bits 9-5 and bits 4-0 of the 82 register are used for the
W5 and 05 fields, respectively.

The following illustration shows the operation of the set rD,rS1 ,5<16> instruction. In this
example, W5 contains 5 and 05 contains 16, thereby placing a field of 5 ones in bits 16
through 20 of the 51 data.

31 0

rS1 11 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 I

31 '0

rD 11 1 1 0 0 1 0 1 1 111 1 1 1 1I0 1 1 1 O' 0 0 1 1 1 1 1 1 1 0 0 1 I
~WIDTH~< OFFSET >1

10-74 MC88110 USER'S MANUAL MOTOROLA

Instruction Encoding:

Bit Field Category-Register with 10-Bit Immediate

31 26 25 21 20 16 15 10 9 5 4 °
1....1_1__1 _1_o_0----.1 D I.... s1__.........1_1_o_o_0__1_o__...I w_5__........__05_·__......1

Bit-Field Category-Triadic Register

11 1 1 1 0 1 I 1100010000001

31 26 25

o

21 20

51

16 15 5 4

52

o

D:
S1:

W5:

05:

52:

MOTOROLA

Destination Register (rD)

Source 1 Register (r51)

Unsigned 5-bit integer denoting a bit-field width (0 denotes 32 bits)

Unsigned 5-bit integer denoting a bit-field offset

Source 2 Regi~ter (r52)

MC88110 USER'S MANUAL 10-75

•

5t Store Register To Memory 5t

Operation: Memory Location ~ Source Register (specified as rD)

Assembler Syntax:

Exceptions: Data Access Exception
Misaligned Access Exception (if not masked)
Privilege Violation (.usr option only)

SCALED
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
rD,rS1 [rS2]
xD,rS1 [rS2]
xD,rS1 [rS2]
xD,rS1 [rS2]
xD,rS1 [rS2]
xD,rS1 [rS2]
xD,rS1 [rS2]
xD,rS1 [rS2]
xD,rS1 [rS2]
xD,rS1 [rS2]
xD,rS1 [rS2]
xD,rS1 [rS2]
xD,rS1 [rS2]

st.b
st.h
st
st.d·
st.b.usr
st.h.usr
st.usr
st.d.usr
st.b.wt
st.h.wt
st.wt
st.d.wt
st.b.usr.wt
st.h.usr.wt
st.usr.wt
st.d.usr.wt
st
st.d
st.x
st.usr
st.d.usr
st.x.usr
st.wt
st.d.wt
st.x.wt
st.usr.wt
st.d.usr.wt
st.x.usr.wt

UNSCALED
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
xD,rS1,rS2
xD,rS1,rS2
xD,rS1,rS2
xD,rS1,rS2
xD,rS1,rS2
xD,rS1,rS2
xD,rS1,rS2
xD,rS'1,rS2
xD,rS1,rS2
xD,rS1,rS2
xD,rS1,rS2
xD,rS1,rS2

st.b
st.h
st
st.d
st.b.usr
st.h.usr
st.usr
st.d.usr
st.b.wt
st.h.wt
st.wt
st.d.wt
st.b.usr.wt
st.h.usr.wt
st.usr.wt
st.d.usr.wt
st
st.d
st.x
st.usr
st.d.usr
st.x.usr
st.wt
st.d.wt
st.x.wt
st.usr.wt
st.d.usr.wt
st.x.usr.wt

UNseALED
st.b rD,rS1,SIMM16
st.h rD,rS1,SIMM16
st rD,rS1,SIMM16
st.d rD,rS1,SIMM16

st xD,rS1,SIMM16
st.d xD,rS1,SIMM16
st.x xD,rS1,SIMM16

III

Description: The st instruction writes the contents of a specified register to a
specified memory location. The D register contains the data to be stored in memory. The
memory base address is contained in the S1 register. The memory location is calculated
by adding to the base address either a 16-bit immediate index or the signed 32-bit word
index contained in the S2 register. An immediate index is sign-extended if the processor
is in the signed immediate mode or zero-extended if the processor is in the unsigned

MC88110 USER'S MANUAL MOTOROLA

mode. An index in the S2 register can be scaled or unsealed. Scaled index mode is
indicated by enclosing the 52 register within square brackets.

The st instruction with no options specifies word (32-bit) operation. The .b option
specifies byte (a-bit) operation, .h specifies half-word (16-bit), .d specifies double word
(64-bit), and .x specifies a quad word (128-bit). For the scaled index modes, the scale
factor is determined by the size option of the instruction. Operations that are byte, half
word, word, double-word, and quad word in size have scale factors of 1, 2, 4, 8, and 16,
respectively. A st instruction with a .wt option causes the store operation to write
through the cache and unconditionally update memory.

NOTE

Although the extended register file is 80 bits wide in the
MC88110, all memory accesses from the extended register
file must be aligned to quad-word (128-bit) boundaries. Thus,
the st.x instruction provides a scale factor of 16.

Data transfers are always aligned on their size boundary in memory. If a misaligned
access is attempted with the MXM bit in the PSR cleared, a misaligned access exception
is taken. If the misaligned access exception is disabled (MXM bit is set), the least
significant bits of the address are ignored-i.e., the reference is performed to the next
lower address boundary which is size aligned.

When the MODE bit of the P5R is set, the memory· access is normally to supervisor
memory space; when MODE is clear, the memory access is normally to user memory
space. The .usr option specifies that the memory access must be to the user memory
space regardless of the MODE bit in the PSR. The .usr option is only available in
supervisor mode.

Load/Store/Exchange Category-Register Indirect with Immediate Index (XRF-Single) •
o16 15

Instruction Encoding:

Load/StorelExchange Category-Register Indirect with Immediate Index (GRF)

31 28 27 26 25 21 20

10 0 1 0[~---D--""'I---S1--"'--------S-116--------

31 26 25 21 20 16 15 o

10 0 1 1 0 1 I o I 81 5116

MOTOROLA MC88110 USER'S MANUAL 10-77

Load/Store/Exchange Category-Register Indirect with Immediate Index (XRF-Double)

31 26 25 21 20 16 15 °
10 0 1 1 0 0 I o 81 8116

Load/Store/Exchange Category-Register Indirect with Immediate Index
(XRF-Extended)

31 26 25 21 20 16 15 °

°

11.-0_0__1 _1_1_°.......1 0 __-"1.... 81__...... 81_1_6 1

Load/Store/Exchange Category-Register Indirect with Scaled or Unsealed Index
(Signed Load)

31 27 26 25 21 20 16 15 12 11 10 9 8 7 6 5 4

11 1 1 1 0 0---0--.........---8-1--....1-0-0-1--0~-8-2-----

D:
S1:

S2:

SIMM16:

R:

S:

T:

U:

TV (R=1):

TV (R=O):

10-78

Destination Register (rD or xC)

Source 1 Register

Source 2 Register

16-Bit Signed or Unsigned Immediate Operand

O-Source Operands in XRF

1-Source Operands in GRF

O-Unscaled Index

1-Scaled Index

o-Normal Store

1-Store Through the Cache (Write-Through)

o-Normal Access

1-Access User Space Regardless of PSR

OO-Oouble Word

01-Word

1o-Half-Word

11-Byte

OO-Oouble Word

01-Word

10-0uad Word

11-Unused

MC88110 USER'S MANUAL MOTOROLA

stcr Store To Control Register
(Privileged Instruction)

stcr

rS1,crDstcr

Control Register f- Source Register

Privilege Violation
Unimplemented Opcode

Description: The stcr instruction moves the data contained in the 81 register to the
integer unit control register specified by crD field. The general control registers can only
be accessed in supervisor mode; a privilege violation occurs if they are accessed in user
mode. If the crD field specifies a reserved control register, then an unimplemented
opcode exception occurs.

Operation:

Assembler
Syntax:

Exceptions:

Instruction Encoding:

Load/Store/Exchange Category-Control Register

31 26 25 21 20 16 15 11 10 5 4 o

11000001000001 S1 CRD S2

S1: Source 1 Register (rS1)

CRD: Control Register Destination (crD)

S2: Source 2 Register (r52)

Note: The 51 and 82 fields must contain the same register number

II

MOTOROLA MC88110 USER'S MANUAL 10-79

sub Integer Subtract sub

Destination ~ Source 1 - Source 2

rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2
rD,rS1,rS2

Operation:

Assembler
Syntax:

sub
sub.ci
sub.co
sub.cio

sub

subtract (without borrow)
subtract and use borrow in
subtract and propagate borrow out
subtract and propagate borrow in and

out
rD,rS1,SIMM16 subtract immediate (without borrow)

Exceptions: Integer Overflow

•

Description: The sub instruction subtracts either the data contained in the S2
register or the 16-bit immediate operand from the data contained in the 81 register. The
immediate operand is zero-extended in unsigned mode or sign-extended in signed
immediate mode. The result of the subtraction is placed in the D register. The carry bit
can optionally be used to perform subtract with borrow operations: a cleared carry bit
indicates a borrow and a set carry bit indicates no borrow (Le., effectively, borrow for
subtraction is the opposite of carry for addition). If the results cannot be represented as a
signed 32-bit integer, an integer overflow exception occurs and the contents of rD and
the carry bit are unchanged.

Subtraction is performed by adding the one's complement of the 82 operand and either
a constant one or the carry bit to the S1 operand. All 32 bits of the operands participate
in the addition (Le., there is no sign bit). If the carry out of the sign bit position and the
carry into the sign bit are not the same, an overflow exception occurs.

10-80 MC88110 USER'S MANUAL MOTOROLA

Instruction Encoding:

Integer Category-Register with 16-8it Immediate

31 26 25

10 1 1 1 0 1 I o

21 20

S1

16 15

SMM16

o

Integer Category-Triadic Register

o31 26 25

11 1 1 1 0 1 I o

21 20

S1

16 15 10 9 8 7 5 4

I0 1 1 1 0 1 lliI....0_ o__o...I_S_2,j

D:
S1:

SIMM16:

I:

0:

52:

MOTOROLA

Destination Register (rD)

Source 1 Register (rS1)

16-Bit Signed Immediate Operand

D-Oisable Carry In

1-Enable Carry In

D-Oisable Carry Out

1-Enable Carry Out

Source 2 Register (r52)

MC88110 USER'S MANUAL 10-81

subu Unsigned Integer Subtract subu

Destination r Source 1 - Source 2Operation:

Assembler
Syntax:

sub,u
subu.ci
subu.co
subu.cio
subu

rD,rS1,rS2
rD,rS1,r82
rD,rS1,r82
rD,rS1,r82
rD,rS1,IMM16

Exceptions: None

Description: Thesubu instruction subtracts the data contained in the rS2 register
from the data contained in the rS1 register, or subtracts a zero-extended 16-bit
immediate operand from the data contained in the rS1 register. The result of the
subtraction is placed in the rD register. The carry bit can optionally be used to perform
subtract with borrow operations: a cleared carry bit indicates a borrow and a set carry bit
indicates no borrow (Le., effectively, borrow for subtraction is the opposite of carry for
addition).

Subtraction is performed by adding the one's complement of the rS2 operand·and either
a constant one or the carry bit to the rS1 operand. All 32 bits of the operand participate
in the addition.

Instruction Encoding:

Integer Category-Register with 16-Bit Immediate

31 26 25

10 1 1 0 0 1 I o

21 20

S1

16 15

1£116

o

Integer Category-Triadic Register

oII 31

11 1 1

26 25

1 0 1 I o

21 20

51

16 15 10 9 8 7 5 4

I0 1 1 0 0 1 rn""'-?-0-0"""1""--S-2--
0:

Sl:
IMM16:

I:

0:

52:

10-82

Destination Register (rD)

Source 1 Register (rS1)

16-Bit Zero-Extended Immediate Operand

o-Disabla Carry In

1-Enable Carry In

Q-Oisable Carry Out

1-Enable Carry Out

Source 2 Register (r52)

MC88110 USER'S MANUAL MOTOROLA

tbO Trap On Bit Clear tbO

If Bit 85 Clear: Trap VEC9Operation:

Assembler
Syntax:

tbO 85,rS1,VEC9

Exceptions: Trap VEC9
Privilege Violation

Description: The tbO instruction examines a bit in the 51 register specifledby the
B5 field. If the bit is clear, exception processing is initiated. The exception vector address
is formed by concatenating the upper 20 bits of the vector base register with·the contents
of the 9-bit VEC9 field followed by a 3-bit field of zeros.

The tbO instruction serializes the MC88110 and allows all previous operations to
complete (effectively clearing the register scoreboard and data unit pipeline) before the
tbO executes.

When executed in user mode, a trap to a hardware vector (vectors 0 through 127)
causes a privilege violation exception.

Instruction Encoding:

Flow Control Category-9-Bit Vector Table Address

31 26 25

o 0 I 85

21 20

51

16 15 9 8

11 1 0 1 0 0 0 I VEC9

o

85: Unsigned 5-bit integer denoting a bit number

S1: Source 1 Register (rS1)

VEC9: Vector number from the start of the address in the vector base register

•

MOTOROLA MC88110 USER'S MANUAL 10-83

tb1 Trap On Bit Set tb1

B5,rS1,VEC9

If Bit B5 Set: Trap VEC9

tb1

Operation:

Assembler
Syntax:

Exceptions: Trap VEC9
Privilege Violation

Description: The tb1 instruction examines a bit in the S1 register specified by the
85 field. If the bit is set, exception processing is initiated. The exception vector address is
formed by concatenating the upper 20 bits of the vector base register with the contents of
the 9-bit VEC9 field followed by a 3-bit field of zeros.

The tb1 instruction serializes the MC88110 and allows all previous operations to
complete (effectively clearing the register scoreboard and data unit pipeline) before the
tb1 executes.

When in the user mode, a trap to a hardware vector (vectors 0 through 127) causes a
privilege violation exception.

Instruction Encoding:

Flow Control Category-9-Bit Vector Table Address

11 1 1 1 0 0 I 85

21 20

51

16 15 9 8

11 1 0 1 1 0 0 I VEC9

o

85: 5-bit unsigned integer denoting a bit number

S1: Source 1 Register (rS1)

VEC9: Vector number from the start of the address in the vector base register

10-84 MC88t10 USER'S MANUAL MOTOROLA

tbnd Trap On Bounds Check tbnd

Operation: If unsigned(S1) > unsigned(S2): Trap (bounds check vector)
If unsigned(S1) > unsigned (IMM16): Trap (bounds check vector)

Assembler
Syntax:

tbnd
tbnd

rS1,rS2
rS1,IMM16

Exceptions: Bounds Check

Description: The tbnd instruction uses unsigned arithmetic to compare the data
contained in the 81 register either to the data contained in the 82 register or to a zero
extended 16-bit immediate operand. If the 81 operand is larger (out of bounds), a
bounds check trap is taken.

Instruction Encoding:

Flow Control Category-Register with 16-Bit Immediate

31 26 25 21 20

11111101000001 51

16 15

M\116

o

Flow Control Category-Triadic Register

31 26 25 21 20 16 15 5 4 o

11 1 1 1 0 1 10 0 0 0 0 I 51 1111110000001 52

S1:

IMM16:

52:

MOTOROLA

Source 1 Register (rS1)

16-Bit Zero-Extended Immediate Operand

Source 2 Register (rS2)

MC88110 USER'S MANUAL 10-85

tend Conditional Trap tend

If Condition True: TrapOperation:

Assembler
Syntax:

tend
tend
tend
tend
tend
tend
tend

eqO,rS1,016
neO,rS1,016
gtO,rS1,016
ItO,rS1,016
geO,r51,016
leO,r51,016
M5,rS1,016

Exceptions: Trap VEC9
Privilege Violation

Description: The tend instruction provides conditional trapping in one instruction
without requiring an explicit compare instruction. The tcnd instruction examines the data
contained in the 51 register and initiates exception processing if the value in the register
meets the specified condition (eqO for equals zero, etc.). The exception vector address
is formed by concatenating the upper 20 bits of the vector base register with the 9-bit
VEC9 field followed by a 3-bit field of zeros. The .n (delayed trap) option causes the
instruction following the tend.n instruction to be executed before the branch target
instruction.

NOTE

In user mode, a trap to a hardware vector (vectors 0-127)
causes a privilege violation exception.

The Motorola MC8811 0 assembler provides mnemonics for commonly used comparison
conditions. The following chart lists these mnemonics and their corresponding bit values
for the M5 field. The M5 field may also be indicated explicitly by a literal value.

II
eqO (equals zero)
neO (not equal to zero)
gtO (greater than zero)
ItO (less than zero)
gee (greater than/equals zero)
leO (less than/equals zero)

Bit: 25 24
o 0
o 1
o 0
o 1
o 0
o 1

23 22
o 1
1 0
o 0
1 0
o 1
1 1

21
o
1
1
o
1
a

The tend instruction serializes the MC88110 and allows all previous operations to
complete (effectively clearing the register scoreboard and data unit pipeline) before the
tend executes.

10-86 MC88110 USER'S MANUAL MOTOROLA

Instruction Encoding:

Flow Control Category-9-Bit Vector Table Address

31 26 25 21 20 16 15 9 8 0

1l-1 1__0_0---.1 M5__.--.Il--__S_1 1....1 0_1_0__o.......I V_E_C_9 1

M5:

51:

VEC9:

MOTOROLA

5-Bit Condition Match Field

bit 25: reserved, unused by the condition selection logic

bit 24: maximum negative number [Sign and Zero]

bit 23: less than zero [Sign and (not Zero))

bit 22 equal to zero [(not Sign) and Zero]

bit 21 : greater than zero [(not Sign) and (not Zero)]

Source 1 Register (rS1)

Vector number from the start of the address in the vector base register

MC88110 USER'S MANUAL 10-87

..

trnc Truncate Floating-Point To Integer trnc

Destination ~ Truncate (Source 2)Operation:

Assembler
Syntax:

trnc.ss
trnc.sd

rD,rS2
rD,rS2

trnc.ss
trnc.sd
trnc.sx

rD,xS2
rD,xS2
rD,xS2

Exceptions: Floating-Point Reserved Operand
Floating-Point Integer Conversion Overflow
Floating-Point Inexact (if not masked)
Floating-Point Unimplemented

Description: The trnc instruction converts the single-, double-, or double-extended
precision number contained in the 52 register to a signed 32-bit integer using the IEEE
754 round-toward-zero rounding method. The result is placed in the D register. If the
result exceeds 32-bits, the floating-point integer conversion overflow exception is taken.
If reserved operands are found, a floating-point reserved operand exception is taken. If
execution of the trnc instruction is attempted while the FPU is disabled, a floating-point
unimplemented exception is taken.

See Section 4 Floating-Point Implementation for more information on the
floating-point implementation.

Instruction Encoding:

Floating-Point Category-Triadic Register

31 26 25

11 0 0 0 0 1 1 o

21 20 16 15 14 9 8 7 6 5 4

10 0 0 0 0 G"'"""1-0-1-1-0-0-~---S-2--'"

II
D:
R:

T2:

52:

10-88

Destination Register (rD)

O-Source Operands in GRF

1-5ource Operands in XRF

Source 2 Operand Size

Oo-Single-Precision

01-Double-Precision

1O-Double-Extended·Precision

11-Unused

Source 2 Register (rS2 or xS2)

MC88110 USER'S MANUAL MOTOROLA

xcr

Operation:

Exchange Control Register
(Privileged Instruction)

(temp)+- Source 1
Destination Register +- Control Register
Control Register +- (temp)

xcr

Assembler
Syntax:

xcr rD,rS1,crS/D

Exceptions: Privilege Violation
Unimplemented Opcode

Description: The xcr instruction copies the data contained in the 81 register to the
control register specified by the CRS/D field, and the contents of the specified control
register are loaded into the 0 register. The general control registers can only be
accessed in supervisor mode; a privilege violation occurs if they are accessed in user
mode. If the CRS/D field specifies an reserved control register, then a unimplemented
opcode exception occurs.

Instruction Encoding:

Load/Store/Exchange Category-Control Register

31

11 0 0

26 25

o 0 0 I o

21 20

81

16 15 11 10

11 1 0 0 0 I CRS/D

5 4

82

D:
51:

CRS/D:

52:

MOTOROLA

Destination Register (rD)

Source 1 Register

Control Register Source and/or Destination

Source 2 Register

Note: The S1 and S2 fields must contain the same register number.

MC88110 USER'S MANUAL 10-89

•

xmem

Operation:

Exchange Register With Memory

(temp) ~ Source Register (specified as rD)
Source Register ~ Memory Location
Memory Location f- (temp)

xmem

Assembler
Syntax:

UNSCAlED
xmem.bu rD,rS1,r82
xmem rD,r81,r82
xmem.bu.usr rD,r81,r82
xmem.usr rD,rS1,r82

SCALED
xmem.bu rD,r81 [r82]
xmem rD ,rS1[r82]
xmem.bu.usr rD,rS1 [r82]
xmem.usr rD,rS1 [rS2]

Exceptions:

•

Data Access Exception
Misaligned Access Exception (if not masked)
Privilege Violation (.usr option only)

Description: The xmem instruction exchanges the contents of the D register with a
memory location. The memory address base is contained in the 81 register. The
memory location is calculated by adding the 32-bit word index contained in the S2
register to the base address. The index in the 82 register can be scaled or unsealed.
Scaled index mode is indicated by enclosing the 82 register within square brackets.

The xmem instruction with no options specifies word (32-bit) operation. The .bu option
specifies unsigned byte (8-bit) operation. For the scaled index modes, the scale factor is
determined by the size option of the instruction. Operations that are byte and word in
size define scale factors of 1 and 4 respectively.

Execution of the xmem instruction serializes the MC88110 and allows all previous
operations to complete (effectively clearing the register scoreboard and data unit
pipeline) before the xmem executes.

The current memory space is defined by the value of the MODE bit. When MODE is set,
the memory access is normally to supervisor memory space; when MODE is clear, the
memory access is to user memory space. The MODE bit is located in bit 31 of the PSR
and the value of the MODE bit is reflected on the DSIU external bus signal. The .usr
option specifies that the memory access must be to the user address space regardless of
the mode bit in the PSR. The .usr option is only available in supervisor mode.

In most cases, the xmem accesses must be atomic-Le., the load and the store must not
be interrupted. Therefore, the LK (bus lock) signal on the external bus is asserted to
indicate that the bus arbitration circuitry should not allow another bus master to gain
control of the bus between cycles. The only interruption which will occur in this case is a
data access exception caused by the store operation after the load has already been
performed. If a data access exception occurs, the xmem instruction must be re-executed
after the software handles the exception to ensure operand consistency.

10-90 MC88110 USER'S MANUAL MOTOROLA

o

The xmem data accesses are normally implemented as a locked sequence of a load
followed by a store. If the xmem data access is referencing a remote location, it may be
desirable to break up the load and store accesses. This is possible if the XMEM bit in the
data MMU/cache control register (DCTL) is set, causing the access to be implemented
as a store followed by' a load. In this reverse case, the memory system must latch the
data in the memory location before storing the data from the processor. Then, on the
subsequent load, the latched data is loaded into the D register.

Instruction Encoding:

Load/Store/Exchange Category-Register Indirect with Scaled or Unsealed Index

31 26 2S 21 20 16 15 11 10 9 8 7 5 4

1-1-1-1-1-0-1-....1---0--......--s-1--...1-0-0-0-0-0~~0-0-o~I...--S-2--

TV:

0:
51:

52:
W:

5:

U:

MOTOROLA

DO-Byte

01-Word

Destination Register (rD)

Source 1 Register (rS1)

Source 2 Register (rS2)

o-Byte

1-Word

O-Unscaled

1-Scaled

O-access per user/supervisor bit in PSR (normal mode)

1-access user space regardless of PSR

MC88110 USER'S MANUAL 10-91

•

xor Logical Exclusive OR xor

Destination ~ Source 1 €a Source 2Operation:

Assembler
Syntax:

xor
xor.c
xor
xor.u

rD,rS1,r82
rD,rS1,r82
rD,rS1,IMM16
rD,rS1,IMM16

'Exceptions: None

Description: For triadic register addressing, the xor instruction logically XORs the
contents of the 81 register with the contents of the 82 register. The result is stored in the
D register. If the .c (complement) option is specified, the 82 operand is complemented
before being XORed.

For register with immediate addressing, the xor instruction logically XORs the contents
of 1he 81 register with the unsigned 16-bit immediate operand. The result is placed in
the lower 16 bits of the D register, and the upper 16 bits of 81 are copied unchanged to
the D register. f the .u (upper word) option is specified, the upper 16 bits of the 81
operand are XORed with the unsigned 16-bit immediate operand, and the result is
placed in the upper 16 bits of the D register. In this case, the lower 16 bits of 81 are
copied unchanged to the D register.

Instruction Encoding:

Logical Category-Register with 16-Bit Immediate

16 1521 2031 27 26 25

10 1 0 1 0 ~---D--""""'---S1---r---------1vN-1-6----------

Logical Category-Triadic Register

~ 31 26 25 21 20 16 15 11 10 9 54

.. 1~1-1-1-1-0-1""""'1---D----r---S-1--....1-0-1-0-1-00=0==0==0==0==0==1====8=2====
U:

0:

S1:

IMM16:

c:

S2:

o-XOR IMM16 with Bits 15-0 of S1

1-XQR IMM16 with Bits 31-16 of 81

Destination Register (rD)

Source 1 Register (rS1)

16-Bit Unsigned Immediate Operand

o-Second operand not complemented before the operation

1-Second operand complemented before the operation

Source 2 Register (r82)

10-92 MC88110 USER'S MANUAL MOTOROLA

10.2 OPCODE SUMMARY

The following tables present two maps of the MC88110 instruction encodings. The
tables are organized by instruction category and provide definitions for all of the
instruction fields. See 10.2.7 Instruction Encodings in Numeric Order for a list of
instructions in ascending order by opcode.

NOTE

Attempting to execute any instruction with an unimplemented
opcode and/or opcode field causes an exception to occur.
Unimplemented opcodes in the base processor cause an
unimplemented opcode exception, and unimplemented SFU
opcodes cause the respective SFU exception.

10.2.1 Logical Instructions

Table 10-1 lists the Logical:opcode map for the logical instructions category.

Table 10-1. Logical Instructions

Mnemonic Encoding

31 27 26 25 21 20 16 15 0

and 0 1 0 0 0 u 0 51 IMM16

mask 0 1 0 0 1 U 0 81 IMM16

xor 0 1 0 1 0 U 0 51 IMM16

or 0 1 0 1 1 U 0 51 IMM16

31 26 25 21 20 16 15 11 10 9 5 4 0

and 1 1 1 1 o 1 0 51 0 1 0 0 0 C 0 0 0 0 0 52

xor 1 1 1 1 o 1 0 51 0 1 o 1 0 C 0 0 0 0 0 82

or 1 1 1 1 o 1 0 81 0 1 o 1 1 C 0 0 0 0 0 82

U:

D:
81:
IMM16:
c:

S2:

MOTOROLA

o-Apply IMM1610 Bits 15-0 of Sl
1-Apply IMM1610 Bits 31-16 of Sl
Destination Register
Source 1 Register
16-Bit Unsigned Immediate Operand
o-Second operand not complemented before the operation
l-Second operand complemented before the operation
Source 2 Register

MC88110 USER'S MANUAL 10-93

II

10.2.2 Integer Arithm~tic Instructions
Table 10-2 lists the opcode map for the integer arithmetic instructions category.

Table 10-2. Integer Arithmetic Instructions

Mnemonic Encoding

31 26 25 21 20 16 15 0

addu 0 1 1 0 o 0 D 81 IMM16

subu 0 1 1 o 0 1 0 51 IMM16

dlvu 0" 1 1 o 1 0 0 51 IMM16

mulu 0 1 1 0 1 1 0 51 IMM16

add 0 1 1 1 o 0 0 51 51MM16

sub 0 1 1 1 o 1 0 51 51MM16

diva 0 1 1 1 1 0 0 51 51MM16

cmp 0 1 1 1 1 1 0 51 51MM16

31 26 25 21 20 16 15 10 9 8 7 5 4 0

addu 1 1 1 1 o 1 0 51 0 1 1 o 0 oII 0 0 0 0 52

subu 1 1 1 1 0 1 0 51 o 1 1 o 0 1 II o 0 0 0 52

dlvu 1 1 1 1 0 1 0 51 0 1 1 0 1 0 0 d 0 0 0 52

mulu 1 1 1 1 0 1 0 51 o 1 1 0 1 1 0 d 0 0 0 52

mula 1 1 1 1 0 1 0 51 0 1 1 0 1 1 1 0 000 52

add 1 1 1 1 o 1 0 51 o 1 1 1 0 o II 0 0 0 0 52

sub 1 1 1 1 o 1 0 51 o 1 1 1 0 1 II o 0 0 0 52

divs 1 1 1 1 o 1 0 51 o 1 1 1 1 000 0 0 0 52

cmp 1 1 1 1 o 1 0 81 o 1 1 1 1 1 o 0 0 0 0 52

D:
S1:
IMM16:
SIMM16:
I:

0:

S2:
d:

10-94

Destination Register
Source 1 Register
16-Bit Unsigned Immediate Operand
16-Bit Signed or Unsigned Operand depending on immediate mode
(}-Disable Carry In
1-Add Carry to Result
(}-Disable Carry Out
1-Generate Carry
Source 2 Register
(}-Single-Word
1-Double-Word

MC88110 USER'S MANUAL MOTOROLA

10.2.3 Special Function Unit (SFU) Instructions

The general opcode map for instructions executed by an SFU is shown in the following
illustration:

31 29 28 26 25 21 20 16 15 5 4 011.-_1_0_0 1 _s_FU_lo----..1__0_----.I__s_1 I __S_UB_O_PCO_O_E 1 __s2__1

The SFU ID field (bits 28-26) identifies which SFU is specified. An SFU ID of 001
corresponds to the floating-point unit and indicates that the instruction is a floating-point
instruction. An SFU ID of 010 corresponds to the graphics unit and indicates that the
instruction isa graphics instruction.

An SFU ID of 000 is used to specify SFU control register instructions. The general
opcode map for SFU control register instructions is shown in the following illustration:

31 29 28 26 25 21 20 16 15 14 13 11 10

1"";;'1~0-0""I-o-o -0.....1--o--.....I---s1---~ SFU# I SFUCR
5 4

I S2

o

I
The SFU# field (bits 13-11) identifies which SFU control registers are to be accessed.
An SFU# of 000 is used to indicate general control register instructions and an SFU# of
001 is used for floating-point unit control register instructions.

MOTOROLA MC88110 USER'S MANUAL 10-95

10.2.3.1 Floating-Point Instructions. Table 10-3 lists the opcode map for the
floating-point instruction category.

Table 10-3. Floating-Point Instructions

Mnemonic Encoding

31 26 25 21 20 16 15 14 11 10 9 8 7 6 5 4 0

fmul 1 0 0 o 0 1 0 51 R 0 0 0 0 T1 T2 TO 52

feyt 1 0 0 o 0 1 0 0 0 0 0 0 R 0 0 0 1 0 0 T2 TO 52

fit (GRF) 1 0 0 o 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 TO 52

fit (XRF) 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 o 0 0 1 0 0 TO 52

fadd 1 0 0 0 0 1 0 51 R 0 1 0 1 T1 T2 TO 52

fsub 1 0 0 0 0 1 0 51 R 0 1 1 0 T1 T2 TO 52

femp 1 0 0 o 0 1 0 51 R o 1 1 1 T1 T2 0 0 52

fcmpu 1 0 0 o 0 1 0 51 R o 1 1 1 T1 T2 0 1 52

moY(GRF) 1 0 0 o 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 T2* 0 0 52

mov (XRF) 1 0 0 o 0 1 0 0 0 0 0 0 R 1 0 0 0 0 1 T2 t 0 0 52

int 1 0 0 o 0 1 0 0 0 0 0 0 R 1 0 0 1 0 0 T2 0 0 52

nint 1 0 0 0 0 1 0 0 0 0 0 0 R 1 0 1 o 0 0 T2 0 0 52

trnc 1 0 0 o 0 1 0 0 0 0 0 0 R 1 0 1 1 0 0 T2 0 0 52

fdly 1 0 0 0 0 1 0 51 R 1 1 1 0 T1 T2 TO 52

fsqrt 1 0 0 o 0 1 0 0 0 0 0 0 R 1 1 1 1 o 0 T2 TO 52

31 26 25 21 20 16 15 11 10 5 4 0

fldcr 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 o 1 FCR5 0 0 0 0 0

fstcr 1 0 0 o 0 0 0 0 0 0 0 51 1 o 0 0 1 FCRO 52

fxcr 1 0 0 0 0 0 0 51 1 1 o 0 1 FCR5/0 52

D:
51:
52:
CR5,CRD:
R:
T1R=O:
T1R=1:
T2R=a:
T2R=1:
T2*:

T2tR=O:
T2tR=1:
TDR=O:
TDR=1:

10-96

Destination Register
50urce 1 Register
Source 2 Register
Source Control Register / Destination Control Register
O-Source operands in GRF, 1-Source operands in XRF
Source 1 size: ao-single, 01-double, 1o-unused, 11-unused
Source 1 size: aO-single, a1-double, 1a-double-extended, 11-unused
Source 2 size: ao-single, 01-double, 1o-unused, 11-unused
Source 2 size: OO-single, 01-double, 1O-double-extended, 11-unused
Source 2 size: ao-single, 01-double, 1a-unused, 11-unused
Source 2 size: Oo-single, 01-double, 1o-unused, 11-unused
Source 2 size: OO-unused, 01-unused, 1o-double-extended 11-unused
Destination size: ao-single, 01-double, 1O-unused, 11----unused
Destination size: aQ-single, 01-double, 10-double-extended, 11-unused

MC88110 USER'S MANUAL MOTOROLA

10.2.3.2 Graphics Instructions. Table 10-4 lists the opcode map for the graphics
instruction category.

Table 10-4. Graphics Instructions

Mnemonic Encoding
31 26 25 21 20 16 15 11 10 9 8 7 6 5 4 0

pmul 1 o 0 0 1 0 0 51 0 0 0 0 0 0 0 0 0 0 0 52

padd 1 o 0 0 1 0 0 51 o 0 1 o 0 0 0 0 0 T 52

padds 1 0 0 o 1 0 0 51 o 0 1 o 0 0 01 5 T 52

psub 1 0 0 0 1 0 0 51 0 0 1 1 0 0 0 0 0 T 52

psubs 1 0 0 0 1 0 0 51 0 0 1 1 0 0 01 5 T 52

pcmp 1 o 0 0 1 0 0 51 0 o 1 1 1 0 0 0 0 1 1 52

ppack 1 0 0 0 1 0 0 51 0 1 1 0 0 R T 52

punpk 1 0 0 o 1 0 0 51 o 1 1 o 1 0 0 0 0 T 0 0 0 0 0

prot 1 0 0 0 1 0 0 51 o 1 1 1 0 R 0 o 0 0 0 0 0

prot 1 0 0 0 1 0 0 51 0 1 1 1 1 0 0 0 0 0 0 52"

D:
S1:
S2:
T:

R:

S2*:

S:

MOTOROLA

Destination Register
Source 1 Register
Source 2 Register
00-4-bit (valid only for punpk)
01-8-bit
1Q-16-bit
11-32-bit
OOOO-Rotate 64-bit register pair left a (or 64) bits.
0001-Rotate left 4 bits.
001o-Rotate left 8 bits.
rrrr-Rotate left (rrrr ¥ 4) bits.
Note: Only rotations of 8,16, and 32 are meaningful for ppack and
only in limited combinations with T.
The nibble-wise (4-bit) rotate count is sPecified in bits <5:2> of rS2.
Other bits «31 :6>,<1 :0» are ignored but should be set to zero to assure
future compatibility.
OO-padd, nonsaturating
01-unsigned ± unsigned::: unsigned saturation
1Q-unsigned ± signed::: unsigned saturation
11-signed ± signed::: signed saturation

MC88110 USER'S MANUAL 10-97

•

10.2.4 Bit-Field Instructions
Table 10-5 lists the opcode map for the bit-field instruction category.

Table 10-5. Bit-Field Instructions

Mnemonic Encodlna

31 26 25 21 20 16 15 11 10 5 4 0

elr 1 1 1 1 0 0 0 81 1 o 0 o 0 0 W5 05

set 1 1 1 1 0 0 0 81 1 0 0 o 1 0 W5 05

ext 1 1 1 1 0 0 0 81 1 0 0 1 0 0 W5 05

extu 1 1 1 1 0 0 0 81 1 0 0 1 1 0 W5 05

mak 1 1 1 1 0 0 0 81 1 0 1 o 0 0 W5 05

rot 1 1 1 1 o a 0 81 1 o 1 a 1 a a a a 0 a 05

31 26 25 21 20 16 15 5 4 0

clr 1 1 1 1 o 1 0 81 1 0 a a a 0 a a o a a 82

set 1 1 1 1 o 1 0 81 1 0 a a 1 0 a a a a 0 82

ext 1 1 1 1 o 1 0 81 1 0 a 1 o a 0 o 0 0 0 82

extu 1 1 1 1 o 1 0 81 1 o 0 1 1 a a a 0 o 0 82

mak 1 1 1 1 o 1 0 81 1 0 1 a 0 a a 0 0 0 0 82

rot 1 1 1 1 o 1 0 81 1 0 1 a 1 o a a 0 0 0 82

31 26 25 21 20 16 15 5 4 0

ff1 1 1 1 1 o 1 0 a a a a 0 1 1 1 a 1 a 0 a 0 0 0 82

ffO 1 1 1 1 o 1 0 0 0 0 0 0 1 1 1 0 1 1 o 0 0 0 0 82

II

D:
S1:
W5:
05:
52:

10-98

Destination Register
Source 1 Register
5-bit unsigned integer denoting a bit-field width (0 denotes 32 bits)
5-bit unsigned integer denoting a bit-field offset
Source 2 Register

MC88110 USER'S MANUAL MOTOROLA

10.2.5 Load/Store/Exchange Instructions
Table 10-6 lists the opcode map for the load/store/exchange instruction category.

Table 10-6. Load/Store/Exchange Instructions

Mnemonic Encoding

31 26 25 21 20 16 15 0

Id.d (XRF) 0 0 o 0 o 0 0 81 5116

Id (XRF) 0 0 0 0 0 1 0 51 5116

Id.u (GRF) 0 0 0 0 1 IB 0 51 5116

Id (GRF) 0 o 0 1 I TV 0 51 5116

st (GRF) o 0 1 01 TV 0 81 8116

st.d (XRF) o 0 1 1 o 0 0 51 5116

st (XRF) 0 o 1 1 o 1 0 51 8116

st.x (XRF) o 0 1 1 1 0 0 81 8116

Id.x (XRF) o 0 1 1 1 1 0 51 5116

31 26 25 21 20 16 15 11 10 5 4 0

Idcr 1 o 0 0 o 0 0 o 0 0 0 o 0 1 0 0 0 CR8 0 0 0 0 0

stcr 1 o 0 0 0 0 0 o 0 o 0 81 1 o 0 o 0 CRD 82

xcr 1 o 0 0 0 0 0 81 1 1 0 o 0 CR810 82

31 26 25 21 20 16 15 11 10 9 8 7 5 4 0

xmem 1 1 1 1 o 1 0 81 o 0 0 o 0 W 8 U 0 0 0 52

Id.u 1 1 1 1 o 1 D 51 o 0 o 0 1 B 5 U 0 0 0 52

Id 1 1 1 1 o IR 0 51 o 0 o 1 TV 8 U 0 0 0 82

8t 1 1 1 1 o IR 0 81 o 0 1 0 TV 8 U Tlo 0 52

Ida£] 1 1 1 1 o 1 0 51 o 0 1 1 TV 1 0 000 52

lY:

D:
S1:
S116:
S2:
.u:
.s:
.d:
.x:
(XRF):
(GRF):
W:
s:
B:
U:
T:

MOTOROLA

OO-Oouble-Word
01---Single-Word
1o-Half-Word
11-Byte
Destination Register
Source 1 Register
16-Bit Signed Immediate Index
Source 2 Register
Unsigned
Single-Word
Double-Word
Quad-Word
Destination in extended register file
Destination in general register file
o-Byte,1-Word
o-Unscaled,1-Scaled
o-Half-Word, 1-Byte
o-Lower,1-Upper
o-Normal Store, 1-Store-Through Access

MC88110 USER'S MANUAL 10-99

10.2.6 Flow Control Instructions

Table 10-7 lists the opcode map for the flow control instruction category.

Table 10-7. Flow Control Instructions

Mnemonic Encodin

br

bsr

31 27 26 25 0I: ~ ~ : ~ ~r-------------~-:-------------I

31 27 26 25 21 20 16 15

bbo

bb1

bcnd

1 1 0 1 0 N B5 Sl 016

1 1 0 1 1 N B5 81 016

1 1 1 0 1 N M5 81 016

31 26 25 21 20 16 15 9 8 o
tbO

tb1

tcnd

1 1 1 1 0 0 85 81 1 1 0 1 0 0 0 VEC9

1 1 1 1 0 0 85 51 1 1 0 1 1 0 0 VEC9

1 1 1 1 0 0 M5 81 1 1 1 0 1 0 0 VEC9

jmp

jsr

rle

IIlop

tbnd

tbnd

N:
026:
016:
85:
M5:
VEC9:
S1:
IMM16:
S2:
Il:

10-100

31 26 25 16

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

31 26 25 16 15 5

1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 o 000 0

1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 o 0 000

31 26 20 16 15

1 1 1 1 0 IMM16

1 1 1 o 1 1 1 1 1 1 0 o 0 0 0 0

1-Execute Next Instr. Unconditionally
26-8it Sign Extended Displacement
16-8it Sign Extended Displacement
8it Number
Condition Match Field
Vector Number
Source 1 Register
16-8it Unsigned Immediate Operand
Source 2 Register
01-lIIegal Opcode 1
1Q-lIlegal Opcode 2
11-lIIegal Opcode 3

MC8811 QUSER'S MANUAL MOTOROLA

10.2.7 Instruction Encoding in Numeric Order
Table 10-8 lists the opcode map for the MC8811 0 instruction set in ascending order.

Table 10-8. Instruction Numeric Listing

Mnemonic Encoding

31 26 25 21 20 16 15 0

Id.d (XRF) a a a a a a 0 51 8116

Id (XRF) a a o 0 a 1 0 81 8116

Id.u (GRF) a a a a 1 B 0 51 8116

Id (GRF) a 0 0 11 TV 0 81 8116

st (GRF) a a 1 01 TV 0 81 8116

sl.d (XRF) o 0 1 1 o 0 0 81 8116

st (XRF) a 0 1 1 a 1 0 81 8116

sl.x (XRF) o 0 1 1 1 0 0 81 5116

Id.x (XRF) o 0 1 1 1 1 0 81 8116

and 0 1 0 o 0 u 0 81 IMM16

mask o 1 o 0 1 U 0 81 IMM16

xor o 1 o 1 0 U 0 81 IMM16

or 0 1 a 1 1 U 0 81 IMM16

addu o 1 1 o 0 a 0 81 IMM16

subu o 1 1 o 0 1 0 81 IMM16

divu o 1 1 o 1 0 0 81 IMM16

mulu o 1 1 o 1 1 0 51 IMM16

add o 1 1 1 o a 0 51 51MM16

sub 0 1 1 1 o 1 0 51 81MM16

diva a 1 1 1 1 a 0 51 81MM16

cmp o 1 1 1 1 1 0 81 81MM16

31 26 25 21 20 16 15 11 10 5 4 0

Idcr 1 o 0 o 0 0 0 o 0 0 o a a 1 a o 0 CRS a 0 0 o 0

stcr 1 o 0 000 0 0 0 0 0 81 1 o 0 o 0 CAD 52

xcr 1 o 0 o 0 0 0 51 1 1 000 CR5/0 82

fldcr 1 o 0 o 0 0 0 o 0 0 o 0 o 1 o 0 1 FCRS 0 0 0 0 0

falcr 1 0 0 o 0 0 0 o 0 0 0 81 1 0 o 0 1 FCAD 52

fxcr 1 0 0 o 0 0 0 81 1 1 o 0 1 FCR8/0 82 •

MOTOROLA MC88110 USER'S MANUAL 10-101

II

Table 10-8. Instruction Numeric Listing (Continued)

Mnemonic Encoding

31 26 25 21 20 16 15 14 11 10 9 87 6 5 4 0

fmul 1 0 0 0 0 1 0 81 ROO o 0 T1 T2 TO 52

fcyt 1 o 0 o 0 1 0 0 0 0 o 0 R o 0 0 1 0 0 T2 TO 52

fit (GRF) 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 o 0 0 0 TO 52

fit (XRF) 1 0 0 0 o 1 0 o 0 0 o 0 o 0 1 o 0 o 1 0 0 TO 52

fadd 1 o 0 o 0 1 0 51 R 0 1 0 1 T1 T2 TO 52

fsub 1 0 0 0 0 1 0 51 R o 1 1 0 T1 T2 TO 52

fcmp 1 0 0 0 o 1 0 81 R 0 1 1 1 T1 T2 0 0 52

fcmpu 1 0 0 0 0 1 0 51 R 0 1 1 1 T1 T2 0 1 52

moy (GRF) 1 0 0 o 0 1 0 o 0 0 0 0 1 1 o 0 0 0 0 T2* 0 0 52

moY (XRF) 1 o 0 0 o 1 0 o 0 0 0 0 R 1 0 0 0 o 1 T2 t 0 0 52

int 1 0 0 0 0 1 0 0 0 0 0 0 R 1 0 0 1 0 0 T2 0 0 52

nint 1 o 0 0 0 1 0 0 0 000 R 1 0 1 000 T2 0 0 52

trnc 1 0 0 0 o 1 0 0 0 0 0 0 R 1 0 1 1 o 0 T2 0 0 52

fdiy 1 o 0 0 0 1 0 81 R 1 1 1 0 T1 T2 TO 52

fsqrt 1 0 0 0 0 1 0 0 0 0 o 0 R 1 1 1 1 o 0 T2 TO 52

31 26 25 21 20 16 15 11 10 9 8 7 6 5 4 0

pmul 1 0 0 0 1 0 0 81 000 0 0 0 0 0 0 0 0 82

padd 1 0 0 0 1 0 0 81 0 o 1 0 0 0 0 0 0 T 52

padds 1 0 0 o 1 0 0 81 0 0 1 0 0 0 0 8 T 52

psub 1 0 o 0 1 0 0 81 0 0 1 1 0 0 0 0 0 T 52

psubs 1 0 0 o 1 0 0 81 0 o 1 1 0 0 0 8 T 52

pcmp 1 0 o 0 1 0 0 81 o 0 1 1 1 0 0 0 0 1 1 52

ppack 1 0 0 0 1 0 0 51 0 1 1 o 0 R T 52

punpk 1 0 0 o 1 0 0 81 o 1 1 o 1 0 0 0 0 T 0 0 0 0 0

prot 1 0 0 o 1 0 0 51 o 1 1 1 0 R 0 0 0 0 0 0 0

prot 1 0 o 0 1 0 0 51 o 1 1 1 1 0 o 0 0 0 0 52*

31 27 26 25 0

br I~
1 0 :~~ 026

Ibsr 1 0 026

31 27 26 25 21 20 16 15 0

bbO 1 1 o 1 0 N 85 81 016

bb1 1 1 0 1 1 N 85 81 016

bend 1 1 1 o 1 N M5 51 016

10-102 MC88110 USER'S MANUAL MOTOROLA

Table 10-8. Instruction Numeric Listing (Continued)

Mnemonic Encoding

31 26 25 21 20 16 15 11 10 5 4 0

clr 1 1 1 1 o 0 0 51 1 o 0 0 0 0 W5 05

set 1 1 1 1 o 0 0 51 1 o 0 0 1 0 W5 05

ext 1 1 1 1 0 0 0 51 1 0 0 1 0 0 W5 05

extu 1 1 1 1 o 0 0 51 1 o 0 1 1 0 W5 05

mak 1 1 1 1 o 0 0 51 1 0 1 o 0 0 W5 05

rot 1 1 1 1 o 0 0 51 1 0 1 0 1 0 0 0 0 0 0 05

31 26 25 21 20 16 15 9 8 0

tbO 1 1 1 1 0 0 B5 51 1 1 0 1 0 0 0 VEC9

tb1 1 1 1 1 o 0 B5 51 1 1 o 1 1 o 0 VEC9

tcnd 1 1 1 1 o 0 M5 51 1 1 1 0 1 o 0 VEC9

31 26 25 21 20 16 15 11 10 9 8 7 5 4 0

xmem 1 1 1 1 o 1 0 51 0 0 0 0 0 W 5 U 0 0 0 52

Id.u 1 1 1 1 o 1 0 51 0 0 0 0 1 B 5 U 0 0 0 52

Id 1 1 1 1 o1R 0 51 0 o 0 1 TV 5 U 0 0 0 52

st 1 1 1 1 o1R 0 51 0 0 1 0 TV 5 U T 10 0 52

Ida[] 1 1 1 1 o 1 0 51 o 0 1 1 TV 1 0 0 0 0 52

31 26 25 21 20 16 15 11 10 9 5 4 0

and 1 1 1 1 o 1 0 51 0 1 o 0 0 C 0 0 0 0 0 52

xor 1 1 1 1 o 1 0 51 0 1 0 1 0 C 0 0 0 0 0 52

or 1 1 1 1 0 1 0 51 o 1 0 1 1 C 0 0 0 0 0 52

31 26 25 21 20 16 15 10 9 8 7 5 4 0

addu 1 1 1 1 o 1 0 51 0 1 1 0 0 0 I 0 0 0 0 52

subu 1 1 1 1 o 1 0 51 0 1 1 0 0 1 I 0 0 0 0 52

divu 1 1 1 1 o 1 0 51 0 1 1 0 1 0 0 d 0 0 0 52

mulu 1 1 1 1 o 1 0 51 o 1 1 0 1 1 0 d 0 0 0 52

muls 1 1 1 1 o 1 0 51 0 1 1 0 1 1 1 0 0 o 0 52

add 1 1 1 1 0 1 0 51 o 1 1 1 o 0 I o 0 0 0 52

sub 1 1 1 1 0 1 0 51 0 1 1 1 o 1 I 0 0 0 0 52

divs 1 1 1 1 o 1 0 51 0 1 1 1 1 0 0 0 0 0 0 82

cmp 1 1 1 1 o 1 0 81 0 1 1 1 1 1 o 0 0 0 0 52

•

MOTOROLA MC88110 USER'S MANUAL 10-103

•

Table 10-8. Instruction Numeric Listing (Concluded)

Mnemonic Encoding

31 26 25 21 20 16 15 5 4 0

elr 1 1 1 1 o 1 0 51 1 0 0 0 0 o 0 000 0 82

set 1 1 1 1 o 1 0 81 1 0 0 0 1 0 0 0 0 0 0 82

ext 1 1 1 1 o 1 0 51 1 0 0 1 0 0 0 o 0 o 0 82

extu 1 1 1 1 0 1 0 81 1 0 0 1 1 0 0 0 000 82

mak 1 1 1 1 o 1 0 81 1 o 1 o 000 o 0 o 0 82

rot 1 1 1 1 0 1 0 51 1 o 1 o 1 0 0 o 0 o 0 82

31 26 25 16 15 11 10 9 5 4 0

jmp 1 1 1 1 o 1 0 0 o 0 o 0 o 0 o 0 1 1 o 0 OINlo 0 0 0 0 82

Isr 1 1 1 1 o 1 0 0 0 0 0 0 o 0 o 0 1 1 0 o 1 I NI 0 0 0 0 0 82

31 26 25 21 20 16 15 5 4 0

ff1 1 1 1 1 o 1 0 o 0 0 o 0 1 1 1 o 1 0 o 0 000 82

flO 1 1 1 1 o 1 0 0 0 0 o 0 1 1 1 0 1 1 0 0 0 o 0 82

tbnd 1 1 1 1 o 1 o 0 0 o 0 51 1 1 1 1 1 0 0 0 0 o 0 52

rte 1 1 1 1 o 1 0 0 0 0 0 0 o 0 o 0 1 1 1 1 1 1 o 0 0 0 0 000 o 0

lIIop 1 1 1 1 0 1 0 0 0 0 0 0 o 0 o 0 1 1 1 1 1 1 000 0 0 0 0 o I IL

tbnd 1 1 1 1 1 0 0 o 0 0 0 51 IMM16

10-104 MC88110 USER'S MANUAL MOTOROLA

SECTION 11
SYSTEM HARDWARE DESIGN

This section provides a functional description of the bus, the signals that control the bus,
and the bus cycles provided for data transfer operations. Descriptions of the data cache
operation, bus arbitration, termination, snoop timing, table search timing, reset operation,
and test access port are also included.

NOTE

The terms assert and negate are used extensively in this
manual to avoid confusion between active-high and active
low signals. Assert or assertion indicates that a signal is
active or true, regardless of whether the signal is active high
or active low. Negate or negation indicates that the signal is
inactive or false.

The timing for the external signals in this section is only accurate to within a half-clock
cycle and is included for reference only. The input and output signals are synchronous in
that all setup and hold times are specified in reference to the clock signal. MC8811 0
outputs are driven from a clock edge, and a maximum delay is specified. In addition,
minimum hold times are specified in relation to the clock. The minimum setup and hold
times must be met in order to guarantee proper device operation. For detailed timing
information, refer to the MC88110 Preliminary Bus Timing Specification.

11.1 SYSTEM HARDWARE DESIGN OVERVIEW

The instruction unit attempts to fetch two instructions each clock cycle from the instruction
cache. If there is an instruction cache miss or if the instruction cache is disabled, the
instruction cache requests that the bus interface unit (BIU) run an external bus
transaction to fetch the needed instructions. The data cache and data unit may request
that the BIU run an external bus transaction as a result of a load, store, or exchange
instruction, or for cache coherency reasons, as discussed in 11.3 Data Cache II
Operation.

If the instruction and data caches both require that a bus transaction occur at the same
time, the BIU gives priority to the instruction cache request unless the data cache must
perform a snoop copyback or an xmem transaction, or the data cache requests the bus
after being retried and forced off the bus.

MOTOROLA MC88110 USER'S MANUAL 11-1

III

The MC88110 bus interface includes many features to maximize the rate of data
transfers between the processor and other devices in the system. All data transfers are
synchronous and occur in either single-beat transactions or burst transactions. Burst line
fills are performed critical word first, and data streaming is used to provide the data to the
central processing unit (CPU) as it is received from the bus.

The MC88110 bus supports multiple processors with a built-in cache coherency
mechanism called bus snooping. The MC8811 0 also supports split bus transactions, in
which different devices can control the address bus and data bus at one time. This
potentially increases system performance by allowing multiple bus transactions to be in
progress simultaneously. The bus also supports pipelining, which allows the address
phase of a transaction to overlap the data phase of other transactions. The complexity of
the pipeline levels is dependent on external circuitry.

The following paragraphs provide a general discussion of the caches and external bus
operations. Sections 11.3 Data Cache Operation through 11.10 IEEE 1149.1
Test Access Port provide more detailed descriptions of the specific features of the
data cache operation and external bus interface.

11.1.1 Cache Operation Overview

The MC881l0 contains a complete mechanism for maintaining maximum data
throughput and maintaining coherency between the on-chip data caches in a multiple
processor system. The data cache supports both write-through and write-back memory
update policies which are selectable on a page-by-page or block-by-block basis. All bus
operations that load data into the cache from memory are performed on a line basis (Le.,
an entire line is filled). Bus transactions to load data or instructions into the cache always
begin with the address of the missed operand or instruction, regardless of the location
within a cache line. The missed operand instruction is transferred to the data instruction
unit as soon as it is received from the bus so that instruction execution can be resumed
as quickly as possible.

The data cache provides a decoupling feature to improve cache performance. When the
decoupling feature is enabled, the data unit can continue making cache accesses while
the data cache is waiting to receive data from the bus. These cache accesses are called
decoupled cache accesses. If a decoupled cache access hits in the cache and does not
require an external bus transaction, the access is allowed to complete. If a decoupled
cache access requires an external bus transaction, no further decoupled accesses are
allowed, and the cache access which requires an external bus transaction is restarted
when the cache is available.

Data cache coherency is automatically maintained by hardware bus snooping. There
are duplicate address tags and dual-ported state bits associated with each line in the
cache to prevent snooping traffic on the bus from interfering with processor operation
and degrading performance.

11-2 MC88110 USER'S MANUAL MOTOROLA

The instruction cache is physically addressed and it is never explicitly written to by the
program. No hardware support is provided to maintain coherency between multiple
instruction caches or between the instruction cache and main memory. In any situation
which could cause the instruction cache to have stale data, software must force
coherency by invalidating any cache lines which may be stale.

11.3 Data Cache Operation includes an overview of the data cache and a detailed
description of the data cache snooping protocol, while 11.7 Data Cache Coherency
Timing Considerations describes the timing for the external snoop transactions.
Refer to Section 6 Instruction and Data Caches for a complete description of the
organization of the instruction and data caches, actions and timings for hits and misses,
and cache control.

11.1.2 Bus Arbitration Overview

Although one or more of the devices on the MC8811 0 bus can have the capability of
driving the address and data buses, there can be only one device controlling each bus
at anyone time. This device is referred to as the bus master. Bus arbitration is the
protocol by which a device becomes the bus master. The MC88110 implements an
arbitration protocol in which an external arbiter controls bus arbitration, and the
processor requests mastership of the bus from the arbiter in order to perform an external
access.

The MC8811 0 bus has separate address and data buses that can be split from each
other to enable pipelined bus transactions. Therefore, the MC8811 0 must arbitrate for
mastership of both the address and data bus separately. If the MC88110 is the only
possible bus master on the buses, then both buses can be continuously granted to the
processor by external logic and no other arbitration is required. For systems with multiple
processors but no split bus transactions, the data bus can be continuously granted to the
processors and only address bus arbitration is required. To avoid the latency overhead
of arbitration, it may be desirable to park the MC8811 0 on the system address bus. The
MC88110 is parked when bus grant is asserted and the processor is not performing a
bus transaction.

III

MOTOROLA MC88110 USER'S MANUAL 11-3

•

11.1.3 Data Transfer Overview

There are two types of bus transactions that can be used to transfer data on the external
bus: single-beat transactions and burst transactions. In general, burst transactions are
initiated because of cache misses or snoop copybacks (with the cache enabled), and
single-beat transactions are initiated because of disabled caches, cache inhibited
accesses, write-through accesses, or similar events.

During single-beat transactions, a byte, half-wor~, word, or double word is transferred
between the processor and an external device in a single bus transfer. The seven types
of single-beat transactions are described in Table 11-1. The details of single-beat
transactions are described in 11.5.3 Single-Beat Transactions.

Table 11-1. Single-Beat Transaction Overview

Transaction Description

Single-Beat During single-beat read transactions, the MC8811 0 reads a byte, half-word, word, or double word
Read from an external device.

Single-Beat During single-beat write transactions, the MC8811 0 writes a byte, half-word, word, or double word to
Write an external device.

Invalidate Invalidate transactions are single-beat transactions used by the MC8811 0 to maintain cache
coherency among multiple MC8811 0 processors. Invalidate transactions broadcast to snooping
devices that a shared line in the cache will be modified; thus, snooping processors must invalidate
their cached versions of the memory. There is no data transferred during the invalidate cycle, so the
M:) signal is asserted.

xmem; The xmem instruction is a multiprocessor synchronization instruction that uses an indivisible
single-beat readlwrite transaction to exchange the contents of a general register with that of an
addressed memory location. The bus lock signal (LK) is asserted for both the read and write portions
of the xmem transaction.

Table Search A table search operation is a series of single-beat transactions performed by the MC8811 0 when a
logical address misses in the block address translation cache (BATC) and page address translation
cache (PATC) with address translation enabled. .

Store-Through The store-through option is a feature that unconditionally causes the store instructions to write-
through the on-ehip data cache directly to memory. The WT signal is always asserted for store-
through accesses.

Allocate Load The allocate load option is a user-mode cache control feature that allows the user to allocate a line in
the data cache for a series of subsequent store operations while avoiding the normal line fill from
memory. In an allocate load transaction, the INV signal is asserted and the Me signal is negated.

11-4 MC88110 USER'S MANUAL MOTOROLA

During burst transactions, eight words are transferred between the processor and an
external device in 4 double-word transfers. The seven types of burst transactions are
described in Table 11-2. The details of burst transactions are described in 11.5.4 Burst
Transactions.

Table 11-2. Burst Transaction Overview

Transactions may be terminated normally, indicati'ng that the transfer was completed
successfully, or terminated with an error or a retry indication. Two types of retry
terminations are possible: transfer retry and address retry. If the access is terminated
with a retry before the needed data is transferred, then the access will be re-initiated
from the cache lookup operation (see Section 6 Instruction and Data Caches).

Transaction

Cache Read
Miss Line Fill

Data Cache
Read-with
Intent-to-Modify

Touch Load

Replacement
Copyback

Snoop
Copyback

Flush Copyback

Flush Load

Description

Burst Read Transactions

A processor read access that misses in the cache causes a bus transaction to occur in which an
entire line of data is read from external memory and written to the cache. This operation is called a
cache line fill operation. A cache miss occurs when caching is enabled and the instruction/data
required by the processor is not resident in the appropriate cache.

A read-with-intent-to-modify transaction is caused by a write access that misses in the data cache
in write-back mode. A read-with-intent-to-modify transaction operates like a bl(st read transaction
for a cache line fill but has the side effect of broadcasting to other processors dn the bus that the
cache line being read will be modified; thus, the other processors should invalidate any local copy of
the cache Hne (and perform a snoop copyback if the local copy is modified).

The touch load option is a user-mode cache control feature that allows data to be loaded into the
data cache under user program control. By forcing certain data be read into the cache ahead of its
actual use, the latency of the memory system can be overlapped with useful work, and stalls due to
long latency cache misses can be minimized.

Burst Write Transactions

When a data cache miss occurs and the corresponding cache set has two valid entries, the cache
access algorithm selects one of the two lines in the corresponding cache set for replacement. The
MC88110 checks the state of the line to be replaced, and if the line is modified, then the line is
copied back to memory. This operation is called a replacement copyback

When a snooping MC88110 has a cache hit during a global transaction, the snooping MC88110
determines if the cache line is modified. If the line is modified,the line must be copied back to
memory before the device performing the global access can complete its transaction. This operation
is called a snoop copyback.

The MC8811 0 has a supervisor mode cache control feature that causes either all modified lines or
any individual modified line in the data cache to be tr$nsferred out to memory, and causes the
transferred line(s) to be marked as unmodified. Each line transferred to memory by this operation is
transferred by way of a burst write transaction called a flush copyback.

The flush load option is a user-mode cache control feature that allows the user to force a modified
cache line to be written to memory.

•
MOTOROLA MC88110 USER'S MANUAL 11-5

11.2 SIGNAL DESCRIPTION
The following paragraphs describe the input and output signals of the MC8811 0 in their
functional groups. Figure 11-1 shows the functional organization of the MC88110
signals, and Table 11-3 provides a list of the signals organized by function and gives the
mnemonic, count, type, active state, and state out of reset for each signal.

•

DATA
TRANSFER

SIGNALS

TRANSFER
ATIRIBUTE

SIGNALS

ARBITRATION
SIGNALS

11-6

TRANSFER START
A ADDRESS

)
1

32 1
TRANSFER ACKNOWLEDGE

"I v -.

DATA 1
__ TRANSFER ERROR ACKNOWLEDGE

A I\.

) 64 TRANSFER RETRY
~ v 1

1
PRETRANSFER ACKNOWLEDGE

BYTE PARITY -
-. 8 ADDRESS ACKNOWLEDGE

1 --
-- TRANSFER SIZE

2-. ADDRESS RETRY, TRANSFER BURST 1 --1
TRANSFER CODE 1 -- SNOOP REQUEST

..;: 4
LOCK 1 -- SHARED

-- 1
READNVRITE SNOOP STATUS -.

..... 1 2

USER PAGE ATIRIBUTE
2 MC88110 PROCESSOR STATUSCACHE INHIBIT 3 .". -.

1 --.

WRITE-THROUGH
1

GLOBAL 2 -- INTERRUPTS
.... 1 -

INVALIDATE RESET
1

1 -.
......

PARITY ERRORMEMORY CYCLE 1
-- 1 -

CACHE LINE
1 JTAG BUS--5 -

BUS REQUEST
1 .- DEBUG

1
BUS GRANT 2 - RESISTOR 1/RESISTOR2

1
ADDRESS BUS BUSY

1 CLOCK
DATA BUS GRANT 1

- 1

-"
DATA BUS BUSY 1

65 73

I l-
+5

Figure 11-1. MC88110 Pinout

MC88110 USER'S MANUAL

TRANSFER
CONTROL
SIGNALS

SNOOP
CONTROL
SIGNALS

}
PROCESSOR
STATUS

} INTERRUPTS

MOTOROLA

Table 11-3. MC88110 Signal Summary

Function Mnemonic Count Type Active Reset

Data Transfer

Data Bus D63-DO 64 I/O High Th ree-State

Address Bus A31-AO 32 I/O High Th ree-State

Byte Parity BP7-BPO 8 I/O High Th ree-State

Transfer Attributes

ReadlWrite Riii 1 I/O High Three-State

Lock
-

1 Output Low Three-StateLK

Cache Inhibit CI 1 Output Low Th ree-State

Write-Through wr 1 Output Low Three-State

User Page Attributes UPA1-UPAO 2 Output Low Th ree-State

Transfer Burst TBST 1 I/O Low Th ree-State

Transfer Size TSIZ1-TSIZO 2 Output High Th ree-State

Transfer Code TC3-TCO 4 Output High Th ree-State

Invalidate
-

1 I/O Low Th ree-StateINV

Memory Cycle tvC 1 Output Low Th ree-State

Global GBl 1 I/O Low Th ree-State

Cache line CLINE 1 Output High Th ree-State

Transfer Control

Transfer Start
-

1 Output Low Three-StateTS

Transfer Acknowledge TA 1 Input Low -
Pretransfer Ack

-
1 Input LowPTA -

Transfer Error Ack
-

1 Input LowTEA -

Transfer Retry TRTRY 1 Input Low -
Address Acknowledge AACK 1 Input Low -
Snoop Control

Snoop Request SR 2 Input Low -

Address Retry ARlRY 1 Input Low -
Snoop Status SSTAT1- 2 Output Low Th ree-State

SSTATO

Shared SHD 1 Input Low -
Arbitration

Bus Request BR 1 Output Low Negated

Bus Grant BG 1 Input Low -

Address Bus Busy
--

1 I/O Low Three-StateABB

Data Bus Grant
--

1 Input LowDBG -
Data Bus Busy DBB 1 I/O Low Th ree-State

..

MOTOROLA MC88110 USER'S MANUAL 11-7

•

Table 11-3. MC88110 Signal Summary (Continued)

Function Mnemonic Count Type Active Reset

Processor Status

Processor Status PSTAT2- 3 Output High Input
PSTATO

Interrupt

Nonmaskable Interrupt
-

1 Input Low Three-StateNMI

Interrupt INT 1 Input Low Three-State

Reset RST 1 Input Low Three-State

Byte Parity Error BPE 1 Output Low Three-State

Clock

Clock CLK 1 Input Rising -
Clock
Edge

Test Pins

Debug
--

1 Input LowOBUG -

Resistor 1 RES1 1 Input N/A -
Resistor 2 RES2 1 Output N/A -
JTAG Test Reset

--
1 Input LowTRST -

JTAG Test Mode Select TMS 1 Input High -

JTAG Test Clock TCK 1 Input Clock -
Edge

JTAG Test Data Input TOI 1 Input High -

JTAG Test Data Output TOO 1 Output High -

11.2.1 Data Transfer Signals

The following paragraphs describe the address, data, and byte parity signals of the
MC88110.

11.2.1.1 DATA BUS (063-00). D63-DO are bidirectional signals that comprise the
data path for all transactions. The data bus is divided into byte lanes as shown in Table
11-4. These signals are outputs during write transactions, inputs during read
transactions, and three-stated when the MC8811 0 does not have mastership of the data
bus (Le., when the MC8811 0 is not asserting DBB).

11-8 MC88110 USER'S MANUAL MOTOROLA

Table 11-4. Data Bus Byte Lanes

Data Bus Signals Byte Lane

063-056 0

055-048 1

047-040 2

03~32 3

031-024 4

023-016 5

015-08 6

07-00 7

11.2.1.2 ADDRESS BUS (A31-AO). A31-AO comprise the address bus for all
external bus transactions. The signals are outputs when the MC8811 0 has mastership of
the address bus (Le., when ASS is asserted), inputs when the MC88110 is snooping
(see 11.3.3 Data Cache Coherency), and three-stated at all other times.

11.2.1.3 BYTE PARITY BUS (BP7-BPO). These signals indicate the parity of the
data bus. The MC88110 always uses odd parity, checking parity for read transactions
and generating parity for write transactions. Each parity signal corresponds to eight data
signals as shown in Table 11-5. During read transactions, only the parity bits
corresponding to active byte lanes need to be valid. The byte parity signals are three
stated when the MC88110 does not have mastership of the data bus (Le., when the
MC88110 is not asserting DBB).

Table 11-5. Data Byte Parity Signals

Byte Parity Signals Data Bus Signals

BPO 063-056

BP1 055-048

BP2 047-040

BP3 03~32

BP4 031-024

BP5 023-016

BP6 015-08

BP7 07-00

11.2.2 Transfer Attribute Signals
The following paragraphs describe the transfer attribute signals, including the read/write,
lock, cache inhibit, write-through, user page attributes, transfer burst, transfer size,

'transfer code, invalidate, memory cycle, global, and cache line signals. The timing for
each of the transfer attribute signals is the same as the timing for addresses.

•
MOTOROLA MC88110 USER'S MANUAL 11-9

..

11.2.2.1_READ/WRITE (R/W1= The RIW signal indicates whether the transaction is a
read (R/W high) or a write (RIW low) transaction. This signal is an output when the
MC88110 is driving an address, an input when the MC8811 0 is snooping (see 11.3.3
Data Cache Coherency), and three-stated at all other times.

11.2.2.2 LOCK (LK). The MC88,11 0 drives the LK signal to indicate that an access is
part of an atomic data access sequence. It ,is asserted during xmem transactions only.

11.2.2.3 CACHE INHIBIT (CI). The CI signal indicates that the data will not be
written into the MC8811 0 data cache. For single-beat transactions, xmem transactions,
and touch and allocate load transactions, this signal reflects the value of the CI bit in the
address translation cache (ATC) entry (or area descriptor for identity translations) used
to map the current address. For all other transactions, this signal is negated.

11.2.2.4 WRITE-THROUGH (WT). The WT signal is asserted if the WT bit is set in
the corresponding ATC entry (or area descriptor for identity translations) or if a write
transaction is the result of a store-through operation. For all other transactions, this
signal is negated.

11.2.2.5 USER PAGE ATTRIBUTES (UPA1-UPAO). These signals reflect the
user attribute bits in the ATC entry used to map the current address. Note that the state of
the of user attribute bits in ATC is opposite to that of the signals. (Le., if U1 in the ATC
entry is set, then UPA1, which is active-low, is asserted). During table search operations
and identity translations, UPA1 and UPAD reflect the values in the appropriate area
descriptor. During copyback operations these signals are negated.

11.2.2.6 TRANSFER BURST (TBST). This signal indicates the type of the
transaction. This signal is an output when the MC88110 is driving an address, an input
when the MC88110 is snooping (see 11.3.3 Data Cache Coherency), and three
stated at all other times. When the T8ST signal is asserted, the transaction is an eight
word burst. If it is negated, the transaction is a single-beat transaction, and the size of the
data to be transferred is encoded in the transfer size signals (TSIZ1-TSIZD).

11.2.2.7 TRANSFER SIZE (TSIZ1-TSIZO). The TSIZ1-TSIZO signals indicate the
size of the requested data transfer as shown in Table 11-6. All transfers are aligned to
their respective size boundaries. The TSIZ1-TSIZO signals may be used along with A2
AO to determine which portion of the data bus contains valid data for a write transaction
or which portion of the bus should contain valid data for a read transaction.

Note that TSIZ1-TSIZO indicate the size of the requested data transfer independent of
the value of TBST. Therefore, it is possible for the TSIZ signals to indicate a byte, half
word, or word transfer even when the TBST signal is asserted (Le., when a Id.w misses
the cache, the TSIZ signals indicate a word during the cache line fill). If the TBST signal
is asserted, the memory system must transfer double words regardless of the TSIZ1
TSIZO encoding.

11-10 MC88110 USER'S MANUAL MOTOROLA

Table 11·6. Transfer Size Signal Encodings

TSIZ1-TSIZO Transfer Size

00 Double Word (64 Bits)

01 Word (32 Bits)

1 a Half-Word (16 Bits)

1 1 Byte (8 Bits)

11.2.2.8 TRANSFER CODE (TC3-TCO). These four signals provide supplemental
information about the corresponding address. The transfer code signals are encoded as
shown in Table 11-7.

Table 11-7. Transfer Code Signal Encodings

TC3-TCO Transfer Code

0000 Reserved

0001 User Data Access

0010 User Touch, Flush, or Allocate Access

0011 Data MMU Table Search Operation

0100 Reserved

0101 Supervisor Data Access

011 0 Supervisor Touch, Flush, or Allocate Access

0111 Snoop Copyback

1000 Reserved

1001 User Instruction Access

101 0 Reserved

101 1 Instruction MMU Table Search Operation

1100 Reserved

1 1 0 1 Supervisor Instruction Access

1 1 1 0 Reserved

1 1 1 1 Reserved

11.2.2.9 INVALIDATE (INV). When asserted, the INV output signal indicates that all
other caches in the system should invalidate the cache line on a snoop hit. If the snoop •
hit is to a modified line, the line should be copied back before being invalidated. This
signal is an output when the MC88110 is driving an address, an input when the
MC88110 is snooping, and three-stated at all other times.

11.2.2.10 MEMORY CYCLE (Me). When asserted, the Me output signal indicates
that a data transfer transaction is in progress. When Me is negated, the current bus
transaction is an invalidate cycle, and no data is transferred. On invalidate cycles, valid
data is driven, but the memory system is not required to execute the data write.

MOTOROLA MC88110 USER'S MANUAL 11-11

•

11.2.2.11 GLOBAL (GBl). Address bus masters assert GBl to indicate that the
transaction in progress is marked as global. Normally, GBl reflects the value specified
for the memory reference in the corresponding memory management unit (MMU).
Special transactions, such as table search transactions and copyback transactions, are
considered nonglobal and GBl is negated. When the CPU is not the address bus
master, GBl is an input. When GBl and SR are asserted, the MC8811 0 snoops the
current address.

11.2.2.12 CACHE liNE (CLINE). The CLINE signal indicates which line in the
cache is involved in the current data transfer (see Table 11-8). It can be used with other
signals (e.g., RIW, INV, MG, lK, TBST, TC3-TeO, A11-A5) to determine the next state of
a particular instruction or data cache line.

Table 11-8. Cache line Signal

CLINE Cache Line

0 Line 0

1 Line 1

11.2.3 Transfer Control Signals

The following paragraphs describe the transfer control signals, which include the
transfer start, the transfer acknowledge, the pretransfer acknowledge, the transfer error
acknowledge, the transfer retry, and the address acknowledge signals.

11.2.3.1 TRANSFER START (TS). The MC88110 asserts the TS output signal to
indicate that a transaction has begun and the driven address is valid. This signal is
asserted for one clock cycle, negated, and then three-stated.

11.2.3.2 TRANSFER ACKNOWLEDGE (TA). During a read transaction, TA should
be asserted when new data is valid. During a write transaction, TA should be asserted
when the data from the MC8811 0 has been latched by the memory system.

11.2.3.3 PRETRANSFER ACKNOWLEDGE (PTA). The memory system asserts
the PTA input signal to indicate that the initial (or only) TA assertion of the transaction
may follow on the next rising cl,ock edge. During the time between when TS is asserted
and PTA is asserted, the data unit of the MC88110 can continue to access the data
cache (cache hits only) even though a bus transaction i~rogress. Since data cannot
be transferred until one clock after a qualified bus grant, PTA may be connected to DBG.
For systems which do not require decoupled cache accesses, this signal may be tied to
ground.

11.2.3.4 TRANSFER ERROR ACKNOWLEDGE (TEA). The TEA signal indicates
that a bus error has occurred. The assertion of TEA results in the immediate termination
of the transfer in progress. The actions of the MC8811 0 after the transfer is terminated
are described in 11.6.4 Transfer Error Termination.

11-12 MC88110 USER'S MANUAL MOTOROLA

11.2.3.5 TRANSFER RETRY (TRTRY). The TRTRY signal indicates that the current
transaction should be terminated and re-initiated. The assertion of TRTRY results in the
immediate termination of the transaction. The actions of the MC8811 0 after the transfer is
terminated are described in 11.6.3 Transfer Retr~rmination. If the TRTRY signal
is asserted at the same time as the TEA signal, the TEA signal gets priority and an error
termination occurs.

11.2.3.6 ADDRESS ACKNOWLEDGE (AACK). When the AACK inRut is asserted,
the MC8811 0 stops driving an address on the address bus and negates ABB. AACK is
sampled beginning with the rising clock edge following the assertion of TS and ending
with the qualified termination of the transaction.

11.2.4 Snoop Control Signals

The following paragraphs describe the snoop control signals, which include the snoop
request, address retry, snoop status, and shared signals.

11.2.4.1 SNOOP REQUEST (SR). The snoop request input signal indicates that
there is a valid address on the bus and that the MC8811 0 should snoop the address if
the global (GBL) signal is asserted. In many systems with multiple MC8811 Os, the TS
output of the MC8811 0 initiating the transfer may be used to drive the SR input of other
MC8811 Os on the bus.

11.2.4.2 ADDRESS RETRY (ARTRY). The address retry (ARTRY) signal is an input
signal that indicates to the current address bus master that it should terminate the
transaction and re-initiate the transaction at a later time. An MC8811 0 that is the current
address bus master can detect a qualified ARTRY on the clock edge following the
assertion of TS. The ARTRY signal is qualified with AACK or with a qualified TA.

If the MC8811 0 has requested the bus and ARTRY is asserted (qualified or unqualified)
and ASB was asserted on the previous clock cycle, the MC88110 removes its bus
request and ignores SG. If the MC88l.!9 has not requested the bus and ARTRY is
asserted the MC8811 0 does not assert SR until ARTRY is negated.

11.2.4.3 SHARED (SHD). The assertion of the SHD signal indicates that the cache
line currently being read into the data cache should be marked as shared-unmodified. If
SHD is negated, the cache line is marked as exclusive-unmodified. If the INV signal is
asserted for the transaction, the line is marked exclusive-unmodified regardless of the
state of the SHD signal. The timing of the SHD input is the same as the timing for
ARTRY.

11.2.4.4 SNOOP STATUS (SSTAT1-SSTATO). The snoop status signals
indicate the status of the transaction by the snooping CPU as shown in Table 11-9. The
snoop status (SSTAT1-SSTATO) signals are output signals that are asserted by a
snooping processor when it detects a snoop hit or collision (see 11.7.8 Split-BuS
Snoop Collisions). SSTAT1 is asserted for both snoop hits and collisions, so it can be
directly or indirectly tied to ARTRY. SSTATO is asserted for all snoop hits, so it can be
directly or indirectly tied to SHD.

III

MOTOROLA MC88110 USER'S MANUAL 11-13

•

Table 11-9. Snoop Status Signals

SSTAT1 SSTATO Status

Three-State Three-State No Collision, No Snoop Hit

Three-State Asserted Snoop Hit Shared

Asserted Three-State Pipeline Collision

Asserted Asserted Snoop Hit Modified

11.2.5 Bus Arbitration Signals
The following paragraphs describe the bus arbitration signals, including the bus request,
bus grant, address bus busy, data bus grant, and data bus busy signals.

11.2.5.1 BUS REQUEST (BR). The MC88110 asserts the bus request signal to
request bus mastership and continues to assert it until it has received a qualified bus
grant (see 11.2.5.2 Bus Grant (BG») and has started a transaction or determines that
it does not need the bus. For xmem operations, the bus request signal remains asserted
until TS is asserted for the second transaction.

11.2.5.2 BUS GRANT (BG). The bus grant signal is used by the external bus arbiter
to 'grant address bus mastership ~esponse to a bus request. The MC8811 0~
assumes address bus mastership if BG is asserted and the bus is not already busy (ABS
is negated). The external arbiter may park the MC88110 on the bus by keeping BG
asserted after the bus request has been negated (see 11.4.4 Bus Parking).

11.2.5.3 ADDRESS BUS ,BUSY (ABB). The address bus busy signal is asserted
by the current address bus master to indicate that potential bus masters must wait to take
mastership of the address bus. Potential address bus masters use this input to qualify
BG. It is an output when the MC8811 0 is the address bus master and an input at all other
times.

The address bus busy signal may be a shared signal among multiple MC88110s or
other bus masters. It must be tied to a pull-up resistor so that it remains negated when no
devices have control of the address bus.

11.2.5.4 DATA BUS GRANT (DBG). The data bus grant signal is used by the
external bus arbiter to grant data bus mastership in response to a data bus request. The
assertion of TS serves as the data bus request. The MC8811 0 only assumes data bus
mastership if DSG is asserted and the data bus is not already busy (DBB is negated) .
Note that it is not possible to park the data bus.

11.2.5.5 DATA BUS BUSY (DBB). The data bus busy signal is asserted by the
current data bus master to indicate that potential data bus masters must wait to take
mastership of the data bus. Potential data bus masters use this input to qualify data bus
grant. The data bus busy signal is an input when the MC88110 is waiting to obtain data
bus mastership, an output when the MC8811 0 is data bus master, and three-stated at all
other times.

11-14 MC88110 USER'S MANUAL MOTOROLA

The data bus busy signal may be a shared signal among multiple MC8811 Os or other
bus masters. It must be tied to a pull-up resistor so that it remains negated when no
devices have control of the data bus.

11.2.6 Processor Status Signals
The three processor status signals provide limited visibility of the CPU status. These
bidirectional signals normally function as outputs; however, they function as inputs
during reset. The three-bit value loaded through PSTAT2-PSTATO at reset determines
the function of the signals during normal operation. The selection can only be made
during reset, so the function of the signals is not dynamically programmable during
normal operation.

The PSTAT2-PSTATO signals are sampled on every clock cycle in which RST is
asserted. When RST is negated, the MC8811 0 waits a minimum of three clock cycles
before driving the PSTAT2-PSTATO signals. This gives the off-chip driving logic time to
go into a high-impedance state to avoid possible bus contention.

Table 11-10 defines the function of the PSTAT signals for each of the possible
combinations at reset. Note that several of the available options are reserved for
Motorola internal use only.

11.2.7 Interrupt Signals
The following paragraphs describe the interrupt signals used by the MC8811 0, including
the nonmaskable interrupt, interrupt, reset, and byte parity error signals.

11.2.7.1 NONMASKABLE INTERRUPT (NMI). The assertion of the NMI input
indicates that a nonmaskable external interrupt has been requested. When a valid
interrupt is detected, the MC8811 0 will unconditionally trap through the nonmaskable
interrupt vector. The interrupt signal is sampled by the CPU at the rising edge of each
bus clock. The interrupt signal can be completely asynchronous; however, it will only be
detected on a given clock if setup and hold times are satisfied, and it must be asserted
for two clock cycles to be recognized.

11.2.7.2 INTERRUPT (INT). The assertion of the INT input indicates that an external
interrupt has been requested. When a valid interrupt is detected and the interrupt is
enabled by the interrupt disable bit in the processor status register (PSR), the MC8811 0
will trap through the maskable interrupt vector. The interrupt signal is sampled by the •..'..
CPU at the rising edge of each bus clock. The interrupt signal can be completely
asynchronous; however, it will only be detected on a given clock if setup and hold times
are satisfied, and it must be asserted for two clock cycles to be recognized.

MOTOROLA MC88110 USER'S MANUAL 11-15

II

Table 11-10. PSTAT2-PSTATO Functionality

PSTA T2-PSTATO PSTA T2-PSTATO Functionality
at Reset

000 PSTATO: Asserted when an instruction is issued in slot 0 of the issue pair
PSTAT1: Asserted when an instruction is issued in slot 1 of the issue pair
PSTAT2: Asserted when a change of flow is issued

Note that if two instructions are issued, both PSTATO and PSTAT1 will be asserted. If
only one instruction issues, only PSTATO will be asserted. If either instruction is decoded
as a flow control instruction, PSTAT2 will be asserted.

001 PSTATO: Asserted when a store instruction is at the top of the history buffer
PSTAT1: Asserted when a store instruction is completed
PSTAT2: Reserved for future use

Note that both PSTATO and PSTAT1 may be set if more than one store instruction is in the
history buffer.

010 PSTATO: Asserted when instructions are conditionally executing after a branch
PSTAT1: Asserted when speculative instructions are being flushed after a misprediction
PSTAT2: Asserted when an exception is recognized and unretired instructions are being

flushed

PSTATO can be asserted for more than one clock cycle. PSTAT1 and PSTAT2 will only be
asserted for one clock cycle. PSTAT2 will be asserted when the instruction tagged with
"the exception reaches the top of the history buffer.

011 PSTATO: Bit 2 of the instruction address being fetched from the instruction cache
PSTAT1 : Bit 3 of the instruction address being fetched from the instruction cache
PSTAT2: Bit 4 of the instruction address being fetched from the instruction cache

100 Reserved for Motorola Internal Use Only

101 Reserved for Motorola Internal Use Only

11 0 PSTATO: Reserved for Motorola Internal Use Only
PSTAT1 : Asserted when an interrupt is detected
PSTAT2: Asserted when an interrupt is taken

PSTAT1 is asserted from the time the asserted interrupt signal is recognized until
PSTAT2 asserts or the interrupt input is negated. PSTAT2 is asserted after the machine
backs out the history buffer and has calculated the vector address. It is asserted for one
clock cycle.

1 1 1 Reserved for Motorola Internal Use Only

11.2.7.3 RESET (RST). The RST signal is used to perform an orderly restart of the
processor, bringing it to a known state and beginning program execution at address $0
(the reset vector). When R$T is asserted, all currentJ~Q!3rations are suspended and all
control registers are set to their default state. When· RST is negated, the reset vector is
fe1ched from memory, and execution begins in supervisor mode with all the caches,
MMUs, and breakpoints disabled. RST must be asserted for two clock cycles to be
recognized.

11.2.7.4 BYTE PARITY ERROR (BPE). The BPE signal is asserted for one clock
cycle following detection of incorrect parity on any data byte read into the MC88110.
Note that the MC8811 0 does not take an exception when it detects incorrect parity.

11-16 MC88110 USER'S MANUAL MOTOROLA

11.2.8 Clock (ClK)

The clock input signal generates the internal timing signals for the processor. The
processor internal clock is derived from the leading edge of the elK signal and is phase
locked to minimize the skew between the external and internal signals.

11.2.9 Test Signals
The following paragraphs describe the test signals for the MC88110, including the
debug, resistor, and JTAG test port signals. For more information on the JTAG test port,
refer to 11.10 IEEE 1149.1 Test Access Port.

11.2.9.1 DEBUG (DBUG). When this signal is asserted, all caches, MMUs, and
breakpoints are disabled.

11.2.9.2 RESISTOR (RES2-RES1). These signals provide access to an internal
resistor for measuring device junction temperatures.

11.2.9.3 JTAG TEST RESET (TRST). Assertion of this signal causes asynchronous
initialization of the internal JTAG test access port controller. This signal conforms to the
IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture.

11.2.9.4 JTAG TEST MODE SELECT (TMS). TMS is decoded by the internal
JTAG TAP controller to distinguish the primary operations of the test support circuitry.
This signal conforms to the IEEE 1149.1 Standard Test Access Port and Boundary-Scan
Architecture.

11.2.9.5 JTAG TEST CLOCK (TCK). This signal clocks the internal boundary scan
test support circuitry. This signal conforms to the IEEE 1149.1 Standard Test Access Port
and Boundary-Scan Architecture.

11.2.9.6 JTAG TEST DATA INPUT (TOI). The state of this signal is clocked into the
selected JTAG test instruction or data register on the rising edge of TCK. This signal
conforms to the IEEE 1149.1 Standard Test Access Port and Boundary-Scan
Architecture.

11.2.9.7 JTAG TEST DATA OUTPUT (TOO). The contents of the selected internal
instruction or data test register are shifted out onto this signal on the falling edge of TCK.
This signal conforms to the IEEE 1149.1 Standard Test Access Port and Boundary-Scan
Architecture. ..

MOTOROLA MC88110 USER'S MANUAL 11-17

•

11.3 DATA CACHE OPERATION

This section provides an overview of the operation of the data cache of the MC8811 0
and how data cache interactions affect the overall operation of the bus. In particular,
those subjects that affect hardware design, such as the two models of cache
maintenance (three or four state), the three memory update policies, and bus snooping,
are described. Refer to Section 6 Instruction and Data Caches for a complete
description of the organization of the instruction and data caches, actions and timings for
hits and misses, and cache control.

11.3.1 Data Cache States

When a data access occurs in the program flow, the actions taken by the cache depend
on whether the access is cacheable. If the access is cacheable, then the actions taken
by the cache depend on the state of the cache line.

Each data cache line can be in one of four states at anyone time. These states reflect
the status of the line with respect to memory and whether or not the processor has
exclusive ownership of the cached data. The state of each data cache line is indicated
by the three state bits in that line. The first bit indicates whether a line is valid or invalid,
the second bit indicates whether the line is shared or exclusive to the processor, and the
third bit indicates whether the line is modified or unmodified with respect to memory. The
following list depicts the four possible data cache line states:

1. Invalid-The data in this line is no longer the most recent copy of the data and
should not be used. A line is marked invalid as a result of four conditions: software
invalidates the entire cache or a specific line in the cache, the bus snooping logic
marks the line as invalid, a bus error occurs during a cache line read access, or a
cache hit occurs for a cache inhibited access. Refer to Section 6 Instruction
and Data Caches for more information on invalidating the data cache.

2. Shared-Unmodified-The data in this line is shared among processors, so other
caches may have a copy of this line. However, this line is unmodified with respect
to memory.

3. Exclusive-Modified-Only one processor (this processor) has a copy of the data in
this line in its internal cache, and the line has been modified with respect to
memory (the line is dirty). Note that if any word in the line is modified, then the
entire line is dirty.

4. Exclusive-Unmodified-Only one processor (this processor) has a copy of the data
in this line in its internal cache, and the line is unmodified with respect to memory.

NOTE

Throughout this section, the following nomenclature is used:
when a cache line is referenced as modified, it is exclusive
modified (no shared-modified state exists within the MC8811 0
caches). When a cache line is referenced as exclusive, it can
be assumed that it is not relevant to that context whether it is
exclusive-modified or exclusive-unmodified.

11-18 MC88110 USER'S MANUAL MOTOROLA

During a data cache access, the MC8811 0 may cause the cache line that contains the
data being read or written by the processor to change state. The state of the cache line
after the access depends on the previous state of the line, the type of access, and
whether the access resulted in a hit or a miss in the data cache.

11.3.2 Memory Update Policy

The MC88110 provides three memory update modes: write-back, write-through, and
cache inhibited. Each page or block of memory must be specified to be in one of these
modes within the corresponding page or block descriptor in the data memory
management unit (DMMU). The MC88110 also has a store-through option for the store
instruction which allows individual accesses to be performed in write-through mode,
even if the corresponding page or block is designated as operating in write-back mode.
If the FWT bit is set in the data MMU/cache control register (DCTL), all store instructions
are forced to write through the data cache, regardless of the page or block status or
store-through option.

In write-back mode, memory is not updated each time a corresponding cache line is
modified. In write-through mode, write operations update memory every time a write
occurs. When the access is cache inhibited, data is never stored in the data cache of the
MC88110, but read and write operations access main memory directly. All three modes
of operation have specific advantages and disadvantages; therefore, the choice of which
mode to use depends on the system environment as well as the application.

Figure 11-2 illustrates how the MC8811 0 selects a memory update policy.

MEMORY UPDATE
POLICY SELECTION

•CACHE INHIBITED
MODE SELECTED

HA~~~~~~~tB~lfgE1~H OTHERWISE

HARDWARE TABLES~
OR xmem TRANSACTION OR CI =1 OTHERWISE
IN PAGE OR BLOCK DESCRIPTOR ~

FWT • 1 IN DCTL OR STORE·TH~
OPTION OR WT =1 IN PAGE OR BLOCK OTHERWISE

DESCRIPTOR

CACHE IS
BYPASSED

WRITE-THROUGH MODE
SELECTED

WRITE-BACK MODE
SELECTED

Figure 11-2. Memory Update Policy Selection

MOTOROLA MC88110 USER'S MANUAL 11-19

•

11.3.2.1 WRITE-BACK MODE. When writing to memory in write-back mode, store
operations for cacheable data do not necessarily cause an external bus transaction to
update memory. Instead, memory updates only occur when a modified line is to be
replaced due to a cache miss or when another bus master attempts to access a specific
address for which the corresponding cache entry has been modified (Le., a dirty cache
entry). For this reason, write-back mode may be preferred when external bus bandwidth
is a potential bottleneck-e.g., in a multiprocessor environment without a secondary
cache.

The write-back mode is also well suited for high-use data that is closely coupled toa
processor, such as local variables. Both reads and writes to memory in write-back mode
that hit the on-chip data cache provide maximum data throughput for the program.

In general, addresses at which data is to be used by only one processor and with no
other bus master should be designated as local (G = 0) and write-back (WT = 0) by the
DMMU for maximum performance. The G and WT bits are set in the corresponding BATC
or PATC descriptor (see Section 8 Memory Management Units).

If more than one processor uses data stored in a page or block which is designated as
write-back, snooping must be enabled to allow copyback operations and cache
invalidations of modified data. When snooping is enabled, the page or block should be
marked as global (G = 1) and write-back (WT = 0).

11.3.2.2 WRITE-THROUGH MODE. Write operations to memory in write-through
mode always update memory as well as the data cache on cache hits. Write-through
mode is used when the external memory and on-chip data cache images must be the
same, such as occurs with video memory or when there is shared (global) data that may
be used frequently.

In write-through mode, memory is always updated during write operations, and global
transactions cause other processors' snoop logic to invalidate or copyback their cached
images of the memory being updated.

A store-through option may be specified for any triadic register form of a store instruction.
A store-through access operates in precisely the same manner as an operation in write
through mode even if write-back mode is specified for the page or block being accessed;
however, if the page or block is specified as cache inhibited, the store-through option
has no effect.

Also, if the FWT bit is set in the DCTL, all store instructions are forced to write through the
data cache, regardless of the page or block status or store-through option. Refer to
Section 8 Memory Management Units for more information about the
programming of the FWT bit in the DCTL register.

11.3.2.3 CACHE INHIBITED MODE. If a memory location is designated as cache
inhibited, data from this location is never stored in the data cache. In addition, xmem
operations and table search operations are always performed as if cache inhibition is in
effect regardless of the memory update mode for the location being accessed.

11-20 MC88110 USER'S MANUAL -MOTOROLA

Hardware table search operations automatically bypass the cache; therefore, whenever
an MMU performs a hardware table search operation, the segment and page descriptors
are never fetched from the data cache. However, the CI signal is not asserted on the
external bus during the transactions caused by the table search operation, allowing
descriptors to be cached in secondary external caches.

11.3.3 Data Cache Coherency
The data cache can automatically maintain coherency between cached and in-memory
copies of data. To maintain this coherency, the MC8811 0 uses a write invalidate with
intervention protocol on the external bus to ensure that, at all times, only one on-chip
cache in the system has a modified copy of a given cache line. The protocol allows other
caches on the bus to have local copies which are all consistent. When an MC88110
writes data to a memory location shared by other processors, the other processors are
notified that their copy of the line containing that data will be stale and must be
invalidated.

The MC88110 snoops bus transactions by monitoring externally initiated bus
transactions and comparing all global addresses to the internal data cache tags. A
snoop hit occurs when the on-chip data cache tag for a valid entry matches the address
on the bus. Two separate, independently accessible copies of the tags are maintained to
allow bus snooping to occur in parallel with on-chip processor data cache accesses.
Processor access to the data cache is interrupted only in the event of a snoop hit when
the snooping processor copies back a modified line to memory.

When monitoring external bus transactions, if snooping is enabled and a global address
is detected (GBL signal asserted during the transaction) which matches one of the cache
tags, a snoop hit occurs. When a snooping CPU hits with a modified entry, the snooping
CPU asserts the SSTAT1 (snoop status) signal. The SSTAT1 output may then be
directly or indirectly coupled to each CPU's ARTRY input, forcing the CPU that initiated
the access to retry the access after the modified data has been written to memory by the
CPU that had the snoop hit.

This protocol is referenced as a snoop retry exchange throughout the remainder of this
section. In addition, the terms initiating CPU and snooping CPU are used- throughout.
The initiating CPU is the processor that is the bus master at the beginning of a bus
transaction. The snooping CPU is the processor that snoops this transaction.

Snooping is enabled in the MC8811 0 by setting the SEN bit in the DCTL register (see III.....
Section 8 Memory Management Units). After a processor reset, snooping is
disabled.

Figure 11-3 shows the complete flow followed by the MC8811 0 for a snoop operation.
The following sections describe the operations depicted in the flow diagram.

MOTOROLA MC88110 USER'S MANUAL 11-21

GLOBAL LOCAL

MISS----~~

}-- SNOOPED ACCESS IS
GLOBAL BURST WRITE

COMPARE BUS
ADDRESS WITH TAGS

IN DATA CACHE

HIT

OTHERWISE

~UNMODIRED-------'
MODIFIED

Figure 11-3. Cache Snoop Operation Flow•
TERMINATE

TRANSACTION

ERROR

SNOOPED ACCESS WAS WRITE
OR READ-WITH-INTENT-TO-MODIFY

SNOOPED ACCESS
WAS READ

MARK LINE AS
SHARED-UNMODIFIED

11-22 MC88110 USER'S MANUAL MOTOROLA

11.3.3.1 BUS SNOOPING FLOW FOR TRANSACTION WITHOUT INTENT
TO-MODIFY. The MC88110 performs the following actions when snooping an external
read transaction. These actions represent the logical flow of operations; since the
MC88110 employs a high degree of concurrency, some of the operations are performed
in parallel.

When an MC88110 snoops a global read transaction that hits in the data cache, it
determines if the cache data is modified or not. If the line is unmodified and exclusive,
the MC8811 0 marks the line as shared-unmodified. In this manner, the MC88110
recognizes that other processors have read access to the global data. If the line is
already marked as shared-unmodified, no action is taken.

If the line is internally modified, the MC8811 0 signals a snoop retry to the processor that
initiated the transfer. The initiating processor should then abort its transaction and
release the bus. The snooping processor then arbitrates for mastership of the bus, writes
its modified copy of the line to memory, and marks the line as shared-unmodified in its
cache. The initiating processor then arbitrates for mastership of the bus and attempts the
aborted transaction again. The initiating CPU snoops the bus while it is waiting to retry
the aborted transaction.

11.3.3.2 BUS SNOOPING FLOW FOR TRANSACTION WITH INTENT-TO
MODIFY. The MC88110 performs the following actions when snooping an external
write or an external read-with-intent-to-modify transaction on the bus. These actions
represent the logical flow of operations; since the MC88110 employs a high degree of
concurrency, some of the operations are performed in parallel.

A snooping processor that has a snoop hit during a global single-beat write or global
read-with-intent-to-modify operation must determine if the cache line is modified or not. If
the cache line that hit is unmodified, no additional bus transaction occurs, but the cache
line is marked as invalid.

If the cache line that hit is modified, the snooping processor signals a snoop retry to the
processor that initiated the transfer. The initiating processor then aborts its transaction
and releases the bus. The snooping processor then arbitrates for mastership of the bus,
writes its modified copy of the line to memory, and marks the line as invalid-in its cache.
The in"itiating processor then arbitrates for mastership of the bus and attempts the
aborted transaction again. The initiating CPU snoops the bus while it is waiting to retry
the aborted transaction.

If the MC8811 0 has a snoop hit during a global burst write, it invalidates the cache line •.•....•..
without copying the line back regardless of whether or not the INV signal is asserted.
The MC8811 0 will never perform a global burst write. If a global burst write is detected, it
must have been generated by an external device which is overwriting some portion of
memory (e.g., a DMA controller); thus, there is no reason to copyback the line before
invalidating.

MOTOROLA MC88110 USER'S MANUAL 11-23

II

Read-with-intent-to-modify transactions that affect cache coherency are locked
read/write transactions (initiated by the xmem instruction), cache line fill operations
(reads) that occur due to write misses, and allocate loads. In the case of the xmem
instruction (when the xmem is programmed as a read operation followed by a write; see
Section 10 Instruction Set), a snooping processor can hit if the read-with-intent-to
modify transaction is global, copyback its modified data, and invalidate the line in the
data cache. The snooping processor then monitors the write portion of the xmem
instruction but never hits, since the line was already copied back. When the xmem
instruction is programmed as a write followed by a read, a snooping processor can hit if
the write is global and then cause the write portion of the transaction to be retried.

When a read-with-intent-to-modify access caused by a write miss or an allocate load
occurs, other caches on the bus must invalidate local copies of that cache line. If another
processor on the bus recognizes the address as global and has a modified copy of the
data in its on-chip cache, it signals a snoop retry. Upon receipt of the retry signal, the
initiating CPU aborts the cache line fill transaction and relinquishes the bus. The
snooping CPU then acquires the bus and updates memory with its copy of the cache
line. The initiating CPU then arbitrates for mastership of the bus and attempts the
aborted cache line fill again.

11.3.3.3 EXAMPLE FLOW FOR SNOOPING PROTOCOL. Figures 11-4 through
11-10 illustrate an example of how snooping maintains cache coherency in a
multiprocessor configuration. The example assumes that there are two MC88110 CPUs
that share one common external bus with main memory and illustrates the progression
of events for the case of a snoop hit for a transaction without intent-to-modify. Each of the
figures show a cache line within CPU1 and CPU2 and the associated line address tags.
The state of the cache line (invalid (INV), shared-unmodified (SU), exclusive-unmodified
(EU), or exclusive-modified (EM)) is also shown as well as the next state of the line as a
result of bus transactions or snooping. This example only shows one line in the data
caches for simplicity.

In normal operation, with address translation enabled, the addresses generated by the
program are logical addresses (LA). The logical addresses are then translated by the
MMU into physical addresses (PA). For this example, address translation is disabled, so
the PA is the same as the LA. Also, to simplify this example, the starting address is
shown as $0000. Address $0008 corresponds to double word 1, address $0010
corresponds to double word 2, etc. Line read operations perform four consecutive
double-word reads from memory addresses $0000, $0008, $0010, and $0018 to the
cache line using the efficient burst mode transfer mechanism of the MC88110. Line
copyback operations write (burst) the four double words from the cache line back to
memory.

For this example, all addresses are assumed to be mapped as global, write-back,
cacheable, and not write-protected (G =1, WT =0, CI =0, WP =0). Also, in this example,
the caches are assumed to be operating in the four state model since the shared input
(SHD) is connected to SSTATO (for more information on the four state model, see
11.3.4 Data Cache State Transitions).

11-24 MC88110 USER'S MANUAL MOTOROLA

Figure 11-4 shows the caches in their initial state, with both lines invalidated and their
contents unknown. This is the state of the data cache after reset, assuming that the
system software has invalidated all the data cache lines.

Figure 11-5 shows CPU2 performing a load word operation from location $0000. There
is a data cache miss and the CPU reads a line from memory to fill the cache line. CPU1
monitors (snoops) the bus transaction, but does -not find a tag match (a miss) since the
entire data cache is marked as invalid. Cache2 supplies CPU2 with the required word
and the state of the cache line is updated to the exclusive-unmodified state.

Figure 11-6 shows CPU1 reading a word from address $0008, which misses for the
selected cache line. A line fill operation is performed as before, which reads four double
words from memory starting at location $0008 (forwarding this data directly to CPU1)
and wrapping around to location $0000. CPU2 snoops the global transaction and finds a
tag match (a snoop hit). The state of the line changes to shared-unmodified in both
caches since both have a copy of the data that is unmodified with respect to memory.

Figure 11-7 shows CPU2 performing a store operation of a word to address $0000. A
cache hit occurs, and, since the address was global, an invalidation bus transaction is
performed. The invalidation transaction notifies CPU1 that its local copy of the line is no
longer valid, so CPU1 marks its cache line as invalid. CPU2 then updates the line with
the new data and marks the line exclusive-modified.

CPU2 now has exclusive ownership of the entire line of data that is modified with respect
to memory. The exclusive status guarantees CPU2 that no other processor on the bus
can cache a valid copy of the line. All subsequent load and store operations performed
by CPU2 that map to this line complete without accessing memory.

Figure 11-8 shows CPU1 attempting a load from location $0008. The transaction misses
in the cache (because the entire line is marked as invalid), which forces CPU1 to access
memory. CPU2 snoops the access, recognizes that it has cached modified data
requested by CPU1, and aborts the line read operation by CPU1.

Figure 11-9 shows CPU2 writing back the exclusive-modified line to memory and
marking the cache line as shared-unmodified. Since CPU2 had exclusive ownership of
the line, no other MC88110 will have a snoop hit on the copyback of the exclusive
modified data. Exclusive ownership implies that only one CPU has a copy of the line
cached.

Figure 11-10 shows CPU1 regaining control of the bus to complete the read that was II··... ,
previously aborted by CPU2. The cache line is updated from memory (critical word first),
the required word is supplied to CPU1 , and the line is marked as shared-unmodified.

MOTOROLA MC88110 USER'S MANUAL 11·25

CPU1

CACHE 1 INV

CPU2

CACHE 2 INV

BUS"--'------------, r----------~
ooסס$ A

$0004 B

$0008 C

$OOOC D

$0010 E

$0014 F

$0018 G

$001C H

MEMORY

Figure 11-4. Initial State of System

CPU1 CPU2

READ $0000

CACHE 1 INV

(SNOOP MISS $0000)

"--' ---,BUSr-+-: --.J

II

ooסס$

$0004

$0008

$OOOC

$0010

$0014

$0018

$001C

A

8

C

D

E

F

G

H

MEMORY

11-26

Figure 11-5. CPU2 Load, Data Cache Miss

MC88110 USER'S MANUAL MOTOROLA

CPU1 CPU2

CACHE 2 EU - SU

BUS
L....- --:--. ,..-----------..1

$0000 A

$0004 B

$0008 C

$OOOC 0

$0010 E

$0014 F

$0018 G

$001C H

MEMORY

Figure 11·6. CPU1 Load, Data Cache Miss

CPU1 CPU2

CACHE 1 SU -INV

(SNOOP HIT $0000)

BUS
L....- -... ,..-----------..1

GLOBAL WRITE INVAUDATE
$0000 A

$0004 B

$0008 C

$OOOC 0

$0010 E

$0014 F

$0018 G

$001C H

MEMORY

(MEMORY IMAGE OF THE
CACHE UNE IS STALE)

•
MOTOROLA

Figure 11-7. CPU2 Store, Data Cache Hit

MC88110 USER'S MANUAL 11-27

CPU1

LOAD $0008

CACHE 1 INV

CPU2

CACHE 2 EM

BUS

RETRY
$0000 A

$0004 B

$0008 C
(MEMORY IMAGE OF THE

CACHE LINE IS STALE)
$OOOC D

$0010 E

$0014 F

$0018 G

$001C H

MEMORY

Figure 11-8. CPU1 Load, Cache Miss, Line Read Retried·

CPU1

LOAD $0008

CACHE 1 INV

I$OOOOIA~

CPU2

CACHE 2 EM - SU

m

11-28

(SNOOP MISS $0008)

BUS I

~-----------. r-n------------'
LINE COPYBACK

$0000 J

$0004 B

$0008 C

$OOOC D

$0010 E

$0014 F

$0018 G

$001C H

MEMORY

Figure 11-9. CPU2 Line Copyback

MC88110 USER'S MANUAL MOTOROLA

CPU2

CACHE 2 SU

GLOBAL LINE READ $0008
ooסס$ J

$0004 B

$OOOS C

$OOOC D

$0010 E

$0014 F

$0018 G

$OOOC H

MEMORY

Figure 11-10. Completion of CPU1 Load, Cache Miss

11.3.4 Data Cache State Transitions
The MC8811 0 cache state logic is implemented as a four state design, but also supports
a three state model. The three state model includes all of the states except the exclusive
unmodified state. When operating in the three state model, all internal cache state
transitions are visible on the external signals of the MC88110 to allow for the
construction of coherent external secondary caches. In the four state model, the
transition from the exclusive-unmodified state to the exclusive-modified state for a write
hit is not broadcasted on the bus. The distinction of whether the three or four state model
is in use is determined by the status of the SHD input signal.

State transition diagrams for the data cache in the four state model are shown in Figures
11-11 and 11-12 and described in the following paragraphs. Figure 11-11 shows the
state transition diagram for the cache operating in write-back mode, and Figure 11-12
shows the state transition diagram for the cache operating in write-through mode. State
transitions for the cache in the three state model are shown in Figure 11-13. All other
operations that are not explicitly shown in these diagrams do not affect the cache state.

II

MOTOROLA MC88110 USER'S MANUAL 11-29

•

In the following diagrams, state transitions labeled as "shared..." (e.g., shared read miss)
imply that the SHD input signal to the MC88110 was asserted during the line fill
operation. Transitions labeled as "Exclusive..." imply that the SHD input signal was
negated during the line fill. Other snooping MC8811 Os on the bus should drive the SHD
signal with their snoop hit status output (SSTATO). Thus, when the MC88110 reads a
line into its cache with a normal line fill (not read-with-intent-to-modify), the line is
marked as either shared- or exclusive-unmodified, depending on whether or not other
processors on the bus have copies of the line in their caches. Systems implementing a
three state cache model simply keep the SHD signal asserted and force all line fills to be
marked as shared-unmodified. Note that during line fills for write misses in write-back
mode, the SHD signal is ignored (Le., write miss line fills are always marked as
exclusive-modified).

Figure 11-11 shows all state transitions possible for the data cache in write-back mode
for the four state model. A line can change state due to a cache miss. On a cache miss,
the address of th~ missed data is used to select two cache lines. If one of the lines is
invalid then it is selected to receive the data. If both lines are valid, then a
pseudorandom algorithm is used to select one of the two lines. If both lines are invalid,
then line 0 is selected. Replacing a cache line with a line from main memory is referred
to as replacement. For any initial state, an exclusive read miss with replacement will
change the line state to exclusive-unmodified, a shared read miss with replacement will
change the line state to shared-unmodified, and a write hit will change the line state to
exclusive-modified. A write miss with replacement of an invalid line will change the line
state to exclusive-modified. In a multi-processor system 'a snoop hit on a read will
change the snooping processor's line state to shared-unmodified. A snoop hit on a write
or read with intent-to-modify will change the snooping processor's line state to invalid
(after a copyback of the data, if modified).

Write operations in write-through mode leave the cache state unaffected. Figure 11-12
shows all state transitions possible for the cache when in write-through mode. The
exclusive-unmodified state cannot be reached in write-through mode. If a cache line is
already in either of the exclusive states when write-through mode is selected, the line
will not change state while in write-through mode. This does not cause coherency
problems, but if the mode is changed back to write-back, some data may be copied back
to memory which is already consistent with the line in the data cache.

11-30 MC88110 USER'S MANUAL MOTOROLA

SNOOP HIT, WRITE, OR READ
WITH INTENT-TO-MODIFY SNOOP HIT, READ

INVALIDATE
COMMAND

en
en
~
w
l-
e:
~

SHARED READ MISS
(WITH REPLACEMENT)

INVALIDATE COMMAND

WRITE HIT

EXCLUSIVE READ MISS
(WITH REPLACEMENT)

EXCLUSIVE
READ MISS

(WITH REPLACEMENT)

Figure 11-11. Data Cache in Write-Back Mode
State Diagram (Four State)

INVALIDATE
COMMAND

~ SHARED READ MISS
(WITH REPLACEMENT)

SNOOP HIT ON WRITE OR READ
WITH INTENT-TO-MODIFY, OR

INVALIDATE COMMAND

MOTOROLA

Figure 11-12. Data Cache in Write-Through Mode
State Diagram (Four State)

MC88110 USER'S MANUAL 11-31

•

Figure 11-13 shows all possible state transitions for the data cache in the three state
model. The three state model does not include the exclusive-unmodified state.

SHARED READ MISS
(WITH REPLACEMENT)

SHARED
READ MISS

(WITH REPLACEMENT)

SHARED READ MISS
(WITH REPLACEMENT)

WRITE HIT

SNOOP HIT ON WRITE OR READ
WITH INTENT-TO-MODIFY OR

INVALIDATE COMMAND

SNOOP HIT ON WRITE OR READ
WITH INTENT-TO-MODIFY OR

INVALIDATE COMMAND

Figure 11·13. State Diagram for Data Cache in the Three-State Model

II

If a snooping processor performs a snoop copyback operation, then the snooping
processor's cache line will change state to either shared-unmodified (for a read) or
invalid (for a write or a read with intent to modify) depending on what caused the snoop
copyback. In this case, in order to maintain a completely coherent secondary cache, the
external logic must track the operation that caused the copyback to determine what the
resulting state change from the snoop copyback will be within the on-chip data cache.

There are potential benefits to both the three and four state models. The three state
model is useful for maintaining coherency with secondary caches. However, the three
state implementation can cause lower performance than the four state implementation.
In the three state implementation, the exclusive-unmodified state does not exist;
therefore, all data is read in as shared-unmodified. A write hit to shared-unmodified data
causes the snooping processor to perform an invalidation transaction on the bus. If the
data had been read in as exclusive-unmodified (as in the four-state model), then a write
hit would simply change the state of the data to be exclusive-modified, and no bus traffic
would occur.

In the preceding explanations, two alternatives were given for secondary cache support:
write-through mode and the three state model. The three state model requires more
external logic to implement a secondary cache but provides higher performance than
write-through mode. The only coherency operations that are required for the secondary
cache are invalidation transactions. However, in write-through mode, every write
operation creates bus traffic and therefore may cause lower performance than the three
state model.

11-32 MC88110 USER'S MANUAL MOTOROLA

11.4 BUS ARBITRATION

Arbitration for bus mastership in a multi-master system is performed by external
arbitration logic and the arbitration signals of the MC88110. Table 11-11 lists the
arbitration signals for the MC8811 O. Note that address bus busy (ABB) and data bus
busy (DBB) are I/O signals. These signals are inputs while the MC88110 is arbitrating for
the respective buses and outputs while the MC8811 0 has mastership of each of the
buses.

Table 11·11. Bus Arbitration Signals

Signal Name Mnemonic Type

Bus Request BR Output

Bus Grant BG Input

Address Bus Busy ABB I/O

Data Bus Grant DBG Input

Data Bus Busy DBB I/O

The following paragraphs describe the arbitration protocol used by the MC88110 for
systems with and without split data and address buses. This section also discusses the
concept of parking, where the arbitration overhead can be eliminated.

11.4.1 Address Bus Arbitration
When the MC88110 needs to perform an external bus access and it is not parked (BG is
negated), it asserts BR and continues to assert BR until it has been granted mastership
of the bus and the bus is available. The external arbiter~ants mastership of the bus to
the potential master by asserting the bus grant signal BG. Because the ABB signal is
asserted by the current master to indicate address bus mastership, the potential master
determines that the bus is available when the ABB signal is negated. A qualified bus
grant is defined as BG asserted and ABS negated (as an input). The potential master
does not assume address bus mastership until it receives a qualified bus grant.

When a parked MC88110 needs to perform an external bus access, it qualifies its bus
grant with ABB. If ABS is negated, then the MC8811 0 has a qualified bus grant and it can
assume address bus mastership.

When the MC8811 0 receives a qualified busJl!:..ant, it assumes address bus mastership •
by asserting the ABB signal and negates the BR output signal (unless the transaction is ..•• .•.
the first half of an xmem operation). At the same time, the MC8811 0 drives the address
for the requested access onto the address bus and asserts the transfer start (TS) signal
to indicate the start of a new transaction.

MOTOROLA MC88110 USER'S MANUAL 11-33

•

When designing external bus arbitration logic, it is important to note that the MC8811 0
may assert BR but never use the bus after it receives the qualified bus grant. One
example of this is in a system using snooping. If the MC8811 0 asserts SR in order to
perform a replacement copyback operation, it is possible for another device to invalidate
that line before the MC8811 0 is granted the bus. Then, once the MC8811 0 is granted the
bus, it no longer needs to perform the copyback, and it never asserts ABB for this case.

11.4.2 Data Bus Arbitration

In addition to signaling the start of a new transaction, the assertion of the TS output
signal implies a data bus request. The arbitration for the data bus is very similar to the
arbitration for the address bus. The TS signal serves the same function for the data bus
as the BR signal does for the address bus; however, TS is asserted for only a single
clock cycle. As with the address bus, the MC8811 0 only assumes data bus mastership
when it has been granted the data bus and the data bus is available.

The external arbiter grants data bus mastership by asserting the data bus grant (DBG)
signal. Th~ential data bus master determines that the bus is available when the data
bus busy (DBB) signal is negated. A qualified data bus grant is defined as DBG asserted
and DBB negated (as an input).

When the processor receives a qualified data bus grant, the MC8811 0 asserts DBB and
data transfers may begin on the next rising clock edge. A design alternative for nonsplit
bus systems is to ground the DBG signals for all CPUs, as both address and data bus
arbitration can be controlled by ABS alone.

Note that the data handshake must occur for all transfers except transfers in split-bus
systems which are terminated with ARTRY. Therefore, even for invalidate cycles in
which Me is negated and no data must be transferred, the memory system must assert
the DBG signal for the transaction to terminate properly.

11.4.3 Bus Arbitration Timing Examples

Figures 11-14 and 11-15 show the relative timing of the bus arbitration signals for some
simple cases of bus arbitration. Note that there are separate signals shown for ABB and
DBB as inputs and as outputs (even though there is only one ABB and one DBB signal
on the MC88110). This is to clarify when these signals are monitored as inputs, when
they are driven as outputs, and when they are ignored. In systems with multiple
MC88110s, the multiple ABS signals can be tied together, as can the multiple DBB
signals. The combined ABB and DBB signals should be tied to pull-up resistors to keep
the signal negated when no devices are driving the signals. For all timing diagrams that
follow Figure 11-15, the combined ABS and DBB signals are shown with the assumption
that pull-up resistors are being used.

11-34 MC88110 USER'S MANUAL MOTOROLA

5 7 8

_~~-------
BUS ITRANSFERITRANSFERI NEW TRANSFERIRELEASE I NEW L __

GRANT START A~r;g~- r~~~~ A~~r;g~- ~~~~~~ r~~~ I------l BUS II REQUEST

ClK

ABBin

A31-AO

ABB out

,

,
1

;----......-----;-,\----+---+------+--....;.-..J!1Y
r~~~ -! () i:::

1 ::,!:ISIGNALS =i .
Ts _i : :
DBG~'" • .-.-

-I i: 0 0' IIID63-oo I I J)-_-;---(..

- ! i !

DBBin~~
DBBout _ i : I I

III DON'T CARE

Figure 11-14. Bus Arbitration Example Timing

In clock cycle one of Figure 11-14, the MC8811 0 asserts BR and monitors BG and ABB.
Note that all of the MC8811 0 output signals except those used for arbitration are three
stated during clock cycles one and two because the MC8811 0 is not the current bus
master. However, it is likely that these signals are driven by other bus masters in the
system during that time. Since it receives a qualified bus grant on the rising edge of
clock 3, the MC8811 0 asserts ABS and TS, negates SR, and drives the appropriate
values onto the address bus and transfer attribute signals. On the following clock cycle, a·...
the MC8811 0 receives a qualified data bus grant, so it asserts DBB and completes the
transaction.

The MC8811 0 re-asserts SR in clock 4 because it has another transaction to perform (SR
may be asserted any time during an ongoing transfer except at the same time as TS of a
non-xmem transaction). Since the arbiter kept SG asserted, the MC8811 0 is parked and
can skip the clock cycle needed for address bus arbitration, keep ABS asserted, and
start the second transaction as soon as the first transaction is terminated. If BG had not

MOTOROLA MC88110 USER'S MANUAL 11-35

•

been asserted on the rising edge of clock 5, then the MC8811 0 would have negated
ABB and waited for a qualified bus grant before beginning the second transaction. Also,
note that DBB was negated between the two transactions regardless of the state of DBG.
The MC8811 0 must re-arbitrate for the data bus for each transaction; however, in many
cases (including this one) it does not cause any delay in the memory transaction. This
protocol enforces at least one clock cycle for data bus turnaround.

In Figure 11-14, many of the input signals are i~red a majority of the time. The DBG
signal is only monitored between the time when TS is asserted and when the MC8811 0
assumes mastership of the data bus, which in this case was one clock cycle for each
memory transaction. The transfer acknowledge s~al (TA) is only monitored when the
MC88110 has taken mastership of the data bus. TA is used to signify when and if the
transfer has been successfully completed (the function of the TA signal is described in
detail in 11.6 Termination of Bus Transactions).

Note that in Figure 11-14, when the MC8811 0 is no longer using the address and data
buses, it negates ABS and DBB before three-stating the signals. As mentioned
previously, these signals should be tied to pull-up resistors. The MC8811 0 negates the
signal before three-stating so that the signals meet the setup time for the next clock
edge. The step in DBB in clock 6 of Figure 11-14 indicates how the MC88110 negates
the signal, three-states it, and then immediately asserts it again.

Figure 11-15 shows an example of bus arbitration in which the data bus is not
immediately available for the MC8811 O. This case is identical to the previous example
until clock 3, where DBG is negated rather than asserted. Therefore, the MC8811 0 does
not assume data bus mastership until DBG is asserted, and the transaction completes as
before.

11.4.4 Bus Parking
To avoid the latency overhead of arbitration, it may be desirable to park the MC8811 0 on
the system address bus. The MC88110 is parked when BG is asserted whether or not
the processor is requesting bus mastership. If BG remains asserted until an internal bus
request occurs, the MC8811 0 completes the arbitratio~equence without any overhead
and can begin the transaction without even asserting SR. Thus, bus parking provides a
performance advantage in that bus accesses occur without any delay for the arbitration
protocol.

11-36 MC88110 USER'S MANUAL MOTOROLA

4 8

CLK

A31-AO _ ; l

ABBin~_..-rl:: ~
_r-1\ !I:ABB out _! : ,'---;..--...;..----+----+-11 I '---1

TRANSFER - ! (,..-~_-..---...:....-----:.~) i
llli

ATTRIBUTE t-!--oo+-----+--e " .
SIGNALS =l '---,..-.--..---.....,...--..,........J

TS-i Y--J 'i
WAITWAIT

-! i ! I! O'063-00 I I I : I >--.....;-------i

-~
DBB in _ !

- -! ! ! ! ! ! / ! r-h !
DBBout -i ' · , · ''--.iJ i i

~ BUS II REQUEST I r- ----1 TRANSFERIRELEASE r-BUS TRANSFER WAITS ACKNOW- ADDRESS!
GRANT START LEDGE DATA BUS

l1li DON'T CARE

Figure 11-15. Data Bus Arbitration Example Timing

Figure 11-16 shows an example of the arbitration protocol when bus parking is used.
Initially, an alternate master is the bus master and performs a data transaction. At the
end of this transaction, the arbitration logic parks the MC8811 0 on the address bus by
asserting the MC8811 0 BG input. Clock cycles 4 and 5 show that no device is using the
bus but the MC8811 0 is parked on the address bus.

•
MOTOROLA MC88110 USER'S MANUAL 11-37

2 5 7 9

CLK
,

A31-AO ~ CX_......-_-p-J))----ir-----;---+--«"-__- __....I)----i-----;

AB<!\ / \'---+-----+--J'
TRANSFER' - [X') (

ATTRIBUTE ! . .
SIGNALS - : I -..,..--.,.....-

-t\ I / \ ill:: I,......-.+-------;-----i

TS -I '----V ~

D~ ~ i Q QJ----r-----;
DBB_I ,W. , , ,UJ. :
TA~~!_~:I

': : !-. I

AMBR

AMBG /!
IALTERNATEt BUS I BUS I BUS

MASTER PARKING -,-- MASTERSHIP~ PARKING

------PROCESSOR----~ ...

III DON'T CARE

Figure 11·16. Bus Parking

•
In clock 6, the MC88110 initiates a transaction by driving the address and control
information and asserting TS and ABB. ABB is asserted to indicate that the address bus
is in use (slow masters may assert ABB without driving a valid address). ABB only
remains asserted after the transaction is terminated if the MC88110 is immediately
initiating another transaction and the device~arked at the time that the initial
transaction is normally terminated. Otherwise, ABB negates as usual. DBB, however,
always negates after the transaction is complete.

At the end of the transaction shown in Figure 11-16, BG for the MC88110 remains
asserted, so the MC8811 0 remains parked on the address bus.

Caution should be taken when negating BG to a parked MC88110, because it is
possible for the parked MC88110 to assert ABS and start a transfer in the same clock
cycle that BG is negated. Figure 11-17 shows an example of this scenario.

11-38 MC88110 USER'S MANUAL MOTOROLA

Figure 11-17 shows BG, SR, and the bus busy signals for an MC8811 0 and an alternate
master. In this figure, the IBR signal is the internal bus request for the MC8811 O. In clock
1, the MC8811 0 is parked on the bus. In clock 2, the MC88110 has an internal bus
request, and the alternate master asserts its SR signal at the same time. Then, in clock 3,
the MC88110 still has a qualified bus grant, assumes address bus mastership, and starts
a new transaction. However, dU~ that same clock cycle, the arbiter negates the BG to
the MC8811 0 and asserts AM-BG to the alternate master. The alternate master then
assumes address bus mastership in clock 4, which causes contention on the address
bus.

BO

PARKED
MC88110 BR

~ ILfl---rLSl-
i MC88110! /
: PARKED!

TS~~

ABS _--+-__
AM-SR _----;.__-+--__

ALTERNATE
MASTER AM-BG

AM-BB

Figure 11-17. Address Bus Contention

There are two ways to prevent this type of contention. If the alternate master is another
MC88110, the address bus busy signals should be tied together so the second
MC88110 will not assume address bu~aster~until the ABB signal is negated. If the
alternate master does not qualify its BG with ABS, then the arbitration circuitry should
wait one clock cycle after unparking the MC8811 0 on the bus to be sure the MC8811 0
has not assumed mastership of the bus before granting the bus to the alternate master.

11.4.5 Arbitration for Split Bus Transactions

The MC8811 0 has the capability to split the address and data buses so that they operate
completely independently from one another. For example, in a multiprocessor
configuration, the address bus master is the processor driving the address and the data
bus master is the processor that drove the address of the current data transfer. The
separate control for this arbitration is controlled by the AACK input signal. The assertion
of this signal by a memory system indicates that the current address has been latched
and that the address bus master can relinquish mastership of the address bus.

•
MOTOROLA MC88110 USER'S MANUAL 11-39

The address bus master begins sampling the AACK input during the clock after TS is
asserted. When the master detects that AACK is asserted, it releases the address bus by
negating ABS so that another master can acquire the bus. The AACK signa~ ignored
on any clock that results in the termination of the transaction (e.g., on the last TA, TEA, or
TRTRY).

Figure 11-18 shows the relative timing for a split bus transaction. The MC8811 0 drives
an address onto the address bus and then detects the assertion of AACK. It then
releases the address bus by three-stating it and negating ABS, but continues to transfer
data onto the data bus. The data transfer proceeds and terminates as in other normal
transactions.

I 2 4 I 5 I 6 I 7 I 8 I 9 10 I 11 I

m

Figure 11-18. Split Bus Transactions Using AACK (One-Level)

Figure 11-18 shows a one-level split transaction. The one-level transaction is
characterized by the mastership of the address bus being maintained until the
mastership of data bus is acquired. The memory system accomplishes this by asserting
DBB to qualify the memory system's assertion of AACK. In a one-level pipeline, DBG can
be grounded for all CPUs. .

As shown in the figure, CPU1 begins a transaction and drives an address on the
address bus. CPU1 begins the data transfer on the data bus and receives an AACK on
the rising edge of clock 3. Therefore, CPU1 releases the address bus, which allows
CPU2 to begin to drive a new address onto the address bus before CPU1 has
completed the data transfer. A responding device can latch the new address from CPU2

11-40 MC88110 USER'S MANUAL MOTOROLA

and begin the data access before the transaction for CPU1 has completed. This feature
increases the efficiency of the system because the time that it takes to access the data for
the new address can be overlapped with that of a previous transaction.

Note that in this case, AACK is not asserted to CPU2 before CPU1 has completed its
data transfer. This is what characterizes this transaction as a one-level split bus
transaction. The advantage of implementing a one-level split bus is that the DBG signals
to all CPUs can be tied low, which simplifies the data bus arbitration circuitry. After CPU1
completes its data transfer in clock cycle 6, DBB is negated and sampled by CPU2. One
clock cycle later, AACK is asserted for CPU2 and the address bus is released for another
address bus master.

Multi-level split bus systems can be designed where there are no limitations on how
many addresses can be outstanding. Note, however, that for each MC8811 a processor,
only one outstanding transaction exists at any time. For example, it is possible to have
four outstanding transactions at one time for a four-processor system, which corresponds
to a three-level split bus system.

Multi-level split bus systems require that the memory system generate the correct DBG
(and data) for the correct processor. Figure 11-19 illustrates the timi ng for a multi-level
split bus transaction example. Note that in this case, CPU2 gains mastership and
releases it before the data is returned for CPU1's transaction.

ClK

AACK

AB< ~..--~...;..---trl\,-+---11
IfT'~~~~~ -k >-+-<: H:

SIGNALS -!

7 I 10 I 11

CPU2 DBG

CPU1 DBG

I

I
I
I

I I I , I ,

D63~: ; I PREVIOUS TRANSACTIONS : / 1.1, \

- ,I-i-~I----+-----+---+----+'li:l- !!!! fl
TA~~ _ iii 1411

l1li DON'TCARE

Figure 11-19. Split Bus (Full) Transactions

•
MOTOROLA MC88110 USER'S MANUAL 11-41

II

11.5 DATA TRANSFER MECHANISM

The following paragraphs describe the signals used in the transfer of data between the
processor and external devices. The data transfer protocol is described in detail, and
examples of the relative signal relationships for the different types of transactions are
described. All of the transactions in the timing diagrams for this section are terminated
normally. For more information on termination see 11.6 Termination of Bus
Transactions.

11.5.1 Data Transfer Mechanism Signal Overview

The signals that implement the data transfer mechanism for the MC8811 0 are classified
as data transfer signals, transfer attribute signals, and transfer control signals. The
transfer attribute signals are summarized in Table 11-12.

Table 11·12. Transfer Attribute Signal Summary

Signal Name Signal Asserted Negated

Read/Write
-

Read WriteR!W

Lock - Transaction is one of two or more Transaction is not part of an atomicLK
atomic· transactions sequence

Cache Inhibit
- Cache inhibited access Not a cache inhibited accessCI

Write-Through* - Write-through memory update mode Write-back memory update modewr

User UPA1- UPA bit in ATC entry or area descriptor UPA bit in ATC entry or area descriptor
Programmable UPAO is set is clear
Attributes

Transfer Burst TBST Burst transaction Single-beat transaction

Transfer Size** TSIZ1- See Table 11-6 See Table 11-6
TSIZO

Transfer Code TC3- See Table 11-7 See Table 11-7
TCO

Invalidate INV This signal is broadcast to snooping No need to have snooping processors
processors to invalidate the cache line invalidate the cache line

Memory Cycle
-

Data is transferred from processor to an No data transfer to occur (invalidatewe
external device cycle or allocate load)

Global
-

Data being transferred is global data Data being transferred is local dataGBl

Cache Line *** CLINE Transaction involves cache line 1 Transaction involves cache line 0

For cache inhibited/disabled accesses, the WT signal reflects the WT bit in the ATe entry or area descriptor for that
access.

** Should be ignored for burst transactions which are not touch, flush or allocate transactions.

*** Only valid for burst and invalidate transactions.

11-42 MC88110 USER'S MANUAL MOTOROLA

11.5.2 Data Byte Lanes and Multiplexing

Data can be transferred on the external bus in either single-beat transactions or burst
transactions. The transfer burst (TBST) output signal of the MC8811 0 indicates the type
of transaction. For instruction accesses, the TSIZ1-TSIZO signals always indicate a
double-word transfer. For single-beat data transactions, the transfer size (TSIZ1-TSIZO)
output signals indicate the size of the transaction (see Table 11-13). For burst data
transactions, although eight words are always transferred, the TSIZ1-TSIZO signals
indicate the size of the cache access which caused the burst (Le., for a burst transaction
caused by a cache miss due to a Id.h, TSIZ1 = 1 and TSIZO = 0 to indicate a half-word
read operation even though four double words are transferred).

Table 11-13. Memory Transfer Size and Type
-- TSIZ1 TSIZO Transfer SizeTBST

A x x 8 Word Burst

N 1 1 Byte (8 Bits)

N 1 0 Half-Word (16 Bits)

N 0 1 Word (32 Bits)

N 0 0 Double Word (64 Bits)

A = Asserted
N = Negated
x = Don' Care

The MC8811 0 drives the full 32-bit address of the requested data on the address bus.
Address bus signals A2-AO are then used in conjunction with TBST and TSIZ1-TSIZO to
determine the positioning of valid bytes on the data bus. Table 11-14 lists the valid bytes
on the data bus for read and write transactions corresponding to the various encodings
of TSIZ1-TSIZO and A2-AO. (If TBST is asserted, double words must be transferred.)
The entries labeled "A" are byte portions of the requested operand that are read or
written during that bus transaction. The entries labeled "-" are not required and are
ignored during read transactions and driven with undefined data during write
transactions.

II

MOTOROLA MC88110 USER'S MANUAL 11-43

II

Table 11-14. Data Bus Requirements for Read and Write Cycles

Byte Lane

Transfer Size TSIZ1 TSIZO A2-AO 0 1 2 3 4 5 6 7

Byte 1 1 000 A - - - - - - -
1 1 001 - A - - - - - -
1 1 010 - - A - - - - -
1 1 011 - - - A - - - -
1 1 100 - - - - A - - -
1 1 101 - - - - - A - -
1 1 11 0 - - - - - - A -
1 1 1 1 1 - - - - - - - A

Half-Word 1 0 OOx A A - - - - - -

1 0 01x - - A A - - - -
1 0 lax - - - - A A - -
1 0 1 1 x - - - - - - A A

Word 0 1 Oxx A A A A - - - -
0 1 lxx - - - - A A A A

Double Word 0 0 xxx A A A A A A A A

x = Don't care

For double-word accesses, TSIZ1 = 0, TSIZO = 0, and all bytes are labeled "A". For word
accesses, TSIZ1 = 0 and TSIZO = 1. A2 is used to decode which of the two (32-bit) words
is needed by the processor. If A2 =0, then the upper 4 bytes of the data bus are marked
"A". If A2 = 1, then the lower 4 bytes of the data bus are marked "AU.

Similarly, for half-word accesses, TSIZ1 = 1, TSIZO = O. A2-A1 are used to determine
which of the four half-words is required by the processor. Finally, for byte accesses,
TSIZ1 = 1, TSIZO = 1 and A2-AO are decoded .to determine which of the 8 bytes is
required by the processor. Figure 11-20 illustrates' how to decode A2-AO, TSIZ1-TSIZO,
and TBST to generate 8 byte strobe signals.

11-44 MC88110 USER'S MANUAL MOTOROLA

BSO = (lAO & !A1 &!A2
IA1&1A2 & !T51Z0
!A2 & IT51Z1
IT51Z0 & !T51Z1
!-TBST);

B51 = (AO &!A1 &!A2
!A1 & !A2 &!T51Z0
!A2 & IT51Z1
IT51Z0 & IT51Z1
#!-TB5T);

BS2 =(!AO & A1 & 1A2 &T51Z0
!A1 & !A2 & !T51Z0
!A2 & !T51Z1
IT51Z0 & IT51Z1
#!-T85T);

883 = (AO &A1 & 1A2
A1 &!A2 &IT51Z0
!A2 & !T51Z1
IT51Z0 & IT51Z1
#!-T85T);

BS4 = (!AO &!A1 &A2
IA1 &A2 &!T51Z0
#A2& IT81Z1
IT51Z0 & ITSIZ1
#!-T8ST);

B55 = (AO & !A1 &A2
!A1 &A2 &lT51Z0
#A2 & IT5121
IT5120 & IT5121
#1"'TB5T);

BSS = (!AO & A1 &A2 &T51Z0
!A1 &A2 &!T5120
#A2& IT51Z1
IT51Z0 & !T5121
#1"'T85T);

B57=(AO&A1 &A2
#A1 &A2 & IT51Z0
#A2& IT51Z1
IT51Z0 & IT5121
#1-T85T):

Figure 11-20. Byte Strobe Generation

Figure 11-21 shows the general form of the multiplexing between the external bus and
an internal register. The four bytes shown in Figure 11-21 are connected through the
internal data bus and data multiplexer to the external data bus. The data multiplexer
establishes the necessary connections for different combinations of address and data
sizes.

The multiplexer takes the eight bytes of the 64-bit bus and routes them to their required
positions. For example, OP7 can be routed to D7-DO, as would be the case for a double
word transfer, or it can be routed to any other byte position in order to support a byte
access.

a

MOTOROLA MC88110 USER'S MANUAL 11-45

II

OPO OP1 OP2 OP3 OP4 OP5 OPS OP?

REGISTERS 0 I 1 I 2 I 3 5 7

\ \ \ 1

/ / /
MULTIPLEXER ROUTING

/ / / \ \ \ ~
INTERNAL

TOlHE

---~~i:~' -I 063-056 1 055-D48 I 047-040 I 039-032 1 031-024 I 023-016 1 015-08 1 07-00 ~-~~~~--
EXTERNAL

t t t t t t t t BUS

t
ADDRESS

BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTES BYTE 6 BYTE 7xxxxxxxO

Figure 11-21. Data Multiplexing

11.5.3 Single-Beat Transactions

Accesses that occur directly on the external bus independently of the data cache
(regardless of a cache hit) cause single-beat transactions to occur. These accesses
include cache-inhibited accesses, invalidation cycles, xmem transactions, write
transactions that occur in write-through mode, store-through accesses, table search
transactions, and allocate load operations.

11.5.3.1 SINGLE-BEAT TRANSACTION TIMING EXAMPLE. Figure 11-22
shows the relative timing of the data transfer signals during a single-beat transaction.
Before a single-beat transaction begins, the BIU arbitrates for the address bus, and the
MC88110 becomes the address bus master.

As shown in Figure 11-22, the processor drives the address signals with the physical
address of the access off the rising edge of clock 1 and at the same time asserts the
appropriate attribute and control signals for the type of single-beat transaction being
performed (see Table 11-15). The responding memory system can sample the address
as early as the next rising clock edge (clock 2).

The MC8811 0 also asserts the transfer start (TS) signal off the rising edge of clock 1 for
one clock cycle. The memory system should then interpret the assertion of TS as a data
bus request. Once the MC8811 0 becomes data bus master, either the MC8811 0 or the
memory system places data on the data bus depending on the type of transaction (write
or read).

11-46 MC88110 USER'S MANUAL MOTOROLA

5 8 9

CLOCK
I

A31-AO ~ k,--~_--,)>-----+---+----+---e:(,----....--_.....--~~H

AB<b I / \ il
l~~:-hr----------:'~) (HI::

SIGNALS - ! \0-.-...-,_---....• ...1. • •

-t\ ! I-+-!ll:--+---.....-----+.......\ i;1 / I:.

TS _! '---..lJ \........I..J

fA WAIT

I--SINGLE-BEAT--I---NOTRANSACTION----t--SINGLE-BEATWI~WAlT...J

III DON'T CARE

Figure 11-22. Single-Beat Transaction Timing Example

To indicate the status of the transaction to the processor, the memory system then either
asserts or negates the TA signal. When the data is guaranteed to meet the appropriate
setup and hold times with respect to the rising edge of the clock, the memory system
should assert TA to terminate the transaction. In the fastest case, TA is asserted in the
clock cycle after the address is sampled (clock 2 in Figure 11-22). If the data cannot be
supplied (for reads) or latched (for writes) in time during the clock cycle after the address
is sampled, TA must be explicitly negated until the appropriate setup and hold times are
met.

While TA is negated, the processor waits, and the BIU continuously drives the address
(and data for writes) on the address bus until TA is asserted. The memory system can
insert as many ~ait cycles as necessary until the appropriate data setup and hold times
are met. The fastest case and a one wait state case are both shown in Figure 11-22.

During the clock cycle after the assertion of TA, the address lines are three-stated and (in
this case) both ABS and DBS are negated.

The memory system should assert the transfer error acknowledge (TEA) signal for a bus
error, the transfer retry (TRTRY) signal for a transfer r~, or the address retry (ARTRY)
signal for an address retry. For more information on TA and other termination signals,
refer to 11.6 Termination of Bus Transactions.

•
MOTOROLA MC88110 USER'S MANUAL 11-47

II

11.5.3.2 SINGLE-BEAT TRANSACTION TYPES. Table 11-15 provides a list of
the eight types of single-beat transactions and the state of the transfer attribute signals
and some snoop control signals for each of these transactions. All single-beat
transactions have similar timing characteristics; the differences between the transactions
are determined by the transfer attribute signals that are asserted/negated.

Table 11-15. Single-Beat Transaction Transfer Attribute Signal States

Transaction R/W
- - - -- -- TSIZ1- TC3- - - GBl --lK CI WT UPA TBST INV Me CLINE

TSIZO Teo

Read R N MtJIU MMtJ I\t1MlJ N b,h,w,d C/D,U/S N A MMU Invalid

Write W N MtJIU MMU MMlJ N b,h,w,d D,U/S A A MMU Invalid

Invalidate W N N N MMU N b,h,w,d D,U/S A N A Valid

xmem Read R A MtJIU MMU MMlJ N b,w D,U/S A A MMU Invalid

xmem Write W A MtJIU MMU MMU N b,w D,U/S A A MMU Invalid

Table Search R N N N MMU N w CID,TSO N A N Invalid

Store-Through W N MtJIU A MMU N b,h,w,d D,U/S A A MMU Invalid

Allocate Load R N MMU MMU MMU N h TFA A N MMU Valid

Legend: A = Asserted
N = Negated
MMU = Value of bit in ATe entry or area descriptor
b = Byte
h = Half-Word
w=Word
d = Double Word
C = Code Access
D = Data Access
S = Supervisor
U = User Access
TSO = Table Search Operation
TFA = Touch, Flush, or Allocate Access

Since all transactions in Table 11-15 are single-beat, TBST is always negated. Note that
during all types of transactions except for invalidate and allocate load, the memory cycle
(Me) signal is asserted. The Me signal is asserted when data must be transferred
between the processor and an external device. Note that the INV signal is asserted for
all write transactions, both portions ofaxmem operation, and allocate load transactions.
The INV signal is asserted to notify snooping processors to invalidate its corresponding
cache line if necessary.

The following paragraphs describe each type of transaction in detail.

11-48 MC88110 USER'S MANUAL MOTOROLA

11.5.3.3 SINGLE-BEAT READ TRANSACTION. During single-beat read
transactions, the MC88110 reads a byte, half-word, word, or double word from an
external device.

To perform a single-beat read transaction, the MC8811 0 first arbitrates for mastership of
the address bus. The MC8811 0 then asserts TS, drives the address onto the address
bus, and asserts or negates the appropriate transfer attribute signals (see Table 11-15)
as described in Figure 11-23.

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1). SET RiiiTO READ
2) DRIVE ADDRESS ON A31-AO
3) DRIVE SIZE ON TSIZ1-TSI20 (BYTE, HALF-WORD,

WORD, OR DOUBLE WORD)
4) NEGATE TBST
5) DRIVE TRANSFER ATTRIBUTE SIGNALS

~ PRESENT DATA
(CK INV, Me, WT, cr, UPA1-UPAO, TC3-TCO, GBl)

6) ASSERT TRANSFER START (TS) FOR ONE CLOCK
1) DECODE ADDRESS
2) ASSERT DBG AND PTA
3) PLACE DATA ON APPROPRIATE BYTES OF

063-00
ACQUIRE DATAe---- 4) ASSERT TRANSFER ACKNOWLEDGE (fA)

1) LATCH DATA
~

+ TERMINATE CYCLE

START NEXT CYCLE 1) REMOVE DATA FROM 063-DO
2) NEGATE fA

Figure 11-23. Single-Beat Read Transaction Flow

At the beginning of each transaction, TS is asserted for one clock cycle. The external
arbiter should interpret the assertion of TS as a data bus request. Once the MC8811 0
becomes the data bus master, the memory system should supply the requested data on
the appropriate D63-DO signals within the r~uired setup and hold times with respect to
the rising edge of the clock, while asserting TA. If the memory system is unable to supply
the data within the apPrQPriate setup and hold times, the memory system should insert
wait states by negating TA until the data is available.

Figure 11-24 shows the relative timing for single-beat read transactions with and without .
a wait state.

MOTOROLA MC88110 USER'S MANUAL 11-49

5

BCLK

A31-AS ~ tx-----.....------' "--.....--_-.,....__1""""""

A4-AO ~ tx-----.....------' '--.....--_-.,....__1""""""

ABB~b~......I..----;'---P----i---";'--""';-"""------i
ANi ~ lJ
Me ~b~----;--.....;-.----;..--..;.--.....;-"""------i
INV ~lJ

OTHER TRANSFER - [X'--------

ATTRIBUTE I
AND CONTROL SIGNALS -; • '----,----.,....--.....-

I
I,
I

I I

DBG~1. _ ...
063-00~p~....;..-9:: i (;:: >-1

DBB -!
-i--- READ ----I--- READ WITH WAIT ----.J

IllII DON'T CARE

Figure 11-24. Single-Beat Read Transaction Timing

11.5.3.4 SINGLE-BEAT WRITE TRANSACTION. During single-beat write
transactions, the MC88110 transfers a byte, half-word, word, or double word to an
external device.

III
To perform a single-beat write transaction, the MC8811 0 first becomes the address bus
master. The MC8811 0 then asserts TS, drives the address of the data onto the address
bus, and asserts or negates the appropriate attribute and control signals (see Table 11
15) as described in Figure 11-25. All writes from the MC8811 0 cause the invalidate (INV)
signal to be asserted so that snooping processors can invalidate their cached versions
of the data.

11-50 MC88110 USER'S MANUAL MOTOROLA

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) DRIVE Riii AS WRITE
2) DRIVE ADDRESS ON A31-AO
3) DRIVE SIZE ON T51Z1-TSIZO (BYTE, HALF-WORD,

WORD, OR DOUBLE WORD)
4) NEGATE T85T
5) DRIVE TRANSFER ATIRIBUTE SIGNALS

(LK, INV, Me, WT, ct, UPA1-UPAO, TC3-TCO, GBl)
~ LATCH ADDRESS

6) ASSERT TRANSFER START (TS) FOR ONE CLOCK

1) LATCH AND DECODE ADDRESS

~
2) ASSERT DATA BUS GRANT (DBG) AND PTA

PRESENT DATA

1) DRIVE DATA ON 063-00
~ TERMINATE CYCLE

1) LATCH DATA FROM 063-00

START NEXT CYCLE ~
2) ASSERTTA

Figure 11-25. Single-Beat Write Transaction Flow

At the beginning of each transaction, TS is asserted for one clock cycle. The external
arbiter should interpret the assertion of TS as a data bus request. Once the MC8811 0
becomes the data bus master, the MC8811 0 immediately drives the data onto the data
bus. The memory system should latch the data while asserting TA. If the memory system
is unable to latch the data, it should insert wait states by negating TA until the data is
latched.

Figure 11-26 shows the relative timing for single-beat write transactions with and without
a wait state.

..

MOTOROLA MC88110 USER'S MANUAL 11-51

BCLK

•

- ex:~-.,..-I ",---~---.--XJ::I'A31-A5 _ ~ ----r- ---.- .

A4-AO ~ CX--------- :xj
-~ i:,'0::

1

ABB _ i-~......a..---i--""';'--"""""--+-----;-""~-""';

-~ 0 1,'.

RNi _ i-i~~----;---i-----+--+-----+-""",,"~--;
-~ 0

1
,':'

MC _ i-!~~---i---+-----+--+-----;-"""~-""";

-LJ! \Jill:INV _ i
OTHER TRANSFER - ex: XJI

I
,':

ATTRIBUTE AND : .
CONTROL SIGNALS - ; ----...---...,.--1 --...,...----.,.--_,.......

TS i :

PTA~. ,.-.,.
fA~~ i • W~T \lIl

DBG ~!'..~-ll~1I11!d __:11__1_111

0:::Dl;...-----+----9 < i i ~
~ WRITE ~WRITEWITHWAIT ~

II1II DON'T CARE

Figure 11-26. Single-Beat Write Transaction Timing

11.5.3.5 INVALIDATE TRANSACTION. Invalidate transactions are single-beat
transactions used by the MC88110 to maintain cache coherency among multiple
MC88110 processors. Invalidate transactions broadcast to snooping processors that a
line in memory will be modified; thus, snooping processors should invalidate their
cached versions of the line. See 11.3.3 Data Cache Coherency for more
information on snooping and cache coherency.

An invalidate transaction is an address-only transaction; although valid data is driven on
the data bus, no data is transferred. Invalidate transactions use the protocol defined for
single-beat write transactions. The only difference between an invalidate transaction and
a normal single-beat write transaction is that for an invalidate transaction, Me is negated
since no data must be transferred. For both invalidate and normal single-beat write
transactions, R/W is low, signalling a write, and INV is asserted to notify snooping
processors to invalidate their cached versions of the line.

11-52 MC88110 USER'S MANUAL MOTOROLA

Even though no data is transferred during an invalidate transaction, the MC88110 must
still reque~t and be granted the data bus. Unless a transaction is abnormally terminated
with an address retry (see 11.7.3 Address Retry Transaction Termination), the
transaction cannot be completed until the arbiter asserts DBG.

Figure 11-27 shows the timing diagram for a read followed by a write followed by an
invalidate transaction. The three types of transactions are differentiated by the state of
the RIW, Me, and INV signals.

6

BCLK

DBB _I
J...e-- READ~ WRITE ~INVALDATE ~

-~ :.'Vil::A31-AO _ 0Io0.o..-.,.---.....,..., "'-...,.-----r-- '"---.-_---,._~

-~ ::10;:
ABB_~ !~

ANi ~ C7 \,-+----+------P---+--&-!LJ-,.;j
Me ~ i--~---+-----+--+------+--'/ :

- LI~:--;.....---.......-- OIl.'
INV _: "'"-+-'__+--_-+-__;-....&-~-.....

TRANSFER - 'Lx :':)(J:II':'ATTRIBUTE !
SIGNALS - ; ._.,.--_.....,......, '-- -_-I '----.-_---,_

,,,,,

II1II DON'T CARE

Figure 11-27. Single-Beat Read, Single-Beat Write,
and Invalidate Transactions Timing

11.5.3.6 xmem TRANSACTION. The xmem instruction is a multiprocessor
synchronization instruction that uses a single-beat read and a single-beat write
transaction to exchange the contents of a general register with that of an addressed
memory location. The xmem instruction is normally used to implement semaphores or
resource locks in multiprocessor or multitasking systems.

a

MOTOROLA MC88110 USER'S MANUAL 11-53

•

The xmem instruction is effectively a locked combination of a load and store instruction.
The MC88110 implements the xmem instruction in one of two ways based on the value
of the XMEM bit in the DCTL. If the XMEM bit is clear (the default case), the xmem
instruction causes a single-beat read followed by a single-beat write transaction;
otherwise, the xmem instruction causes a single-beat write followed by a single-beat
read transaction. If the xmem instruction causes a cache hit to a modified line, then a
copyback is performed before the two single-beat transactions.

During the execution of the xmem transaction, the bus lock signal (LK) is asserted for
both the read and write portions of the xmem transaction. The LK signal is asserted to
indicate that the bus arbitration circuitry should not allow another bus master to alter the
data being accessed by the xmem transaction between the read and the write. One way
that the arbitration circuit can ensure this is by locking the bus throughout the read and
write portions of the xmem transaction.

The SR signal operates slightly differently for xmem operations than for all other
transactions. For the first transaction in the xmem operation, SR remains asserted while
TS is asserted. In all other cases, including the second transaction in the xmem
operation, the SR signal is negated when TS is asserted. The arbitration circui~an use
this feature to easily lock the bus between the two transactions by not negating BG (once
it is asserted) until the MC88110 negates BR. Another advantage to keeping BG
asserted throughout the two transactions is that the transfer attribute signals will remain
valid.

Figure 11-28 shows the timing of a read followed by a write xmem operation for the
unparked case, and Figure 11-29 shows the timing for the parked case. Note that in both
cases BR is asserted until the MC8811 0 initiates the write portion of the transaction. The
transfer attribute and ASS signals, however, are asserted for the duration of the locked
read/write sequence only in the parked case. xmem

The INV signal is also asserted for both of the xmem transactions to signal to snooping
processors that a write to memory will occur, which may require them to invalidate a line
in their cache.

11 ~54 MC88110 USER'S MANUAL MOTOROLA

11 12 13 14 15 16 1718 I 9 I
ClK

I
I

A31-AO -;-i---4------« CPU1

;------.;-\ I:.

ABB _I _.+--_+---'

RiN~.. i
.
I

III DON'T CARE

Figure 11-28. xmem Transaction Timing-Unparked Case

a

MOTOROLA MC88110 USER'S MANUAL 11-55

2 4 5 6 8

CLK

•

A31-AO ~H: CPUl _-"'-~I.':P_U_1-..,,:r-1
- t\"---i!i--_-+-__-+-__i--_--+-__-+-__.....!I, Il:::ABB _! _ ! I !

~-lIri i~

~~~! I~
OTHER TRANSFER-.') l )I'

ATTRIBUTE AND
CONTROL SIGNALS - ~-....,.-

I I •

h! I I I.!:,rs;l + ;
D63-DO -I i G?:: --+---........-----+---+--G?H::;

DBB _ i

BG _LAl....-....-... ....:.- __
l1li DON'T CARE

Figure 11-29. xmem Transaction Timing-Parked Case

11-56 MC88110 USER'S MANUAL MOTOROLA



11.5.3.7 TABLE SEARCH TRANSACTIONS. A table search operation is a series
of single-beat transactions performed by the MC8811 0 when a logical address misses in
the block address translation cache (BATC) and page address translation cache (PATC)
with address translation enabled (MMU enabled) (see Section 8 Memory
Management Units for more detailed information on the causes of table search
operations). During a table search operation, the physical address for the missed logical
address is obtained by progressing through the memory mapping tables.

The timing for a table search transaction is identical to the timing for a single-beat read
transaction; however, the CI, WT, and GBl attribute signals are never asserted. (For a
single-beat read, these signals can be asserted.) Also, TSIZ1-TSIZO always indicate a
word access (TSIZ1 = 0 and TSIZO = 1) for a table search transaction. For the detailed
timing for table search operations, see 11.8 MMU Transactions.

11.5.3.8 STORE-THROUGH TRANSACTION. The store-through option is a
feature that unconditionally causes the store instructions ~o write-through the on-chip
data cache directly to memory. If a store-through access hits in the cache, the data is
written both to memory and the cache, but the state of the cache line is not changed.
When a store-through access misses in the data cache, no line is allocated in the cache,
and the access simply writes directly to memory, bypassing the cache completely. The
store-through operation is identical to a cache access in write-through mode. See
Section 6 Instruction and Data Caches for more information on the store-through
feature of the MC8811 O.

The store-through option is specified by a .wt (for write-through) extension on any triadic
register addressing form of the store instruction. The timing for a store-thro~

transaction is the same as that for a single-beat write transaction; however, the WT
signal is always asserted.

11.5.3.9 ALLOCATE LOAD TRANSACTION. The allocate load option is a cache
control feature that allows the user to allocate a line in the data cache for a series of
subsequent store operations while avoiding the normal line fill from memory. The
allocate load option can improve performance by eliminating the overhead of reading a
new line from memory that is going to be overwritten. The allocate load option is
specified as a half-word load to rOo See Section 6 Instruction And Data Caches
for more detailed information on the allocate load option.

The allocate load option allocates a line in the cache on a cache miss (as any normal
load does), but only performs a single-beat bus transaction rather than a complete line III
fill burst transaction. For an allocate load transaction, the INV signal is asserted and the ... •
MC signal is negated. This timing is the same as that of an invalidate transaction;
however, the transfer code signals indicate that it is a touch, flush, or allocate load
transaction. If an allocate load is used to access cache inhibited memory, the single-
beat bus transaction is still performed but no new line is allocated in the cache. In this
case, the INV signal is asserted, the MC signal is negated, and the CI signal is asserted.
The memory system does not have to provide valid parity on the BP7-BPO signals for
this transaction.

MOTOROLA MC88110 USER'S MANUAL 11-57



11.5.4 Burst Transactions
Burst transactions perform the transfer of four double words between the processor and
an external device. Cache maintenance operations that require four double words to be
read from or written to memory (e.g., cache line fill and copyback operations) are
performed as burst transactions.

For most burst transactions, the MC88110 uses a critical-word-first convention to
determine the double word in the cache line that is accessed first. The critical-word-first
convention means that the cache line fill (or copyback) operation always begins with the
evenly aligned double word containing the missed word (Le., critical-word-first), followed
by the subsequent double word(s) in the line, if any. If the double word containing the
missed instruction (or data) does not correspond to the first double word in the cache
line, the fill operation wraps around and then fills the double word(s) at the beginning of
the line.

Figure 11-30 illustrates an example of the critical-ward-first operation. The example
shows the result of a byte load from the address $OB. Note that the full byte address is
driven on the address bus for the first two clock cycles, even though it is a burst
transaction and the full evenly aligned double word must be transferred by the memory
system to the processor. Also, note that in the subsequent clock cycles, address bits A2
AD remain the same, and address bits A4-A3 are changed to reflect the address of the
double word that must be transferred.

2 4 5 6

ADDRESS

DATA

II
BANKO

t---------t

BANK 1

••

~-t----- OLD

11-58

LAST 15t TRANSFER 2nd TRANSFER 3rd TRANSFER
(CRITICAL WORD)

Figure 11-30. Critical-Word-First Operation Example

MC88110 USER'S MANUAL MOTOROLA



If the address bus is not released by the assertion of AACK, the MC88110 drives the
address of the missed word and then steps through the addresses required for the
remainder of the cache line fill (or copyback) operation. If AACK is asserted, the
MC88110 releases the address bus and the memory system is responsible for
incrementing the remaining addresses for the remainder of the cache line fill (or
copyback) operation. For the flush copyback operation, the transfer of data begins with
the first double word of the line. The following paragraphs describe the timing of the
MC88110 signals for burst transactions and the operation of the various types of burst
transactions.

11.5.4.1 BURST TRANSACTION TIMING EXAMPLES. Figure 11-31 shows the
relative timing of the data transfer signals during a burst transaction. Before a burst
transaction begins, the BtU arbitrates for the address bus, and the MC8811 0 becomes
the address bus master.

11II DON'T CARE

Figure 11·31. General Burst Transaction Timing •
\!

TA ~...~~i__...:.....-_......:...__:.....
1E BURST TRANSACTION (2:1 :1 :1) .1

AS< L\I-!--I.--+---+---+---+------lf-ln
TRANSFER - [X! XJtl:,"'::

ATTRIBUTE AND l
CONTROL SIGNALS - : -.,...----,-----...--.,...--.......-

_ I I

TS _! :

DBG ~ ~~w:illla--+-
D63-oo _ i

p.....--...;..-.-

As shown in Figure 11-31, the processor then drives the address signals with the
physical address of the access off the rising edge of clock 1 and at the same time asserts
the appropriate attribute and control signals for the type of burst transaction being
performed.

MOTOROLA MC88110 USER'S MANUAL 11-59



•

At the same time that the attribute and control signals are asserted, the transfer start (TS)
signal is also asserted for one clock cycle. The external arbiter should then interpret the
assertion of TS as a data bus request. Once the MC88110 becomes the data bus
master, either the MC8811 0 or the memory system places the instruction/data for the first
beat of the burst on the data bus. The next three beats of the burst occur during
subsequent clock cycles.

To indicate the status of each of the four beats of the burst transaction to the processor,
the memory system then either asserts or negates the TA signal. When the double-word
data is guaranteed to meet the appropriate setup and hold times, the memory system
should assert TA to terminate the beat. At this time, either the address is incremented to
be the address for the next beat of the burst, or, if all four beats have completed
successfully, the burst transaction is terminated.

The fastest case burst transaction occurs when no wait cycles are inserted by the
memory system. In this case (as shown in Figure 11-31), TA is asserted during the first
beat of the burst transaction and remains asserted during all four beats of the burst. In
this case specifically, the memory ~tem places the first aligned double word on the
data bus during clock 2 and asserts TA. During each of the following three clock cycles,
the address is incremented to reflect the address of the appropriate double word. The
memory system continues to supply the MC88110 with the appropriate double words on
the data bus. The address, data, and control signals are three-stated in clock 6, and TA
is negated to signal the end of the transaction.

If the data/instruction cannot be supplied in time during the clock cycle after the address
is sampled, TA should be explicitly negated until the setup and hold times are met. While
TA is negated, th~rocessor waits and the BIU continuously drives the address on the
address bus until TA is asserted. The memory system can insert as many wait cycles as
necessary until the setup and hold times are met for each beat. For more information on
TA and the termination of bus transactions, refer to 11.6 Termination of Bus
Transactions.

An example of a burst transaction with wait cycles is shown in Figure 11-32. During clock
1, the full 32-bit address of the requested data is driven on the address bus, but the data
is not immediately available. Thus, the memory system negates the TA signal and the
processor interprets this as a wait response. In this example, the memory system inserts
two wait cycles before the data is available. During clock 4, the first double word is
driven on the data bus and TA is asserted. ,During each of the following three clock
cycles, the address is incremented to reflect the address of the appropriate double word.
The memory system continues to supply the MC88110 with the appropriate double
words on the data bus. In clock 9, thetransaction is terminated and TA is negated.

11-60 MC88110 USER'S MANUAL MOTOROLA



7 8 9

CLOCK

-r-v :' ': Vi:.:A31-A5 _ 0 . . "'--l

M-A<p<=====;::9::--'--;.':.---.--.;~
ABB -_1\. I. I, !"J,

W ; ; I L-..j
TRANSFER - ex: I 1.

1

)(J.II'.'ATTRIBUTE AND :
CONTROL SIGNALS - : •

TS~1\-lJ i~
I

D63-DO -I
i---.....;.---..,.

DBB _I

--.JE----- BURST TRANSACTION WITH WAITS (4:1 :2:1)----~

III DO~TCARE

Figure 11-32. Burst Transaction with Wait Cycles

The memory system should assert the transfer error acknowledge (TEA) signal for a bus
error, the transfer retry (TRTRY) signal for a transfer retry, or the address retry (ARTRY)
signal for an address retry.

If a bus error is encountered during the access to the critical word, then a data or
instruction access exception occurs and the cache line is not updated. If a bus error is
encountered at any time during a read-with-intent-to-modify cycle, then a data access
exception occurs. For more information on MC88110 exceptions and exception
processing, see Section 7 Exceptions. If a bus error occurs during any other beat of
the transaction, then the corresponding cache line is marked as invalid. If no bus error is
encountered, the line is marked as valid when the transaction completes.

II

MOTOROLA MC88110 USER'S MANUAL 11-61



II

11.5.4.2 BURST TRANSACTION TYPES. There are eight types of burst
transactions performed by the MC88110 bus. Table 11-16 lists the types of burst
transactions and the double word in the cache line that is transferred first for each type of
transaction.

Table 11-16. Burst Transaction Types
and First Double Word Transferred

Type of Burst Transaction Double Word Transferred First

Instruction Cache Read Miss Line Fill Evenly Aligned Double Word Containing the Critical Word

Data Cache Read Miss Line Fill Evenly Aligned Double Word Containing the Critical Word

Data Cache Write Miss Line Fill- Evenly Aligned Double Word Containing the Critical Word
Read-with Intent-to-Modify Cycle

Touch Load Evenly Aligned Double Word Containing the Critical Word

Replacement Copyback Evenly Aligned Double Word Containing the Critical Word

Snoop Copyback Evenly Aligned Double Word Containing the Critical Word

Flush Copyback First Double Word in the Cache Line

Flush Load Evenly Aligned Double Word Containing the Critical Word

Table 11-17 lists the eight types of burst transactions and the state of the transfer
attribute signals for each type of burst transaction.

11-62 MC88110 USER'S MANUAL MOTOROLA



Table 11-17. Burst Transaction Transfer Attribute Signal States

Transaction R/W
- - - --

TBST TSIZ1- TC3- - -
GBl CLINElK CI WT UPA INV Me

TSIZO Teo

Read Transactions

Instruction R N N Mfv1U MMU A d C, U/S N A MMU Valid
Cache Read
Miss Line Fill

Data Cache R N N MMU MMU A b,h,w,d 0, U/S N A MMU Valid
Read Miss Line

Fill

Data Cache R N N N MMU A b,h,w,d 0, U/S A A MMU Valid

Read-with
Intent-to-
Modify Cycle

Touch Load* R N MMU MMU MMU A b TFA N A MMU Valid

Write Transactions

Replacement W N N N N A d D,S A A N Valid
Copyback

Snoop W N N N N A d SGB A A N Valid

Copyback

Flush W N N N N A d D,S A A N Valid

Copyback

Flush Load W N N N N A w TFA A A N Valid

* If the CI bit is set in the ATC entry, then the flush load causes a single-beat access
Legend: A = Asserted

N == Negated
MMU = Value of bit in ATC entry or area descriptor
b = Byte
h = Half-Word
w=Word
d = Double Word
C = Code Access
D = Data Access
S = Supervisor
U = User Access
SCB = Snoop Copyback Operation
TFA = Touch, Flush, or Allocate Access

11.5.4.3 BURST READ TRANSACTIONS. During a burst read transaction, the
MC88110 reads four double-words from memory to fill a cache line. As instructions/data •..........
are latched from the bus, they are written into the appropriate cache and simultaneously .
streamed directly to the instruction/data unit, at which time any pending data
dependencies are resolved. All subsequent instructions/data read from the bus are also
streamed to the instruction/data unit in parallel with the reading of the remaining words
on the bus.

MOTOROLA MC88110 USER'S MAN UAL 11-63



II

Figure 11-33 shows a general flow diagram for a burst read transaction (see Figures 11
31 and 11-32 for illustrations of the relative timing for some burst read transactions).

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) DRIVE RJWAS READ
2) DRIVE ADDRESS ON A31-AO
3) DRIVE SIZE ON TSIZ1-TSIZO (BYTE, HALF-WORD,

WORD, OR DOUBLE WORD)
4) ASSERT TBST
5) DRIVE TRANSFER ATTRIBUTE SIGNALS -----.. LATCH ADDRESS o4IIE--

(O(,INV, Me, WT, cr. UPA1-UPAO, TC3-TCO, GBl)
6) ASSERT TRANSFER START (TS) FOR ONE CLOCK

1) DECODE ADDRESS
2) ASSERT DOO AND PTA
2) PLACE DATA ON D63-DO

ACQUIRE DATA ~ 3) ASSERT TRANSFER ACKNOWLEDGE (fA)

1) LATCH DATA
2) INCREMENT ADDRESS BITS A4-A3 (IF STill

ADDRESS BUS MASTER) ~ TERMINATE CYCLE

1) REMOVE..Q.ATAFROM 063-00
2) NEGATE TA (IF NECESSARY)

I ISTART NEXT CYCLE -
WHEN 4 DOUBLE WORDS UNTil 4 DOUBLE WORDS

TRANSFERED TRANSFERED

Figure 11-33. Burst Read (Cache Line Fill) Transaction Flow

There are three types of burst read transactions: cache line fill operations, touch load
operations and read-with-intent-to-modify cycles. The burst read operations are
described in the following paragraphs.

11.5.4.3.1 Cache Line Fill Operation-Read Miss. A cache miss occurs when
caching is enabled and the instruction/data required by the processor is not resident in
the appropriate cache. A processor read access that misses in the cache causes a bus
transaction to occur. This operation is called a cache line ~ill operation.

Several conditions contribute to the actions taken by the processor for a read cache
miss. For this section, it is assumed that the transaction results in an ATC hit (or address
translations are disabled) and no table search is necessary. See 11.8 MMU
Transactions for a detailed description of the bus transactions that occur when an ATC
miss occurs and a hardware table search operation is performed.

If the cache line that is selected for replacement is marked as modified, the cache line is
flushed before the cache line fill operation occurs. This operation is called a replacement
copyback. If the cache line selected for replacement is marked as unmodified or invalid,
no memory update is necessary and the cache line fill operation proceeds as a burst
read transaction. The replacement copyback operation is described in 11.5.4.4.1
Replacement Copyback Transaction.

11-64 MC88110 USER'S MANUAL MOTOROLA



Figure 11-31 shows the timing for a cache line fill operation. The full 32-bit address of
the critical double word and the appropriate control and transfer attribute signals are
asserted by th~ocessor off the rising~dge of clock 1. Because this is a cache line fill
operation, the INV signal is negated, RIW is driven high, CI is negated, Me is asserted,
and LK is negated (as shown in Table 11-17).

11.5.4.3.2 Touch Load Burst Read Transaction. The touch load option is a user
mode cache control feature that allows data to be loaded into the data cache under user
program control. Normally, data is brought into the cache only when it is needed. This
can lead to instruction execution stalls due to dependencies on data that must be read
from main memory. In many cases, however, the need for data can be predicted. By
forcing certain data be read into the cache ahead of its actual use, the latency of the
memory system can be overlapped with useful work, and stalls due to long latency
cache misses can be minimized. The touch load option is specified as a byte load
instruction to rD. See Section 6 Instruction and Data Caches for more detailed
information on the use of the touch load option.

The timing for touch load read transactions is the same as that for a burst read operation.
However, if the CI bit in the ATe is set for a touch load operation, then a single-beat read
transaction is performed instead of a burst read. For touch load operations, the INV
signal is negated, RIW is driven high, MC is asserted, and LK is negated. The CI and WT
signals reflect the value of the corresponding bits in the ATC entry in the appropriate
MMU for the respective signal (see Table 11-17).

11.5.4.3.3 Read-with-Intent-to-Modify Burst Transaction. A read-with-intent-to
modify transaction is caused by a write access that misses in the data cache in write
back mode. A read-with-intent-to-modify transaction operates like a burst read
transaction for a cache line fill but has the side effect of broadcasting to other processors
on the bus that the cache line being read will be modified; thus, the other processors
should invalidate any resident local copy of the cache line.

To notify the other processors on the bus that the cache line being read will be modified,
the INVsignal is asserted. Also, like a burst read transactions for cache line fills, RIW is
driven high, CI is negated, WT is negated, MC is asserted, and LK is negated.

II

MOTOROLA MC88110 USER'S MANUAL 11-65



II

11.5.4.4 BURST WRITE TRANSACTIONS. During a burst write transaction, the
MC88110 transfers four double-words from a data cache line to memory. Figure 11-34
shows a general flow diagram for a burst write transaction. The timing for the burst writes
is shown in Figure 11-31.

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) DRIVE ANiAS WRITE
2) DRIVE ADDRESS ON A31-AO
3) DRIVE SIZE ON TSIZ1-TSI20 (BYTE, HALF-WORD,

WORD, OR DOUBLE WORD)
4) ASSERT TSST
5) DRIVE TRANSFER ATTRIBUTE SIGNALS

([j(,INV, Me, WT, Ci, UPA1-UPAO, TC3-TCO, GBL)
~ LATCH ADDRESS ~

6) ASSERT TRANSFER START (TS) FOR ONE CLOCK

1) LATCH AND DECODE ADDRESS, TSIZ1-TSIZO,
AND TRANSFER ATTRIBUTE SIGNALS

PRESENT DATA ~
2) ASSERT DBG AND PTA

1) DRIVE DATA ON D63-oo
2) INCREMENT ADDRESS BITS A4-A3 (IF STILL

ADDRESS BUS MASTER) -----.. TERMINATE CYCLE

1) LATCH DATA FROM 063-00
2) ASSERTTA

I ISTART NEXT CYCLE -.
WHEN 4 DOUBLE WORDS UNTIL 4 DOUBLE WORDS

TRANSFERED TRANSFERED

Figure 11-34. Burst Write Transaction Flow

Before a burst write transaction is performed, the BIU arbitrates for mastership of the
address bus. When the MC88110 becomes the address bus master the burst write
transaction begins. The MC88110 drives the physical address of the access onto the
address bus and asserts/negates the appropriate control and attribute signals (see
Table 11-17) (e.g., the MC signal is asserted to indicate that the access transfers data
and RIW is driven high). All write transactions from the MC8811 0 cause the INV signal to
be asserted so that snooping processors can invalidate resident copies of the cache
line. The memory system decodes the address on the next rising clock edge after the
address is driven.

At the same time that the attribute and control signals are asserted, the TS signal is
asserted by the MC8811 0 for one clock cycle. The arbiter should interpret the assertion
of TS as a data bus request. Once the MC88110 becomes data bus master, the
MC88110 immediately drives the data on the data bus. The memory system should latch
the data and then assert TA. If the memory system is unable to latch the data within the
appropria~ setup and hold times, the memory system should insert wait cycles by
negating TA until the data is latched.

11-66 MC88110 USER'S MANUAL MOTOROLA



Once TA has been asserted for the first beat of the burst write, the MC88110 increments
address lines A4-A3 to reflect the double-word address needed for the second beat of
the burst. Also, during that clock cycle, the MC8811 0 drives the data corresponding to
the new address, and, if possible, the memory system latches the data while asserting
TA. Again, if the memory system is unable to latch the data within the setup and hold
times, it should insert wait cycles by negating TA. The process described in this
paragraph is repeated for the third and fourth beats of the burst write transaction. When
all four beats have completed successfully, the memory system negates TA.

There are four types of burst write transactions: replacement copyback operations,
snoop copyback operations, flush copyback operations, and flush load· operations. A
copyback operation is the process of writing a modified cache line out to memory so that
memory is updated. All of the four conditions that cause burst write transactions are
described in the following paragraphs.

The MC88110 asserts the same transfer attribute and control signals, except for the
transfer code (TC3-TCO) signals, for all of the burst write transactions. The particular
burst write transaction can be determined by decoding the transfer code (TC3-TeO)
signals (see Table 11-7). Note that the timing for TC3-TeO coincides with the timing for
the address signals.

11.5.4.4.1 Replacement Copyback Transaction. When a data cache miss which
requires a cache line fill occurs and the corresponding cache set has two valid entries,
the cache access algorithm selects one of the two lines in the corresponding cache set
for replacement. The MC8811 0 checks the state of the line to be replaced, and if the line
is modified, then the line is copied back to memory. This copyback operation is
referenced as a replacement copyback.

The timing for the replacement copyback is the same as for the burst write; however, the
transfer code signals always indicate that a supervisor data access is in progress.

11.5.4.4.2 Snoop Copyback Transaction. The MC88110 uses a bus snooping
protocol to maintain cache coherency in systems where more than one processor is
allowed to access shared memory. When a snooping MC8811 0 has a cache hit during a
global write or global read-with-intent-to-modify transaction, the snooping MC88110
determines if the cache line is modified. If the line is modified, the line must be copied
back to memory before the MC88110 performing the global access can complete its
transaction. This copyback operation is referenced as a snoop copyback. For more
information on snooping transactions, see 11.7· Data Cache Coherency Timing
Considerations.

The timing for the snoop copyback is the same as for the burst write; however, the
transfer code signals indicate that a snoop copyback access is in progress. ••

MOTOROLA MC88110 USER'S MANUAL 11-67



II

11.5.4.4.3 Flush Copyback Transaction. The MC88110 has a supervisor mode
cache control feature that causes either all modified lines or any individual modified line
in the data cache to be transferred out to memory and causes the transferred line(s) to
be marked as unmodified. Each line transferred to memory by this operation is
transferred by way of a burst write transaction called a flush copyback. See Section 6
Instruction and Data Caches for more information about flushing data cache entries
to memory.

The timing for the flush copyback is the same as for the burst write; however, the transfer
code signals indicate that a supervisor data access is in progress.

11.5.4.4.4 Flush Load Transaction. The flush load option is a cache control feature
that allows the user to force a modified (dirty) cache line to be written to memory.
Normally, modified cache lines are copied back to memory only as a side effect of
needing to allocate a new cache line. However, it is sometimes appropriate to be able to
flush data in the cache in order to immediately update the memory image. For example,
the user may store several data words to memory that are filtered by the cache and
never actually update memory. In this case, the flush load option can be used to flush the
data words from the cache to memory. See Section 6 Instruction and Data
Caches for more detailed information on the flush load option.

The timing for the flush copyback is the same as for the burst write; however, the transfer
code signals indicate that a touch, flush, or allocate load is in progress.

11.5.5 Back-Ie-Back Transfer Timing

Table 11-18 shows the number of clock--9'cles between the assertion of TA or TEA for
one transaction and the assertion of TS for the second transaction (assuming the
MC88110 is parked). The last column shows the number of clock cycles between the
assertion of ARTRY or TRTRY for a transaction and the assertion of TS for the retried
transaction. Note that the burst write transactions include the flush and replacement
copybacks. Also, there are no dead cycles between a replacement copyback operation
and the burst read which caused it.

11-68 MC88110 USER'S MANUAL MOTOROLA



Table 11-18. Back-to-Back Transfer Timing

First
Transactlonl Single- Single- Any

Second Table Beat Beat Burst Burst Snoop Instruction
Transaction Search Read Write Read Write Copyback Access Retry

2 3 3 3 3 2 0 2 .-
Single-Beat 4 2 2 2 2 2 0 3
Read

Single-Beat 4 2 2 2 2 2 0 3
Write

Burst Read 4 2 2 2 2 2 0 3

Burst Write 4 0 0 0 2 2 0 3

Snoop 1 1 1 1 1 2 0 1
Copyback

Any Instruction 0 0 0 0 0 0 2 3
Access

11.6 TERMINATION OF BUS TRANSACTIONS

This section describes the different methods for terminating transactions on the
MC88110 bus. Transactions may be terminated normally, indicating that the transfer was
completed successfully, or terminated with an error or a retry indication. Two types of
retry terminations are possible: transfer retry and address retry. The address retry
terminates the transaction of the current address bus master. The transfer retry
terminates the transaction of the current data bus master and is discussed in this section.

The state of several input signals determine the termination for each transaction on the
MC88110 bus.:-These are the data bus bU~(DBB), transfer error (TEA), transfer
acknowledge (TA), pretransfer acknowledge (PTA), transfer retry (TRTRY), and address
retry (ARTRY) signals. The operation of ARTRY is described in 11.7 Data Cache
Coherency Timing Considerations. Table 11-19 depicts the encodings of DBB, TA,
TEA, and TRTRY and the corresponding types of transaction termination.

Table 11-19. Transaction Termination Encodings
- - - --

TerminationDBB TA TEA TRTRY

A A N N Normal

A x A x Error

A x N A Transfer Retry

A = Asserted
N = Negated
x = Don't Care

•
MOTOROLA MC88110 USER'S MANUAL 11-69



•

Normal terminations, transfer retry terminations, and error terminations are described
and the relative timing diagrams are explained in the following paragraphs.

11.6.1 Normal Transaction Termination with TA
The assertion of TA, while DBB is asserted and TRTRY and TEA are negated, signals a
normal termination to the processor. The assertion of either TRTRY or TEA overrides the
assertion/negation of TA and signals either a transfer retry or an error. For a transaction
to terminate normally, the PTA signal must be asserted at least one clock cycle before
TA. A normal termination indicates to the MC8811 0 that the current data transfer has
completed successfully. For a read transaction, the data is valid on the data bus and may
be latched by the processor. For a write transaction, the data has been accepted by the
memory system.

For single-beat transactions, the MC88110 ends the transaction after TA is asserted. To
end the transaction, the MC8811 0 releases the data bus by negating DBB. If it is also the
·current address bus master, it releases mastership of the address bus by negating ABB
(unless it is parked and a new transaction is ready to begin). For burst transactions, each
beat of the burst must be terminated by TA before the transaction is completed. Figure
11-35 shows both single-beat and burst transactions that are completed by normal
transaction termination.

In the fir~clock cycle in Figure 11-35, the MC88110 starts a new transaction by
asserting TS and ABB. In the second clock, the MC88110 is granted the data bus and
becomes the data bus master by asserting DBB. Also, in clock 2, PTA is asserted by the
memory system. In clock cycle 3, the MC8811 0 detects that TA is asserted while TEA
and TRTRY are both negated, so it completes the transaction and relinquished data bus
mastership. Since BG is asserted, the MC8811 0 can maintain mastership of the address
bus and immediate~egin a burst transaction. It becomes the data bus master in clock
4, and detects that PTA is asserted in clock 4, and TA is asserted in clock 5. This signals
the end of the first double-word transfer of the burst. After three more clocks of TA
asserted successfully (each signaling the end of another double-word transfer), the
transaction is complete. Wait states may be added when the MC8811 0 is the data bus
master by not asserting TA. There is no limit to the number of wait states that may be
inserted for any beat of a transaction.

11-70 MC88110 USER'S MANUAL MOTOROLA



4 6 7

ClK

A31-AS ~ P<----,..--....., ::: xj
A4-AO~P< r-------....;~~

-t\ I I I ILJI
ABB_W ! ! ! !~

TRANSFER - [X! X XJI
I
:,':ATTRIBUTE !

SIGNALS - ; ._..,....--..,.....J '-- --...-----....----.---.....-
I

I
I
I

I

DBB _!

~---- BURST TRANSACTION --------

III DON'T CARE

Figure 11·35. Normal Transaction Terminations with TA

•
MOTOROLA MC88110 USER'S MANUAL 11-71



II

11.6.2 Decoupled Cache Accesses and PTA
The MC8811 0 has the capability to decouple accesses to the on-chip data cache from
bus transactions by setting the DEN bit in the DCTL. When the processor ~erating
with decoupled cache and bus accesses, the pretransfer acknowledge (PTA) signal
must be used to explicitly indicate when on-chip data cache accesses must be
suspended in order to grant the bus access to the data cache. The PTA signal is used to
inform the data cache that the inHial assertion of TA may follow on the next rising edge. If
decoupled cache accesses are not desired, the PTA signal can be tied to ground. Note
that althou--9!!1he TA, TEA, and TRTRY signals are only sampled when the MC8811 0 is
asserting DBB, PTA is sampled independently of data bus mastership. For this reason,
split-bus systems may not want to share a common PTA signal.

The window of time between the assertion of TS and PTA allows load and store hits to
the data cache to occur without interrupting bus activity. Once PTA is asserted, TA may
follow in the next clock, so on-chip data accesses are prevented from accessin~he

cache. The processor begins sampling PTA simultaneously with the assertion of TS, .
Once PTA is recognized as asserted by the processor, it is ignored for the duration of the
transaction. Note that PTA only has to be asserted for one clock cycle. For more
information of the use of decoupled cache/bus accesses see Section 6 Instruction
and Data Caches.

Figure 11-36 shows a timing diagram of a single-beat transaction that explicitly uses
PTA. The transaction starts during the first clock, and the processor gains mastership of
the data bus during the second clock. For each clock cycle that PTA is negated, the data
cache operates independently, because there is guaranteed to be at least one more
cycle before TA will be asserted. Therefore, load and store operations that are hits are
decoupled from the bus and allowed to access the data cache at the~aximum rate. On
the rising edge of clock 8, PTA is asserted to inform the cache that TA may follow. The
cache then prevents any more load or store operations from accessing the cache until
the end of the transaction.

11-72 MC88110 USER'S MANUAL MOTOROLA



6 7

CLK

A31-AS ~ tx :xj
-ex'- 'VI:II

A4-AO _ i -...,...-----r----.....--~-_--_,_-____,,...._-__,_._I\..___J

~B~t\ Jj
TRANSFER - r-v X \11.,:
ATTRIBUTE LA-_-_...J.'--._,_-----,,....----.---_----.---__I\..___J

SIGNA: =fu; \J
DBG~~

D63-DO ~! (: : : : : : :H
--: \! iii i LJ:
DBB _! . l :: : : ~

PT<Ir, I DATAC~CHEDE~UPlED : \ _

I I i: : :
TA~~ i I W~TS \ i [J

I: SINGLE-BEATWITHWATS )Ir I
DATA CACHE ACCESSIBLE TO LOAD/STORE UNIT )Ir I

III DON'T CARE

Figure 11-36. Normal Termination of a Single-Beat
Transaction with PTA and TA

•
MOTOROLA MC88110 USER'S MANUAL 11-73



Figure 11-37 shows a diagram for a burst transaction for the data cach~hat uses PTA.
For burst transactions, PTA must be asserted before the first time that TA is asserted in
order to guarantee correct data cache operation. The data cache is then used only by
the bus for the remainder of the burst transaction. The burst transaction begins in the first
clock cycle, with PTA negated. The data cache operates decoupled from the bus until
clock 8, when PTA asserts, preventing any other internal accesses to the data cache
throu-.9!!0ut the remainder of the burst transaction. The first beat of the burst is terminated
with TA in clock 9, with each of the next three beats following. Note the insertion of a wait
state during the third beat by the negation of TA on the rising edge of clock 11. However,
load and store operations are not allowed access to the data cache from clock 8 through
the end of the transaction.

I 2 I 3 4 I 5 I 6 7 I 8 I 9 10 I 11 12 I 13 I
CLK

: : : : : ><==J

ASS - ! ,..----"""""----'------&..-----IIo--"""-----'---......&...-i9--.--1i""--i~SU
TRANSFER - tx'

ATTRIBUTE :
SIGNALS - : .l.....-~-.....----.------w--........-.....-----.....-----w~- ........-...,...-.....,..--...-

DATA CACHE DECOUPLED '

TA ~.., !WIJTS I \ ---.:.I_A"----:.._---:~iI

I
~::----------- BURST TRANSACTION WITH WAITS (8:1:2:1) .1
~,---- DATA CACHE ACCESSIBLE TO LOAD/STORE UNIT )a I

I-,
063-00 ...., ---+---1.

- ! '---~--.,.--.....,...-----..----...,...---

DBB -!
-!

•
l1li DON'T CARE

Figure 11-37. Normal Termination of a Burst Transaction with PTA and TA

11-74 MC88110 USER'S MANUAL MOTOROLA



11.6.3 Transfer Retry Termination

The assertion of TRTRY and the negation of TEA during an MC8811 0 transaction causes
a transfer retry termination of the transaction. If the MC8811 0 is the current address bus
master, but not data bus master, then it does not recognize an assertion of TRTRY. Also,
the assertion of TEA has a higher priority than TRTRY, so the processor detects an error
termination if both signals are asserted during a transaction. Refer to 11.6.4 Transfer
Error Termination for more information on error terminations.

For single-beat transactions or the first beat of a burst, a transfer retry causes the
processor to immediately terminate the transaction and release the data bus. If the
processor is also the address bus master, then the address bus is released at the same
time. The burst transaction is then re-initiated from the cache lookup (see Section 6
Instruction and Data Caches). For both read and write transactions that terminate
with a transfer retry, the previous state of the cache line remains unchanged.

For a transfer retry that occurs on the second, third, or fourth beat of a burst, the
processor immediately ends the transaction. If the transaction was a read burst, the burst
is not re-initiated later (unless it is required by another instruction or data access), and
the corresponding cache line is marked as invalid. If the transaction was a replacement
or flush copyback, the state of the cache line is unchanged and the burst is re-initiated. If
the transaction was a snoop copyback, it is not re-initiated and the state of the cache line
is unchanged.

III

MOTOROLA MC88110 USER'S MANUAL 11-75



II

Figure 11-38 shows the timing for a single-beat transfer retry termination. The
transaction begins in clock 1, with the processor acquiri~ata bus mastership in clock
2. On the rising edge of clock 3, TRTRY is asserted while TEA is negated. The processor
detects this condition as a transfer retry and relinquishes mastership of both the address
bus and the data bus. In clock 6, the transaction is initiated again (this example assumes
that the MC88110 was parked). In clock 7, TA is asserted and the transaction is
completed successfully.

I 6 7

l1li DON'T CARE

Figure 11-38. Single-Beat Transfer Retry Termination

11-76 MC88110 USER'S MANUAL MOTOROLA



Figure 11-39 shows the timing for a transfe"r retry termination that occurs during the first
beat of a burst transaction. The transaction begins in clock 1 and the processor gains
mastership of the data bus in clock 2. On the rising edge of clock 3 TRTRY is asserted,
while TEA is negated. The processor detects a transfer retry and terminates the
transaction before it begins the second beat of the burst. The transaction is initiated
again from the cache lookup (see Section 6 Instruction and Data Caches). This
example assumes that the MC8811 0 is parked, 50 the transfer retry begins in clock 6.
Since each data beat is terminated normally during the retry, the transaction completes
normally.

063-00 !

DBB _I

4 8 10 I 11

I _ TRANSFER _ I _ _ I _
~ RETRY ~NOTRANSACTION~ RETRY TRANSACTION

SIGNALED

III DON'T CARE

Figure 11-39. Transfer Retry Termination
during Beat 0 of a Burst Transaction

~I

MOTOROLA MC88110 USER'S MANUAL 11-77



Figure 11-40 shows the timing for a transfer retry termination that occurs after the first
beat of a burst transaction. In this case, the transaction begins and the first beat
terminates with a normal TA on the rising edge of clock 3. The second beat of the burst,
however, detects the assertion of TRTRY on the rising edge of clock 4. The transaction is
immediately terminated, but it is not re-initiated later, as it was in the previous two
examples, because the critical word has already been received by the processor.

2 5 6

ClK

A31-AS ~ tx-..,..----,------,.- '----,-__,....-_...,.......
A4-AO ~ tx"---~---.--

ABB ~t\t--------t---+o--_+_

TRANSFER - [Xl

ATTRIBUTE :
SIGNALS - : ."---~-...,.......

I

DBG~IlJjl_1I
D~ ~ P)--i--....-i

DBB _!

III DON'T CARE

Figure 11-40. Transfer Retry Termination
after Beat 0 of a Burst Transaction

II 11.6.4 Transfer Error Termination
The assertion of TEA while the processor is the data bus master results in an error
termination, and the processor immediately ends the transaction. The assertion of TEA
overrides the assertion of either TA or TRTRY and results in an error termination. The
processor relinquishes mastership of the data bus, and, if it is also the address bus
master, it relinquishes mastership of the address bus. If there is a different address bus
master, the address bus master ignores the assertion of TEA.

11-78 MC88110 USER'S MANUAL MOTOROLA



Errors that occur during the first double-word beat of a burst cause the instruction/data
access exception to occur. Refer to Section 7 Exceptions for a detailed description of
exception processing for the MC8811 O.

Figure 11-41 shows the timing of a transfer error termination for either a single-beat
transaction or the first beat of a burst transaction. The transaction begins in clock 1, with
~rocessor becoming the data bus master in clock 2. On the rising edge of clock 3,
TEA is asserted. The processor ends the transaction and releases mastership of both the
data bus and the address bus.

2

CLOCK

A31-AO ~ H'-----..__~)o--+-....('-__

AB8 ~ i-t\--A-~--....;,..-.J
TRANSFER - ! ----.:..--....:..-.
ATTRIBUTE K )----;--4

SIGNALS - i '----

063-00 ~ Dl--.;...---iQ>-----ir-----+--
-I \ ~:l:: /

DBB -I ..'
fA

TRANSFER ERROR TRANSFER NEW

SIGNALED TERMINATED TRANSACTION

.. DON'TCARE

Figure 11-41. Transfer Error Termination

Figure 11-42 shows the timing for a transfer error termination that occurs during the
second beat of a burst transaction. The transaction begins in clock 1, with the processor
becoming the data bus master in clock 2. The first beat completes with a normal
termination caused by the assertion of TA on the rising edge of clock 3. On the rising
edge of clock 4, TEA is asserted, terminating the rest of the transaction. Errors in the
second, third, or fourth beat of a burst do not cause an exception, unless the transaction
is a replacement copyback or the data is being streamed through the cache and
forwarded to an execution unit for immediate use.

•
MOTOROLA MC88110 USER'S MANUAL 11-79



CLOCK

063-00 I

DBB _!

2 4 5

III DON'T CARE

TRANSFER ERROR TRANSFER NEW

SIGNALED TERMINATED TRANSACTION

•

Figure 11-42. Transfer Error Termination
during Beat 1 of Burst Transaction

11.7 DATA CACHE COHERENCY TIMING CONSIDERATIONS

The MC8811 0 uses a bus snooping protocol to monitor bus transactions performed by
other bus masters and to intervene in the access, when required, in order to maintain
cache coherency. The following paragraphs describe the operation of the bus when
snooping is enabled. For more information on coherency issues internal to the
MC88110, refer to 11.3 Data Cache Operation.

Throughout this discussion of data cache coherency the terms initiating CPU and
snooping CPU are used. The initiating CPU is the processor that is the bus master at the
beginning of a bus transaction. The snooping CPU is the processor that snoops this
transaction.

11-80 MC88110 USER'S MANUAL MOTOROLA



11.7.1 Snoop Control Signal Overview
Table 11-20 lists the snoop control signals of the MC88110. The snoop request (SR)
signal is an input to all snooping CPUs that indicates that the current address should be
latched because a snoop lookup may be required. SR may be tied to the TS signal of the
initiating CPU. The SR signal must be negated and re-asserted between two accesses
that need to be snooped, or it will be ignored on the second access. The global (GBL)
signal is an output when the MC88110 is the initiating CPU and an input when the
MC88110 is snooping. The MC88110 only snoops transactions when both the
SR and GBL signals are asserted.

Table 11-20. Snoop Control Signal Summary

Signal Name Mnemonic Type

Snoop Request SA Input

Address Retry ARTRY Input

Snoop Status SSTAT1-SSTATO Output

Shared SHD Input

When an MC88110 is snooping, its actions depend on the values of the GBL, RIW, INV,
and TBST s!.9.!!als. A snooping MC88110 does-DPt sn~any transactions unless it
detects both SR and GBL as asserted. When the SR and GBL signals are both asserted,
the MC88110 determines whether or not it has a cache hit (see 11.3 Data Cache
Operation) or a collision (see 11.7.8 Split-Bus Snoop Collisions). If there is a
collision, the snooping CPU asserts SSTAT1 but does not assert SSTATO. If there is a
cache hit, the snooping CPU takes the action described in Table 11-21.

Table 11-21. MC88110 Actions for Snoop Hits
-

GBl R/W
-

TBST Action on Snoop HitSR INV

N x x x x No action

A N x x x No action

A A R N x Assert SSTATO; if line was modified, assert SSTAT1, perform copyback,
and mark line shared-unmodified

A A R A x Assert SSTATO signal and invalidate cache line; if line was modified,
assert SSTAT1, perform copyback, and invalidate cache line

A A W x N Assert SSTATO;if line was modif.ied, assert SSTAT1, perform copyback,
and invalidate cache line

A A W x A Assert SSTATO and invalidate cache line •
MOTOROLA MC88110 USER'S MANUAL 11-81



11.7.2 SSTAT1-SSTATO Timing
The MC88110 asserts SSTAT1-SSTATO, if necessary, two clock cycles after the
assertion of the SR and GBl inputs. If a snoop copyback must be performed, the
MC88110 asserts the bus request one clock cycle after the assertion of
SSTAT1. The SSTAT1-SSTATO signals remain valid until ASS is negated. Note that if
the initiating CPU is parked, ABB may not b~egated between transactions. In this case,
the snoop status signals are negated when SR is re-asserted.

Figure 11-43 shows the timing for the SSTAT1-SSTATO ~nals. The initiating CPU
starts a global memory access in clock 1, as indicated by SR and GBL asserted. The
snooping CPU latches the address and asserts the appropriate snoop status signals two
clocks later (if necessary), in clock 3. If the snooping CPU determines that there is a
snoop hit to a modified line, then the snooping CPU asserts its bus request one clock
after SSTAT1-SSTATO. The second transaction in Figure 11-43 shows an example
when ASS stays asserted for several clock cycles after the snoop status signals are
asserted.

2 6 8 I 10 I

II

ClK

ASS _!

GBl ~t\i--~~/ ...,.---__\~---&../_ _____._-,. ~
SA ~ Dr----ai"",,---+-----/ i \-i-----'/

SSTAT1- -,....!_---+__.........-<A)-_+--_......;-_--+_.....(,-~---:.---..:........
SSTATO _ ! '-----J .

ABS NEGATED ----I ABS ASSERTED ----I
l1li DON'T CARE

Figure 11-43. Snoop Hit/Miss Indication (SSTAT1-SSTATO)

The SSTAT1 outputs of the MC8811 0 can be tied together and the SSTATO outputs can
be tied together without concern about contention. These signals must be tied to pull-up
resistors to keep them negated when no processor is driving them. Each time one of the
snoop status signals is asserted, the MC8811 0 negates it before three-stating it. The
snoop status signals must be negated in a unique way to avoid contention problems
during the transition.

Figure 11-44 shows an example with two processors both driving the SSTATO signals at
the same time (labeled SSTATO-A and SSTATO-B in the diagram). The two SSTATO
signals are tied together and connected to Vdd through a pull-up resistor. The combined
signal is called SSTATO. In clock 1, a third CPU starts a global transaction. Note that
both SSTATO-A and SSTATO-B are three-stated because neither CPU is driving the

11-82 MC88110 USER'S MANUAL MOTOROLA



signal, but SSTATO is negated because of the pUll-up resistor. Two clocks later, both
CPU1 and CPU2 have a cache hit and assert SSTATO-Aand SSTATO-B, respectively.
When ASS is negated, the processors must negate SSTATO to prepare for the next
snoop cycle. However, if both CPUs transition from driving the signals low to driving
them high, there is the possibility for bus contention for several nanoseconds during the
transition. Therefore, SSTATO-A and SSTATO-B are each three-stated, then negated,
and then three-stated again.

6

elK

ADDRESS

SSTATO-A

SSTATO-B

GLOBAL ADDRESS

\ ,n-
\ ,n-
\ r

Figure 11-44. Snoop Status Negation Timing

11.7.3 Address Retry Transaction Termination
The ARTRY signal is an input that indicates to the initiating CPU that another device has
requested that it terminate the transaction, relinquish mastership of the address and data
buses, and retry the transaction at a later time. The timing for the SSTAT1 and ARTRY
signals allow the SSTAT1 output to be directly or indirectly connected to the ARTRY
input of other MC88110s. The MC88110, however, qualifies the ARTRY signal with
either AACK, the first qualified TA, or a qualified TRTRY in order to terminate the
transaction with an address retry.

When the AACK signal is asserted by the memory system to indicate that the current
address has been latched, the processor relinquishes mastership of the address bus. In
this way, an alternate bus master can initiate a transaction while the data from the
previous transaction is still being transferred. In systems using using this protocol, AACK
is also used to qualify ARTRY. ARTRY may be asserted before AACK is asserted (but it •.
must remain asserted until AACK is asserted), when AACK is first asserted, or during the ..• .
first clock cycle after AACK is asserted.

If AACK is negated throughout the transaction, ARTRY is qualified with the first assertion
of the TA and/orTRTRY. In this case, ARTRY is ignored after ABS is negated.

Figure 11-45 shows the qualification window for ARTRY using AACK. Note that the figure
shows ARTRY asserted one clock cycle after TS. This would not be possible if the
snooping processor was an MC8811 0 because it takes 2 clock cycles for the MC8811 0

MOTOROLA MC88110 USER'S MANUAL 11-83



to determine whether or not there was a snoop hit; however, the MC8811 0 may be
connected to a device that can assert ARTRY in one clock.

2 N N+1 N+2

II

CLOCK

: : ,!::',rs-f\..-V
- -,.......+-----+---+----;-.-~-\ II,;. ~" "

AACK=~,,~, ~
(

I 'H.::,'
ARTRY _ ~ ; .

Iwe: ARTRY QUAUFICATION WINDOW ~ I
III DON'T CARE

Figure 11-45. ARTRY Qualification with AACK

When the initiating CPU detects the qualified assertion of ARTRY, it terminates the
transaction, releases mastership of the address bus, and re-initiates the transaction from
the cache lookup. If a qualified ARTRY occurs before or coincident with a qualified data
bus grant, the initiating CPU does not assume data bus mastershi~hen an MC8811 0
that is requesting the bus detects that ARTRY is asserted and that ABS was asserted on
the previous clock cycle, it removes its bus request and ignores any bus grant. The
MC88110 then blocks its bus requests by not asserting SR until ARTRY is negated. Note
that the MC8811 0 does not block BR due to ARTRY if ABS was negated on the previous
clock cycle. This blocking protocol, shown in Figure 11-46, allows the snooping CPU an
opportunity to acquire mastership of the address bus.

N I N+1 I
CLOCK

AB< i\'----+----+----+---~--+----+---+-----1

l....ntE~--- BR BLOCKED ------=....,1
III DON'T CARE

Figure 11-46. BR Blocking Protocol

11-84 MC88110 USER'S MANUAL MOTOROLA



Note that the memory system can control the length of time that the bus requests will be
blocked by controlling when ARTRY is negated. Assuming that the ARTRY signal is
controlled by the SSTAT1 signal of the snooping CPU, the memory system can control
when ARTRY is negated via the AACK signal. This is because the SSTAT1/ ARTRY
signal remains asserted as long as ABS is asserted, and the initiating CPU keeps ABS
asserted until the AACK signal is asserted (or the transaction is terminated).

11.7.4 Snoop Miss Timing Example
When the MC8811 0 is snooping, it takes two clock cycles from the assertion of SR to
assert the snoop status signals; therefore, if the MC8811 0 is initiating a transaction that
another MC8811 0 will be snooping, there must be a minimum of a one clock wait
inserted into the transaction to allow for the snooping CPU to assert the snoop status
signals. This can be done by delaying TA or DSG by at least one clock. Otherwise, data
may be transferred to the MC8811 0 and forwarded to the register file before the snoop
status is known.

Figure 11-47 shows some example snoop transactions from the perspective of the
initiating CPU. In clock cycle 1, the first transaction begins, but GBL is negated so this
transaction is not snooped. The first transaction is terminated with the TA in clock 2 and a
new one begins. In the second transaction, GBl is asserted, so snooping occurs and a
wait cycle must be inserted to allow snooping CPUs to assert SSTAT1-SSTATO. ARTRY
is negated, so transaction 2 is terminated with the TA in clock 6 and a new one begins.

The third transaction uses the split bus feature. The address and control information is
driven in clock cycle 6. There is a wait reply during the next clock (the TA is negated) and
AACK is asserted to signify that the address has been latched and is no longer needed
on the bus. In this example, ARTRY is negated, so the transaction is allowed to complete.

11.7.5 Snoop Hit Timing-No Split Bus Example

Figure 11-48 shows an example of a snoop hit protocol. First, CPU1 initiates a global
read of a cache line that corresponds to an exclusive·modified copy resident in CPU2.
CPU2 asserts SSTAT1, which is coupled to ARTRY. When CPU1 detects that ARTRY is
asserted, it qualifies it with AACK, terminates its transaction, and negates the bus
request (if it was asserted). In clock 5, CPU2 detects a qualified bus grant and begins its
snoop copyback operation. Since ABS was negated by CPU1, SSTAT1 and ARTRYare
negated, and CPU1 re-asserts SR. When CPU2 completes the snoop copyback, the
arbiter grants CPU1 mastership of the address bus, and CPU1 successfully completes
the global read transaction. •
MOTOROLA MC88110 USER'S MANUAL 11·85



I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I

I
t
I

••. ! ,
i........
i(ii~

I
I
I

I
I
t

-I / 1\ARTRY !:.....- --1 "-- ---"

L lOCAL +- GLOBAL~,-- .. ACCESS ACCESS - -,!-04A1(:------- ~tg~~

ClK

SINGLE-BEAT BURST

_ DONTCARE

Figure 11-47. Snoop Miss Transactions

III

11.7.6 Snoop Hit Timing-Split Bus (One-Level) Example

Figure 11-49 shows an example of a snoop hit with a one-level split bus. In clock 1,
CPU1 initiates a local read transaction. In clock 3, AACK is asserted, so CPU1
relinquishes address bus mastership while the rest of the line is being transferred. CPU2
then receives a qualified bus grant in clock 4 and initiates a global read transaction. Two
clocks later, CPU1 asserts SSTAT1, which is tied to ARTRY. Note that ARTRY is not
acknowledged in clock 7 because AACK is negated (by definition, when using the one
level split bus protocol, AACK cannot be asserted until DBB is negated).

In clock 8, DBB is asserted, so AACK is asserted and it serves to qualify ARTRY.
Therefore, CPU2 responds to the qualified ARTRY by relinquishing mastership of both
buses, thus terminating its transaction. In clock 9, CPU1 receives a qualified bus grant
and begins the snoop copyback operation. Note that if a global read corresponding to
the address of the snoop copyback is attempted during the copyback, a snoop hit CPU1
signals until the copyback is complete. Therefore, even though AACK is asserted in
clock 11 and CPU1 relinquishes mastership of the address bus, CPU2 is prevented from

11-86 MC88110 USER'S MANUAL MOTOROLA



retrying the global read until clock 14. The arbiter can control this by artificially negating
BG until the snoop copyback is complete.

11.7.7 Snoop Hit Timing-Split Bus (Full) Example
Figure 11-50 shows an example of a snoop hit with a full split bus protocol. In clock one,
CPU1 initiates a global read transaction. On the rising edge of clock 3, AACK is
asserted, so CPU1 relinquishes mastership of the address bus. The memory system
must also add one wait cycle before the initial data transfer in order to give the snooping
processors enough time to assert the snoop status signals. In this case, the one clock
cycle wait cycle was added by delaying the data bus grant to CPU1. In clock 4, CPU1
recognizes the qualified ARTRY and terminates the read. CPU2 then performs the snoop
copyback operation and CPU1 retries the global read in the same way as in the previous
example.

11.7.8 Split-Bus Snoop Collisions
An MC88110 may initiate a global transaction and receive an AACK before the
transaction is completed, thus allowing another processor to initiate a transaction.
Therefore, another processor may attempt a global access to the same cache line before
the data transfer is complete. This condition is defined as a snoop collision.

To prevent any coherency problems in this case, each CPU maintains an address latch
(and comparator) for detection of collision data accesses. This latch is loaded by the
CPU when it detects an AACK in response to a global data address and it is cleared
when the data transfer is complete. If another CPU initiates a global access to the same
cache line, a snoop collision occurs. The snooping CPU asserts ARTRY (via SSTAT1),
causing the initiating CPU to retry its transaction when the snooping CPU has completed
its transaction.

The collision latch is implemented as an additional snoop tag that forces an address
retry on all hits, clean or modified. Collision detection occurs for global accesses when
the cache tags have not yet been loaded (transaction still in progress).

Figure 11-51 shows a timing example of a snoop collision. CPU1 begins a global
transaction in clock cycle 1. AACK is asserted at the end of clock 2 to signal that the
address has been latched. CPU1 relinquishes mastership of the address bus and
internally latches the address it had been driving. In clock 5, CPU2 begins a global
transaction for the same address. At the end of clock 6, AACK is asserted for CPU2.
When CPU1 checks the address of the global transaction initiated by CPU2 and detects II
that it is the same as the address for its transaction still in progress, it asserts SSTAT1 ••••.
(which is connected to ARTRY) but does not assert bus request. CPU2 then recognizes
that it has received a qualified ARTRY and terminates its transaction.

During this time, data is being transferred for CPU1. Note that if CPU2 asserts TS to retry
the transaction before the collision is resolved by the data transfer in progress, then
another collision occurs. In this example, the external arbitration circuit avoids this
condition by waiting to assert the bus grant for CPU2 until the last clock cycle of data
transfer by CPU1.

MOTOROLA MC88110 USER'S MANUAL 11-87



I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I
ClK

Figure 11·48. Snoop Hit Using ARTRY-No Split Bus (Sheet 1 of 2)

.

""""""'--+~-+------t--"il

,
-,

063-DO =i:;...-_ _+__

OBB _I

CPU1BR ]J
CPU1 BG _!

A3H5 - H ~~oo ('--.,..--_,.-.....;..$OO.....,C~_U2oo_--...--_.....,.--JH
, :1 :,I:~:I':1 .I:!::::,'A4-A<H (-..,...:_---,-.-.

AB<C\ \ I ! j ! in
TRANSFER - !H (I SNOOP cop:YBACK I U,I:.:,ATTRIBUTE: GLOBAL READ a • ,-:

SIGNA_lS =,I . IIi :.

TS -1\-V,.....-..+!--+--~0J

AACK~~ j ~'::I;:: : -+--....;----+------~w---:
ARTRY _I I"

· \! :1,: /

SSTAT1_ i ASSERjDBY~-.PU_2,.....!-.......;-.-J.

II

11-88 MC88110 USER'S MANUAL MOTOROLA



11 12 13 14 15 16 17

ClK

A31-AS ~H : :$OOC:~oo : : : H
A4-AO J---<=:'====:===:=~AB<I\ ! ! in

r~rf~-H GlOO~RE~ i :' HI'
SIGNALS -: . .

k I J 1:::.

1

i:::.TS~I ~

- 1-1---+---+-----+---+---+----+-----1
ARTRY _I

i------i---.....;----;.---+------ir------i-----i

SSTATl _ i

IlIlI DON'T CARE

I

063-00 _ ;

DBB-! \
- ! "'---+---+-----+----+----+--1

TA;~
CPU1 BR i

- 1-1---+---+-----+---+---+----+-----1
CPU2BR _ i
CPU2BG _I

l~iEE------ GLOBAL READ RETRY CYCLE --------::)III1Iool1

•Figure 11·48. Snoop Hit Using ARTRV-No Split Bus (Sheet 2 of 2)

MOTOROLA MC88110 USER'S MANUAL 11-89



6 7 8

ClK

A31-AO ~ ~,--__...,...-)--"""'-----i,--.....--_......-_...,.-_.....,:__H
-t\ I:,' rl:I,1

ABS _Ii-~""""'--;"--""-- I !

TRANSFER - ! I Hl:':,'ATTRIBUTE H LOCAL READ GLOBAL READ .
SIGNALS - !

\

,
063-00 1;.---.....-----(

- ,
I-;----.....----.

DBS :
-I

I

TA

CPU1 BR

CPU1 BG

CPU2 BR

CPU28G

I

,

~
i, I:: ASSERTED B;CPU1

: I ""---+--+-:-----tl

II

11-90

l~lII(~--- lOCAL READ ----~·I

I~-<-- GLOBAL READ --..,.~I
(SNOOP HIT}

l1li DON'T CARE

Figure 11-49. Split Bus (One-Level) Snoop Hit
with ARTRY (Sheet 1 of 2)

MC88110 USER'S MANUAL MOTOROLA



9 10 11 12 13 14 15 16 17 18 19 20

ClK

:~oo )>----ii---+---.;----e-.,.....--~H
ABB-n: 1/ Ii

- I • I I . .
TRANSFER - i I : I I !
ATIRIBUTE H SN<XPCOPYBACK) ( GlOBAlRE~ HI:

SIGNALS - ! '. . . .: .
- -h ! /----+--!------;....~~~\U! I
TS -! '-+-' I ! i

AACK !

ARTR<~
SSTATl ~ ~_-P------I----+----+----+----+---+------I

DBG

-.
D63-DO - i

;-----+-~

DBB _ i
TA

CPU2BR _ i
CPU2 BG

1~'Er---- SNOOP COPYBACK ---~;Jlr-.tI""''EE----- GLOBAL READ RETRY CYCLE ---~"~I

• DON'TCARE

Figure 11-49. Split Bus (One-Level) Snoop Hit
with ARTRY (Sheet 2 of 2) •

MOTOROLA MC88110 USER'S MANUAL 11-91



5 6

..

•

~ SNOOP COPYBACK--
1_ GLOBAL READ __ Ir- (SNOOP HIT)~

ARTRY _ !
- 1-1--...;...-----;._

SSTAT1 -I ;
CPU1 DBG _ ;"'j--W-A....I~-\ I i

-I I::.

CPU2 DBG =i : \ I
D63-Do -I qJ ~ll

DBB -_I: . \!. / I \

\--t-I '--..-.----1:,;:
TA~~

-: 1"'-11
CPU1 BR LJ; !! \ i

- I I • I : _.-I-!---+------l

CPU1oo~L..-.'

_-I i ! ! i /
CPU2 BR ! ! I I \ I

- l 1 : :. I
• I I I I I , I

CPU2 00 ~

ClK

A31-AO ~ H 1::

1

~~oo j:l,

ABS ~[\i---.a._~-.......;~
TRANSFER - ! _....:...._-..:..-
ATTRIBUTE H GLOBAL READ )---....+----;.---4

SIGNALS - ! "'-------.-~

III DON'T CAREa
Figure 11·50. Split Bus (Full) Snoop Hit with ARTRY (Sheet 1 of 2)

11-92 MC88110 USER'S MANUAL MOTOROLA



10 11 12 13 14

CPU1 :
$00020000

I
I

I

GLOBAL READ

elK

A31-AO

TRANSFER 
ATTRIBUTE ;---.......;.----i--....(

SIGNALS -

ARTR: _ !
- """"'---+---+------;.----;---~

SSTATl _I :
;-,--....p.--~P---W-A+IT.....\_~;.__- ri:

1

CPU1 DBG -I .! !
- 11---.......;.----+----+---.....------+

CPU2DBG _I

l1li DON'T CARE •

I,

DBB=I / \~~__~__~

TA !i-----+---...p......~ ............_-__;_---i

CPU1 BR _ ;-j---+----+-'rt''--''"""!---f
CPU1 BG _i

- 1-1---+---+-----+----+---1
CPU2BR _I

CPU2 BG

Figure 11 ..50. Split Bus (Full) Snoop Hit with ARTRV (Sheet 2 of 2)

MOTOROLA MC88110 USER'S MANUAL 11-93



4 6

DELAYED ACCESS --------il~--

~ COWSION ACCESS~

1
I, ,
I 1,

!
1

1,'1:1

1

ASSERTED BY CPU1 COLLISION

i
!

I,,
-I

,,
,

-,,

ClK

063-00

CPU2BR

1,
-,

I

!\---....--..;
TA~_gg-:m_:-_.:I!l!lIIlIIl!_"EI-:- -+-----.;

-: I I I I I

CPU1BR_V I I I I
CPU1 BG !

1

1

1

1

CPU2BG~~

CPU1 DBG

I

A31-AO ~ H""...,...$OO_c6_~_1_00""'T"""_ )t---+----j---e"--.----""'T"""-

ABB ~t\i----t----to-

TRANSFER - ! ,---_..............
ATTRIBUTE H GLOBAL )--~I----+----e

SIGNALS - i '--.,..----........1

TS

• III DON'T CARE

Figure 11-51. Snoop Collision Detection (Sheet 1 of 2)

11-94 MC88110 USER'S MANUAL MOTOROLA



10 11 12 13 14

ClK

A31-AO r-----+---.....--t.('-.......-$OO_C02OO_PU_200_...,H
\j ~

TRANSFER - (,........--"':'--H:!:.'
ATTRIBUTE i-------i-----;----l GLOBAL

SIGNALS - .

G :
AACK~-' __

_! iii -+--~IllilllIi"i':li:,~~~
ARTRY! Iii I

- t----' ! i !
SSTAT1 ~~ , , ,

;---~----l-..J/ i ! \"---+-__-+-__-:

IIIaIa
CPU1BR

CPU1 00 _i
CPU2 BR ~~ \'-----+----'
CPU2BG _l

DELAYED ACCESS

I !

COLLISION RESOLVED III
III DON'TCARE

Figure 11-51. Snoop Collision Detection (Sheet 2 of 2)

MOTOROLA MC88110 USER'S MANUAL 11-95



II

11.7.9 Snoop Copyback Details

Any retry on a snoop copyback terminates the copyback completely, so the copyback is
not retried at a later time. If the MC8811 0 has a snoop hit to a modified line while it has a
transaction outstanding, the snoop copyback is performed when the previous transaction
is normally terminated. If the previous transaction is terminated with an error, the snoop
copyback is not performed. If the previous transaction is terminated with a retry, then the
snoop copyback occurs first, followed by the retried transaction. If there are multiple
snoop hits to modified lines while a transaction is outstanding (or while waiting for
address bus mastership), then only the last snoop copyback is performed.

11.8 MMU TRANSACTIONS

The MC88110 performs a table search operation when a logical address misses in the
PATC when address translation is enabled. The table search operation loads the PATC
with a new entry so that a logical-to-physical address translation may be performed. For
more information on the MC88110 MMUs, including how the segment descriptor
addresses are formed, refer to Section 8 Memory Management Units. Table 11-22
shows the state of the transfer attribute signals during table search transactions.

Table 11-22. Transfer Attribute Signals
during Table Search

Function Mnemonic State

Transfer Burst TBST Negated

ReadlWrite RiN Read

Cache Inhibit
-

NegatedCI

Write-Through WT Negated

Memory Cycle ~ Asserted

Invalidate INV Negated

Global
-

NegatedGBl

lock lK Negated

User Page Attributes UPA1-UPAO Asserted if U1 and UO bits from
the area descriptor are set

Transfer Size TSIZ1-TSIZO Word

Transfer Code TC3-TCO Code or Data Table Search

11-96 MC88110 USER'S MANUAL MOTOROLA



11.8.1 Hardware Table Search Operation
When a PATe miss occurs, the MC88110 selects a PATC entry for replacement using a
first-in-first-out (FIFO) algorithm and then performs a two-level table search to fetch the
page descriptor for the referenced address. Figure 11-52 illustrates the relative timing for
a table search operation. In the first clock cycle, the MC88110 drives the segment
descriptor address. The segment descriptor is read with a single-beat transaction,and it
completes in clock 3. The MC8811 0 then takes two clock cycles to calculate the page
descriptor address and drives that address in clock 5. The page descriptor fetch is also a
single-beat transaction, and it completes successfully in clQck 7. The MC8811 0 then
takes three clock cycles to load the page descriptor and retry the cache access. When
the cache access is retried, there is a PATC hit, and the required transaction begins in
clock 10. Note that the MC88110 must re-arbitrate for mastership of the bus between
each of these transactions.

2 5 6 7 8 9 10 I

Figure 11-52. Hardware Table Search Operation Timing

eLK

A31-AO I

D63-DO I

I· SEGMENT ~I
DESCR:IPTOR

ACCESS

II1II DON'T CARE

MOTOROLA

10( PAGE ~ I
DESCRIPTOR

ACCESS

MC88110 USER'S MANUAL 11-97

•



11.8.2 Hardware Table Search Operation with Indirection

It is sometimes desirable for multiple pages to be mapped with a common page
descriptor. This is supported in the MC88110 by indirection descriptors. When using
indirection descriptors, the table search operation is a three-level search. The first
access is to the segment descriptor, the second to the indirection descriptor, and the
third to the page descriptor. The timing for this type of table search operation is shown in
Figure 11-53. Note that the MC88110 takes two clock cycles between accesses to
calculate the descriptor addresses and that there are three clock cycles between. the
successful completion of the page descriptor access and the initiation of the required
transaction. Also, note that the MC88110 must re-arbitrate for mastership of the bus
between each transaction.

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I

01 I : I C'
)---+---+----+-----4 ! ! !:

~---.---Jl/ :\1/: i\JI
-+----~!~ I I I 1 \JLJ ~ i :

_____i_l~
I~ DE~~?~TOR ~ I I~ TRANSACTION ~ Ir ACCESS I r"1

I

I

"'----r-_.,.-J----+-------t'--<__--r--------r-'~---+--C'____I_-_r_I:), , i (--r-:-
I 1 I I , 1

I I I I\! r:
'/ I I I WJ !

--r------+i.-J~ i ~

CLK

1m OON'TCARE

Figure 11-53. Hardware Table Search with Indirection

II

11-98 MC88110 USER'S MANUAL MOTOROLA



11.8.3 Hardware Table Search Operation with TRTRY

Figure 11-54 shows an example of a hardware table search operation in which the
indirection descriptor access terminates with a transfer retry. In this example, the first
access completes successfully, as in the previous two examples. In the second access,
however, the TRTRY signal is asserted and the TEA signal is negated, indicating a
transfer retry. The MC8811 0 relinquishes mastership of both the address and data bus,
waits one clock cycle, and retries the indirection descriptor access. On the second
attempt, the indirection descriptor access completes successfully, and the table search
continues as in the previous example.

11 .8.4 Hardware Table Search with Snoop Copyback

Because the MC88110 does not retain bus mastership between the transactions
performed for a hardware table search, it is possible for alternate masters to gain control
of the bus before the table search is complete. If another CPU initiates a global
transaction with snooping enabled, the MC8811 o may have to interrupt the table search
operation in order to perform a snoop copyback operation. If this occurs, the MC8811 0
must fetch the last descriptor when the snoop copyback is complete.

Figure 11-55 shows an example of a hardware table search operation that is interrupted
by the global read initiated by another processor. In the first clock cycle, CPU2 initiates a
single-beat access to the segment descriptor, which completes successfully in clock 2.
This is followed by the indirection descriptor access which also completes successfully;
however, in clock 8, the address bus is granted to CPU1, which initiates a global read
transaction. Since CPU2 has a modified copy of the corresponding cache line that CPU1
is accessing, CPU2 asserts SSTAT1, causing the ARTRY input to CPU1 to be asserted.
CPU1 then relinquishes mastership of the address bus, and CPU2 performs the snoop
copyback. When the copyback is complete, the arbiter grants the bus to CPU1, which
must restart its table search with the indirection descriptor.

•
MOTOROLA MC88110 USER'S MANUAL 11-99



2 4 6 7 8 9 10 11

I

I

I

) ( ) ( H

A31-AO i

ClK

TRANSFER - ex
ATTRIBUTE :

SIGNALS - : .-_--.,....,

063-00~b......-.----...;--....9,1: ,.---.;---+-------;-~c?:,i ,...----+---+-----;-~ 9-1
DBB _I

TA~-.a

~
SEGMENT ~

DESCRIPTOR
ACCESS ~

INDIRECTION~
DESCRIPTOR

ACCESS
(RETRIED) ~

RETRIED ~
INDIRECTION
DESCRIPTOR

ACCESS

l1li DON'T CARE

II
Figure 11-54. Hardware Table Search with TRTRY (Sheet 1 of 2)

11-100 MC88110 USER'S MANUAL MOTOROLA



19181716151413

~----+-----io)o-~--;----+----Cd

\lJ \J

r--------+----e( )l----+-----+------+---4"'-----t

'f

12

CLK

A31-AO

ABB

TRANSFER -
ATIRIBUTE

SIGNALS -

fS

DBG

D63-DO

DBB

TA

TEA

TRTRY

~ PAGE ~DESCRIPTOR
ACCESS

~TRANSACTION-I

. l1li DON'T CARE

Figure 11-54. Hardware Table Search with TRTRY (Sheet 2 of 2)

•
MOTOROLA MC88110 USER'S MANUAL 11-101



4 6 7 8 10 11

ClK

A31-A5

A4-AO

TRANSFER 
ATTRIBUTE

SIGNALS -

ASSERTED BY CPU2

III DON'TCARE

I I

CfH

~ GLOBAL READ _JI (SNOOP HIT) I

...----+--.....9r--+------i----+__~cp,.--;----;--.....

rSEGMENT +-DESCRIPTOR
ACCESS
(CPU2)

DBG

063-00 b
DBB

- ...1 ----+---...,.
CPU1 BR _I

r------;-----;.----;.-----;-.----;--.....
CPU1 BG _ i !

- -! Jt-'\ rt-"\:,III, :

CPU2 BR=::::LJ! \~~--__+--- .....-_/! \",.-----ll-----+----+----.....----+-----I

CPU200 i I----+---+-~
INDIRECTION ---1
DESCRIPTOR

ACCESS
(CPU2)

• Figure 11-55. Hardware Table Search with
Snoop Copyback (Sheet 1 of 2)

11-102 MC88110 USER'S MANUAL MOTOROLA



12 13 14 15 16 17 18 19 20

•
INDIRECTION
DESCRIPTOR

ACCESS
(CPU2)

SNOOP COPYBACK

CLK

063-00 !
- I-l---~ ,.-......---......-

DBB _I \'----4--~-..;...-___..--J1

ARTRY; ~ll~_....;. -+- ...... .;- ;.....__-+ -+ ...;.. ..;

SSTAT1

l---SNOOPCOPYBACK--1.....-.(~--

CPU1BR

CPU2BG

CPU1BG

A31-AS l

A4-~ ~ H,-...i-----.i- _.........-_ ('-0....-------,-1

TRANSFER 
ATmlBUTE

SIGNAlS -jS-I\JJ
---+----...;..---.....---~

III DON'TCARE

Figure 11·55. Hardware Table Search with
Snoop Copyback (Sheet 2 of 2)

MOTOROLA MC88110 USER'S MANUAL 11-103



11.9 RESET OPERATION

The reset input signal (RST) is asserted by an external device tore~et the processor.
When power is applied to the system, external circuitry should assert RST for a minimum
of200msafter Vee is within tolerance.. Figure 11-56 is a timing diagram of the power-on
reset operation, showing the relationship$ between Vee, RST, PSTAT2-PSTATO, and
the bus signals. The ClK signal is required to be stable by the time Vee reaches the
minimum operating specification.

Once RST negates, the processor is internally held in reset for another three clock
cycles. During the reset period, SR and TS are negated, and all other three-statable
signals are three-stated. Once the internal reset signal negates, the processor must be
granted the bus. After this, the first bus transaction for reset exception processing begins.
In Figure 11-56, the processor is parked on the bus and can start its first transaction
immediately after the internal reset signal negates.

The processor status signals provide limited visibility of the CPU status. The three-bit
value loaded throughPSTAT2-PSTATO at rese<t determines the function of the signals
during normal operation. The PSTAT2-PSTATO signals are sampled on every clock
cycle in which reset is asserted. When reset is negated, the MC8811 0 waits a minimum
of three clock cycles before driving the PSTAT2~PSTATO signals..This gives the off-chip
driving logic time to go into a high-impedance state to avoid possible bus contention.

CLK

+5V 
Vee
ov

RST

BUS
SIGNALS

II
-I

1

PSTAT2
PSTATO

IlII DON'T CARE

~"""";"'---i---+---li---+--+--+---+----+-'I '-1
I
I

1
1

11-104

Figure 11-56. Initial Power-On Reset Timing

MC88110 USER'S MANUAL MOTOROLA



For processor resets after the initial power-on reset, RST should be asserted for at least
16 clock cycles. Figure 11-57 shows the timing associated with a reset when the
processor is executing bus transactions.

Resetting the processor causes all output signals to three-state. In addition, the
processor initializes control registers appropriately for a reset exception. Exception
processing for a reset operation is described in Section 7 Exceptions.

I I
I I

..-.-~- 16CLOCKS~~~

I
I_____~...............~c

eLK

RST
11

I
BUS

SIGNAlS

fS

BR

BG

ABS

PSTAT2-
PSTATO _

Figure 11·57. Normal Reset Timing

•
MOTOROLA MC88110 USER'S MANUAL 11-105



II

11.10 IEEE 1149.1 TEST ACCESS PORT

The MC8811 o includes dedicated user-accessible test logic that is fully compatible with
the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems
associated with testing high density circuit boards have led to development of this
standard under the sponsorship of the Test Technology Technical Committee of IEEE
Computer Society and the Joint Test Action Group (JTAG). The MC88110
implementation supports circuit board test strategies based on this standard.

The test logic implemented on the MC88110 includes a test access port (TAP) consisting
of five dedicated signals, a 16-state controller, and two test data registers. A boundary
scan register links all device signals into a single shift register. The test logic is
implemented using static logic design and is independent of the system logic of the
device. The MC8811 0 implementation provides capabilities to:

1. Perform boundary scan operations to test circuit board electrical continuity.

2. Bypass the MC8811 0 for a given circuit board test by effectively reducing the test
data register to a single cell.

3. Sample the MC8811 0 system signals during operation and transparently shift out
the result in the boundary scan register.

4. Statically control the output state (high, low, high-impedance) of all signals that can
be outputs. The control state is latched or clamped within the· MC8811 0 device
even though the enabled test data register is the single-bit bypass register.

5. Quickly force all signals into the high-impedance state while enabling the single-bit
bypass register as the test data register.

6. Enable a weak pull-up current device on all signals controlled by the boundary
scan register while performing boundary scan operations to provide for a
deterministic test result in the presence of a continuity fault.

NOTE

Certain precautions must be observed to ensure that the IEEE
1149.1 test logic does not interfere with nontest operation.
See 11.10.4 Non-IEEE 1149.1 Operation for details.

11-106 MC88110 USER'S MANUAL MOTOROLA



11.10.1 JTAG Overview
This document includes those aspects of the "IEEE 1149.1 implementation that are
specific to the MC8811 0 and is intended to be used in conjunction with the supporting
IEEE document. The scope of this description includes those items required by the
standard to be defined and, in certain cases, provides additional information specific to
the MC8811 0 implementation. For internal details and applications of the standard, refer
to the IEEE 1149.1 document.

A block diagram of the MC8811 0 implementation of IEEE 1149.1 test logic is shown in
Figure 11-58. The MC8811 0 implementation includes a dedicated TAP consisting of the
following signals:

TCK- a test clock input to synchronize the test logic

TMS- a test mode select input (with an internal pull-up resistor) sampled on the
rising edge of TCK to sequence the test controller's state machine

TOI- a test data input (with an internal pull-up resistor) sampled on the rising edge
ofTCK

TOO- a three-statable test data output actively driven in the shift-IR and shift-DR
controller states that changes on the falling edge of TCK

TRST- an asynchronous reset with an internal pull-up resistor which provides
initialization of the TAP controller and other logic as required by the standard

NOTE

The pull-up resistor will pull TRST out of test reset.

TEST DATA REGISTERS

TOI -----...--

TMS
TCK TAP 1--- ---1

CTlR.

M
U
x

TOO •
MOTOROLA

Figure 11·58. IEEE 1149.1 Test Logic Block Diagram

MC88110 USER'S MANUAL 11-107



11.10.2 Three-Bit Instruction Register

The MC88110 IEEE 1149.1 implementation includes the three mandatory public
instructions (BYPASS, SAMPLE/PRELOAD, and EXTEST) and three optional public
instructions (CLAMP, HI-Z, and EXTEST_PULLUP). The EXTEST_PULLUP instruction is
very similar to the EXTEST instruction; however, in the EXTEST_PULLUP instruction,
the DC parametric of each signal controlled by the boundary scan register is affected by
the addition of a weak pull-up device. The MC88110 includes a three-bit instruction
register without parity as shown in Figure 11-59. The register consists of an instruction
shift register and a parallel output register. Data is transferred from the instruction shift
register to the parallel output register during the update-IR controller state. The three bits
are used to decode the six unique instructions as shown in Table 11-23.

UPDATE-IR --.......------;It----tl

TEST RESET --fl----f---It---+------II

FROMTDI

CAPTURE-IR --it-----it----tl

o 0

LENGTH = 3 BITS; NO PARITY BIT

PARALLEL
OUTPUT
REGISTER

SHIFT
REGISTER

TO TOO

•

Figure 11-59. Instruction Register Implementation

The parallel output of the instruction register is preset to all ones in the test-logic-reset
controller state. Note that this preset state is equivalent to the BYPASS instruction.

11-108 MC88110 USER'S MANUAL MOTOROLA



Table 11-23. Instruction Register Encodings

Code Instruction

82 81 80

1 1 1 BYPASS

1 1 0 Reserved (BYPASS)

1 0 1 Reserved (BYPASS)

1 0 0 SAMPLEIPRELOAD

0 1 1 CLAMP

0 1 0 EXTEST_PULLUP

0 0 1 HI-Z

0 0 0 EXTEST

During the capture-IR controller state, the parallel inputs to the instruction shift register
are loaded with the three-bit binary value, 001. The parallel outputs, however, remain
unchanged by this action since an update-IR signal is required to modify them.

Note that skipping the shift-IR state allows the 001 value to be updated as the current
instruction, therefore entering the HI-Z instruction. This is useful for the board test
applications that are not utilizing the full integrated boundary scan test techniques, but
would still like to use the HI-Z instruction for board test isolation purposes.

11.10.2.1 EXTEST (000). The external test (EXTEST) instruction selects the
boundary scan register, including cells for all device, clock, and associated control
signals. The resistor 1 and resistor 2 signals are associated with analog signals and are
not included in the boundary scan register. EXTEST also asserts internal reset for the
MC88110 system logic in order to force a predictable internal state while performing
external boundary scan operations.

By using the TAP, the boundary scan register is capable of 1) scanning user-defined
values into the output buffers, 2) capturing values presented to input signals, and 3)
controlling the direction and value of bi-directional signals.

The boundary scan register has bit cells associated with 15 pure input signals, and the
other 262 cells are associated with 131 bi-directional signals. All MC88110 bi-directional
signals and output signals (treated as bi-directional), have both a boundary scan register
bit for signal data and a boundary scan register bit -for direction control. This allows the II.....
user great flexibility and control of the direction of every signal that can be an output.
Due to the implementation of the individual direction control cell for each signal, some
signals that are typically referenced as output-only can be programmed as input and
have input data sampled into the boundary scan register.

The boundary scan bit definitions are shown in Table A-1. The first column in the table
defines the ordinal position of the bits in the boundary scan resister. The shift resister cell
nearest the TDO signal (Le., first to be shifted out) is defined as bit zero while the last bit
to be shifted out is 276.

MOTOROLA MC88110 USER'S MANUAL 11-109



The second column in Table A-1 references one of the three boundary scan cell types
depicted in Figures 11-60 through 11-63. The cells are input-only (I.CElL), compound
input and output cell (IO.CELL), and bi-directional control cell (IO.CTL1). All control bits
use the same active level where logic 1 corresponds to output driver ON. The third
column in Table A-1 lists the signal name for all signal related cells or defines the name
of bi-directional control register bits. The fourth column lists the signal type (for
convenience) where input indicates pure input signal and inout indicates a bi-directional
signal. Note that when sampling the bi-directional data cells (IO.CELL), the cell data can
be interpreted only after examining the IO.CTL1 cell to determine signal directionality.

1-EXTEST/CLAMPIHI-Z
O-OTHERWISE

TO SYSTEM LOGIC I----------------t[!l

TO NEXT CELL

CLOCK FROM LAST SHIFT
DR CELL DR

Figure 11-60. Input Signal Cell (I.Pin)

II

1-EXTEST/CLAMPIHI-Z
O-OTHERWISE

OUTPUT CONmOL
FROM SYSTEM LOGIC

(TOO)
TO NEXT CELL

TO OUTPUT
t--tlt-----------+-----~ ENABLE (1 =DRIVE)

Io--tlt----I 10

....----oC1

R

SHIFT FROM LAST
DR CELL

(TOI)

CLOCK
DR

UPDATE TEST
DR RESET

11-110

Figure 11-61. Active High Output Control Cell (IO.CtI1)

MC88110 USER'S MANUAL MOTOROLA



1-EXTEST/CLAMPIHI-Z
O-OTHERWISE

SHIFT
DR

(TOO)
TO NEXT CELL

OUTPUT CONTROL
FROM SYSTEM LOGIC

1---4_------+----------+-----.... TOOUTPUTDRIVER

FROM OUTPUT
ENABLE

FROM
PIN

(TOI)
FROM LAST

CELL

CLOCK
DR

UPDATE
DR

Figure 11·62. Bi·Directional Data Cell (IO.Cell)

(T01) FROM LAST CELL

OUTPUT
ENABLE

OUTPUT
DATA

INPUT
DATA

_---L---...----+~ ....E_N .-...I.....----I1!l

TO NEXT CELL (TOO)

MOTOROLA

Figure 11-63. Bi·Directional Cell Arrangement

MC88110 USER'S MANUAL 11-111

•



11.10.2.2 BYPASS (111). The BYPASS instruction selects the single-bit bypass
register as shown in Figure 11-64. This creates a shift-register path from the TOI signal to
the bypass register and finally to the TDO signal, circumventing the boundary scan
register. This instruction is used to enhance test efficiency when a component other than
the MC8811 0 becomes the device under test. In this instruction, the MC8811 0 system
logic is independent of the test access port.

SHIFT DR

o
FROMTDI TO TOO

II

CLOCK DR

Figure 11-64. Bypass Register

When the bypass register is selected by the current instruction, the shift-register stage is
set to a logic 0 on the rising edge of TCK following entry into the capture-DR controller
state. Therefore, the first bit to be shifted out after selecting the bypass register is always
a logic O.

11.10.2.3 SAMPLE/PRELOAD (100). The SAMPLE/PRELOAD instruction provides
two separate functions. First, it provides a means to obtain a snapshot of system data
and control signals. The snapshot occurs on the rising edge of TCK in the capture-DR
controller state. The data can be observed by shifting it transparently through the
boundary scan register. In a normal system configuration many signals require external
pull-ups to insure proper system operation. Consequently, the same is true for the
SAMPLE/PRELOAD functionality. The data latched into the boundary scan register
during capture-DR may not match the drive state of the package signal if the system
required pull-ups are not present within the test environment.

NOTE

Since there is no internal synchronization between the IEEE
1149.1 clock (TCK) and the system clock (ClK), the user must
provide some form of external synchronization to achieve
meaningful results.

The second function of the SAMPLE/PRELOAD instruction is to initialize the boundary
scan register output cells prior to selection of the EXTEST instruction. This insures that
known data will appear on the outputs when entering the EXTEST instruction. Since the
MC88110 has only input-only and fully bi-directional signals, entering EXTEST does not
require initialization of the boundary scan register. During TAP reset, bi-directional
signals preload the output control cell with output disable. In the SAMPLE/PRELOAD
instruction, system logic is independent of the TAP.

11-112 MC88110 USER'S MANUAL MOTOROLA



11.10.2.4 CLAMP (100). The CLAMP instruction is not included in the IEEE 1149.1
standard, but it is provided as a manufacturer's optional public instruction in order to
prevent having to backdrive the output signals during some methods of circuit board
testing. When the CLAMP instruction is invoked, the package signals will respond to the
preconditioned values within the update latches of the boundary scan register, even
though the bypass register is enabled as the test data register.

In-circuit testing can be facilitated by setting up the guarding signal conditions with use
of the SAMPLE/PRELOAD or EXTEST instructions, and then as the MC8811 0 enters into
the CLAMP instruction, the state and drive of all signals remain static until the instruction
is disabled. A feature of the CLAMP instruction is that while the signals continue to
supply the guarding inputs to the in-circuit test site, the bypass register is enabled and
thus should minimize overall test time.

11.10.2.5 HI-Z (001). The HI-Z instruction is not included in the IEEE 1149.1
standard. It is provided as a manufacturer's optional public instruction in order to prevent
having to backdrive the output signals during circuit board testing. When the HI-Z
instruction is invoked, all output drivers are turned off (Le., three-state). The instruction
selects the bypass register.

11.10.2.6 EXTEST_PULLUP (010). The EXTEST_PULLUP instruction is not
included in the IEEE 1149.1 standard, but is provided as a manufacturer's optional
public instruction to aid in fault diagnoses during boundary scan testing of a circuit
board. This instruction functions similarly to EXTEST, with the only difference being the
presence of a weak pull-up device on all signals. The MC8811 0 is a CMOS design and
therefore could suffer from a logically indeterminate input value if an input or bi
directional signal programmed as an input was inadvertently unconnected. The pull-up
current will, given an appropriate charging delay, supply a deterministic logic 1 result on
an open input. Note that heavily loaded nodes may require a charging delay greater
than the two TCK periods needed to transition from the update-DR state to the capture
DR state. Two options are available: traverse into the run-test/idle state for extra TCK
periods of charging delay or simply change the period of TCK leading up to the capture
edge of the capture-DR state.

11.10.3 MC88110 Restrictions

The control afforded by the output enable signals using the boundary scan register and
the EXTEST or CLAMP instructions requires a compatible circuit board test environment
to avoid device-destructive configurations. The user must avoid situations in which the .',",.,",,"
MC88110 output drivers are enabled into actively driven networks.

The MC8811 0 includes on-chip circuitry to detect the initial application of power to the
device. The power-on reset (PCR) signal is the output of this circuitry and is used to reset
both the system and IEEE 1149.1 logic. POR is applied to the IEEE 1149.1 circuitry in
order to avoid the possibility of bus contention during power-on. The time to complete
device power-on is power supply dependent. The IEEE 1149.1 TAP controller, however,
remains in the test.. logic-reset state while POR is asserted. The TAP controller will not
respond to user commands until POR is negated.

MOTOROLA MC88110 USER'S MANUAL 11-113



•

11.10.4 Non-IEEE 1149.1 Operation

In non-IEEE 1149.1 operation, there are two constraints that must be met. First, the test I

clock input does not include an internal pull-up resistor; therefore, it should not be left
unconnected (this is in order to prevent mid-level inputs). The second constraint is that
the IEEE 1149.1 test logic must be kept transparent to the system logic by forcing the
TAP controller into the test-logic-reset controller state. During power-on, the POR signal
forces the TAP controller into this state. However, to insure that the controller remains in
the test-logic-reset state, several options are described below.

1. If TMS either remain's unconnected or is connected to Vee, then the TAP controller·
cannot leave the test-logic-reset state regardless of the state of the TCK pin.

2. TRST can be asserted either by connecting it to ground or by means of a logic
network. Connecting TRST to the functional reset (RST) signal and tying TCK
either high or low also meets this requirement.

3. If TRST is asserted by a pulse signal, the controller will remain in the test-Iogic
reset state in the absence of a rising edge on the TCK pin when TMS is low.

11-114 MC88110 USER'S MANUAL MOTOROLA



APPENDIX A
BIT SCAN BIT DEFINITION

Table A-1. Bit Scan Bit Definition

Bit Number Cell Type Signal Name Signal Type Cntl Cell

0 IO.CELL PSTAT2 Inout PSTAT2_ctl

1 IO.CTL1 PSTAT2_ctl - -
2 IO.CELL PSTAT1 Inout PSTAT1_ctl

3 IO.CTL1 PSTAT1_ctl - -
4 IO.CELL PSTATO Inout PSTATO_ctl

5 IO.CTL1 PSTATO_ctl - -
6 IO.CELL BP7 Inout BP7_ctl

7 IO.CTL1 BP7_ctl - -
8 IO.CELL BP6 Inout BP6_ctl

9 IO.CTL1 BP6_ctl - -
10 IO.CELL BP5 Inout BP5_ctl

11 IO.CTL1 BPS_ctl - -
12 IO.CELL BP4 Inout BP4_ctl

13 IO.CTL1 BP4_ctl - -
14 IO.CELL BP3 Inout BP3_ctl

15 IO.CTL1 BP3_ctl - -
16 IO.CELL BP2 Inout BP2_ctl

17 IO.CTL1 BP2_ctl - -
18 IO.CELL BP1 Inout BP1_ctl

19 IO.CTL1 BP1_ctl - -
20 IO.CELL SPO Inout BPO_ctl

21 IO.CTL1 BPO_etl - -
22 IO.CELL 063 Inout D63_ctl

23 IO.CTL1 o63_ctl - -
24 IO.CELL 062 Inout D62_ctl

25 IO.CTL1 D62_ctl - -
26 IO.CELL 061 Inout D61_ctl

27 IO.CTL1 D61_ctl - -
28 IO.CELL 060 Inout D60_ctl

•
MOTOROLA MC88110 USER'S MANUAL A-1



•

Table A·1. Bit Scan Bit Definition

Bit Number Cell Type Signal Name Signal Type Cntl Cell

29 IO.CTl1 D60_ctl - -
30 10.CELl 059 Inout D59_dl

31 IO.CTL1 059_etl - -
32 10.CELL 058 Inout D58_ell

33 10.CTL1 o58_ctI - -
34 10.CELl 057 Inout 057_dl

35 10.CTL1 o57_ctI - -
36 10.CELl 056 Inout .OS6_etI

37 10.CTL1· D56_ctl - -
38 10.CELL 055 Inout 055_dl

39 IO.CTL1 055_ctl - -
40 IO.CELl 054 Inout D54_ctl

41 10:CTL1 054_ctl - -
42 10.CELL 053 Inout D53_etl

43 IO.CTL1 053_etl - -
44 10.CELl 052 Inout 052_etl

45 10.CTl1 052_ctl - -
46 IO.CELL 051 Inout D51_ctl

47 IO.CTL1 051_ctl - -
48 IO.CELL 050 Inout D50_ctl

49 IO.CTL1 D50_ctl - -
50 IO.CELL 049 Inout 049_etl

51 IO.CTL1 049_ctl - -
52 IO.CELL 048 Inout D48_ctl

53 10.CTL1 D48_ctl - -
54 IO.CELL 047 Inout D47_ctl

55 IO.CTL1 D47_ctl - -
56 IO.CELL 046 Inout 046_ctl

57 IO.CTL1 046_ctl - -
58 IO.CELL 045 Inout D45_ctl

59 10.CTL1 045_ctl - -
60 IO.CELl 044 Inout 044_ctl

61 IO.CTL1 044_ctl - -
62 IO.CELL 043 Inout D43_ctl

63 IO.CTL1 043_ctl - -
64 IO.CELL 042 Inout 042_ctl

65 IO.CTL1 042_ctl - -

MC8lJ110 USER'S MANUAL MOTOROLA



Table A·1. Bit Scan Bit Definition

Bit Number Cell Type Signal Name Signal Type Cntl Cell

66 IO.CELL 041 Inout D41_ctl

67 IO.CTL1 041_ctl - -

68 IO.CELL 040 Inout D40_ctl

69 IO.CTL1 040_ctl - -
70 IO.CELL 039 Inout 039_ctl

71 IO.CTL1 039_ctl - -
72 IO.CELL 038 Inout o38_ctl

; 73 IO.CTL1 038_ctl - -
74 IO.CELL 037 Inout o37_ctl

75 IO.CTL1 037_ctl - -
76 IO.CELL 036 Inout o36_ctl

77 IO.CTL1 036_ctl - -

78 IO.CELL 035 Inout o35_ctl

79 IO.CTL1 035_ctl - -
80 IO.CELL 034 Inout o34_ctl

81 IO.CTL1 034_ctl - -
82 IO.CELL 033 Inout o33_ctI

83 IO.CTL1 o33_ctI - -
84 IO.CELL 032 Inout o32_ctl

85 IO.CTL1 032_ctl - -
86 IO.CELL 031 Inout 031_etl

87 IO.CTL1 031_ctl - -
88 IO.CELL 030 Inout 030_etl

89 IO.CTL1 03O_ctI - -
90 IO.CELL 029 Inout o29_ctl

91 IO.CTL1 029_ctl - -

92 IO.CELL D28 Inout o28_ctl '

93 IO.CTL1 028_ctl - -
94 IO.CELL 027 Inout D27_ctl

95 IO.CTL1 027_ctl - -
96 IO.CELL 026 Inout D26_ctl

97 IO.CTL1 026_ctl - -
98 IO.CELL 025 Inout D25_ctl

99 IO.CTL1 025_ctl - -
100 IO.CELL 024 Inout D24_ctl

101 IO.CTl1 D24_ctl - -
102 IO.CEll D23 Inqut o23_ctl

II

MOTOROLA MC88110 USER'S MANUA\- A-3



II

A-4

Table A-1. Bit Scan Bit Definition

Bit Number Cell Type Signal Name Signal Type Cntl Cell

103 IO.CTL1 023_ctl - -
104 IO.CELL 022 Inout 022_ctl

105 IO.CTL1 022_ctl - -
106 IO.CELL 021 Inout 021_ctl

107 IO.CTL1 021_ctl - -
108 IO.CELL 020 Inout 020_ctl

109 IO.CTL1 020_ctl - -
110 IO.CELL 019 Inout 019_ctl

111 IO.CTL1 019_ctl - -
112 IO.CELL 018 Inout 018_ctl

113 IO.CTL1 D18_ctl - -

114 IO.CELL 017 Inout 017_ctl

115 IO~CTL1 D17_ctl - -
116 10.CELL 016 Inout D16_ctl

117 10.CTL1 016_ctl - -
118 10.CELL 015 Inout D15_ctl

119 10.CTL1 D15_ctl - -

120 IO.CELL 014 Inout D14_ctl

121 IO.CTL1 014_ctl - -

122 10.CELL 013 Inout D13_ctl

123 IO.CTL1 013_ctl - -
124 IO.CELL 012 Inout D12_ctl

125 IO.CTL1 012_ctl - -
126 IO.CELL 011 Inout D11_ctl

127 IO.CTL1 011_ctl - -
128 10.CELL 010 Inout 010_ctl

129 IO.CTL1 010_ctl - -
130 IO.CELL D9 Inout 09_ctl

131 10.CTL1 09_ctl - -
132 IO.CELL 08 Inout 08_ctl

133 IO.CTL1 D8_ctl - -
134 IO.CELL 07 Inout 07_ctl

135 IO.CTL1 07_ctl - -

136 IO.CELL D6 Inout 06_ctl

137 10.CTL1 06_ctl - -
138 IO.CELL OS Inout ' 05_ctl

139 IO.CTL1 05_ctl - -

MC88110 USER'S MANUAL MOTOROLA



Table A-1. Bit Scan Bit Definition

Bit Number Cell Type Signal Name Signal Type Cntl Cell

140 IO.CELL D4 Inout D4_ctl

141 IO.CTL1 D4_ctl - -

142 IO.CELl 03 Inout D3_ctl

143 IO.CTL1 03_ctl - -
144 IO.CELl 02 Inout D2_ctl

145 IO.CTL1 02_ctl - -
146 IO.CELL 01 Inout D1_ctl

147 IO.CTL1 01_ctl - -
148 IO.CELl DO Inout DO_ctl

149 IO.CTL1 oO_ctI - -
150 IO.CELL BPE_B Inout BPE_B_ctl

151 IO.CTL1 BPE_B_ctl - -
152 IO.CELL DBB_B Inout DBB_B_ctl

153 IO.CTL1 OBB_B_ctl - -
154 IO.CELL BR_B Inout BR_B_ctl

155 IO.CTL1 BR_B_ctl - -

156 IO.CELL G20UT Inout G2OUT_ctl

157 IO.CTL1 G2OUT_ctl - -

158 I.CElL ClK Input -
159 I.CELL BG_B Input -
160 I.CELL OBG_B Input -

161 I.CEll AACK_B Input -
162 LCELL PTA_B Input -
163 I.CELL TA_B Input -
164 LCELL TRTRY_B Input -

165 I.CELL TEA_B Input -

166 I.CElL ARTRY_B Input -
167 LCELL SHD_B Input -
168 I.CELL SR_B Input -
169 IO.CELL TS_B Inout TS_B_ctl

170 IO.CTL1 TS..,..:B_ctl - -
171 IO.CELL MC_B Inout MC_B_ctl

172 IO.CTL1 MC_B_ctl - -
173 IO.CELL GBl_B Inout GBl_B_ctl

174 IO.CTL1 GBL_B_ctl - -

175 IO.CELL INV_B Inout INV_B_ctl

176 IO.CTL1 INV_B_ctl - -

•
MOTOROLA MC88110 USER'S MANUAL A-5



II

A-6

Table A-1. Bit Scan Bit Definition

Bit Number Cell Type Signal Name Signal Type Cntl Cell

177 10.CELL SSTAT_BO Inout SSTAT_BO_ctl

178 10.CTL1 SSTAT_BO_ctl - -
179 IO.CELL SSTAT_B1 Inout SSTAT_B1_ctl

180 10.CTL1 SSTAT_B1_ctl - -
181 10.CELL ABB_B Inout ABB_B_ctl

182 IO.CTL1 ABB_B_ctI - -
183 IO.CELL AO Inout AO_ctl

184 10.CTL1 AO_ctI - -

185 10.CELL A1 Inout A1_ctl

186 10.CTL1 A1_ctl - -
187 10.CELL A2 Inout A2_ctl

188 10.CTL1 A2_ctl - -
189 10.CELL A3 Inout A3_ctl

190 10.CTL1 A3_ctl - -
191 10.CELL A4 Inout A4_ctl

192 IO.CTL1 A4_ctl - -

193 10.CELL AS Inout AS_ctl

194 IO.CTL1 AS_ctl - -
195 IO.CELL A6 Inout A6_ctl

196 10.CTL1 A6_ctI - -
197 10.CELL A7 Inout A7_ctl

198 IO.CTL1 A7_ctl - -

199 10.CELL AS Inout AS_ctl

200 IO.CTL1 A8_ctl - -
201 IO.CElL A9 Inout A9_ctI

202 IO.CTL1 A9_ctl - -
203 IO.CELL A10 Inout A10_ctl

204 IO.CTL1 A10_ctl - -
205 IO.CELL A11 Inout A11_ctl

206 IO.CTL1 A11_ctl - -
207 10.CELL A12 Inout A12_ctl

208 IO.CTL1 A12_ctl - -
209 10.CELL A13 Inout A13_ctl

210 10.CTL1 A13_ctl - -

211 IO.CELL A14 Inout A14_ctl

212 IO.CTL1 A14_ctl - -
213 10.CELL A15 Inout A1S_ctl

MC88110 USER'S MANUAL MOTOROLA



Table A-1. Bit Scan Bit Definition

Bit Number Cell Type Signal Name Signal Type Cntl Cell

214 IO.CTll A15_ctl - -
215 IO.CEll A16 Inout A16_ctl

216 IO.CTll A16_ctl - -
217 IO.CEll A17 Inout A17_ctl

218 IO.CTll A17_ctl - -
219 IO.CEll A18 Inout A18_ctl

220 IO.CTl1 A18_ctl - -
221 IO.CEll A19 Inout A19_ctl

222 IO.CTll A19~ctl - -
223 IO.CEll A20 Inout A20_ctl

224 IO.CTll A20_ctl - -

225 IO.CEll A2l Inout A21_ctl

226 IO.CTll A2l_ctl - -
227 IO.CEll A22 Inout A22_ctl

228 IO.CTll A22_ctl - -
229 IO.CEll A23 Inout A23_ctl

230 IO.CTll A23_ctl - -
231 IO.CEll A24 Inout A24_ctl

232 IO.CTll A24_ctl - -
233 IO.CEll A25 Inout A25_ctl

234 IO.CTll A25_ctl - -
235 IO.CEll A26 Inout A26_ctl

236 IO.CTll A26_ctl - -
237 IO.CEll A27 Inout A27_ctl

238 IO.CTll A27_ctl - -
239 IO.CEll A28 Inout A28_ctl

240 IO.CTll A28_ctl - -
241 IO.CEll A29 Inout A29_ctl

242 IO.CTll A29_ctl' - -
243 IO.CEll A30 Inout A30_ctl

244 IO.CTll A30_ctl - -
245 IO.CEll A3l Inout A31_ctl

246 IO.CTll A3l_ctl - -
247 IO.CEll RW_B Inout RW_B_ctl

248 IO.CTll RW_B_ell - -
249 IO.CEll TBST_B Inout TBST_B_elI

250 IO.CTll T8ST_B_ctl - -
•

MOTOROLA MC88110 USER'S MANUAL A-7



•
A-a

Table A-1. Bit Scan Bit Definition

Bit Number Cell Type Signal Name Signal Type Cntl Cell

251 10.CELL TSIZO Inout TSIZO_ctl

252 10.CTLl TSIZO_ctl - -
253 10.CELL TSIZl Inout TSIZ1_ctl

254 10.CTL1 TSIZ1_ctl - -
255 10.CELL LK_B Inout LK_B_ctl

256 10.CTL1 LK_B_ctl - -
257 IO.CELL UPA_BO Inout UPA_BO_ctl

258 10.CTLl UPA_BO_ctl - -
259 10.CELL UP~Bl Inout UPA_Bl_ctl

260 IO.CTL1 UPA_Bl_ctl - -
261 10.CELL CI_B Inout CI_B_ctl

262 IO.CTLl CI_B_ctl - -
263 IO.-CELL WT_B Inout WT_B_ctl

264 IO.CTL1 WT_B_ctl - -

265 IO.CELL TCO Inout TCO_ctl

266 IO.CTL1 TCO_ctl - -
267 IO.CELL TCl Inout TC1_ctl

268 IO.CTL1 TC1_ctl - -
269 IO.CELL TC2 Inout TC2_ctl

270 IO.CTLl TC2_ctl - -
271 IO.CELL TC3 Inout TC3_ctl

272 IO.CTLl TC3_ctl - -
273 IO.CELL CLINE Inout CLlNE_ctl

274 IO.CTLl CLlNE_ctl - -

275 I.CELL DBUG_B Input -
276 I.CELL RST_B Input -

277 I.CELL NMI_B Input -

278 I.CELl INT_B Input -

MC88110 USER'S MANUAL MOTOROLA



INDEX

-A-
AACK, 11-13
ASS, 11-14
Access

Cache Inhibited Read Hit, 6-21, 6-23
Cache Inhibited Write Hit, 6-25, 6-30
Data Cache Access, 6-18
Data Cache Hit, 6-21
Data Cache Miss, 6-16
Data Cache Read Miss, 6-21, 6-22
Data Cache Write Hit, 6-24
Decoupled Cache Accesses, 6-17, 6-18,

6-22, 6-21, 6-25, 6-28, 6-30
Instruction Cache Read, 6-16
Misaligned Access Exception, 2-10,2-16
Read-.With-Intent-To-Modify Cycle, 6-28
Store-Through Access, 6-30

add Instruction, 10-2
Address Retry, 11-83
Address Translation, 6-12

Block Address Translation, 1-13, 1-15, 8-4,
8-15

Block-Exclusive Translation Mode, 8-13
Combined Block/Page Translation Mode, 8-6,

8-13

Data ATC Probe, 6-42
Flow, 8-7
Identity Translation Mode, 8-13
Instruction ATC Probe, 6-38
Logical Address, 6-12,6-13
Page Address Descriptors, 8-4
Page Address Translation, 1-13, 1-15,8-4,

8-21
Page-Exclusive Translation Mode, 8-6,8-13
Physical Address, 6-12
Translation Mode, 8-12

Addressing Modes, 1-4

Bit-Field Instructions, 3-3, 3-8
Computational Instructions, 3-3
Control Register Addressing, 3-11, 3-12

Floating-Point, 3-4, 3-5
Flow Control, 3-16
Graphics, 3-6, 3-7
Immediate Addressing Modes, 3-7
Integer Arithmetic, 3-3
Logical, 3-10
Logical Instructions, 3-3

9-Bit Vector Table Index Addressing, 3-19
Register Indirect with Extended Immediate

Index Addressing, 3-13
Register Indirect with Immediate Index

Addressing, 3-12
Register Indirect with Index Addressing, 3-13,
3-14

Register Indirect with Scaled Index
Addressing, 3-14, 3-15

Register with 9-Bit Vector Table Index
Addressing, 3-18

Register with 10-Bit Immediate Addressing,
3-8,3-9

Register with 16-Bit Displacement/Immediate
Addressing, 3-19

Register with 16-8it Signed Immediate
Addressing, 3-9

Register with 16-Bit Unsigned Immediate

Addressing, 3-10, 3-11
rte Instruction Addressing, 3-22
Signed Arithmetic Instructions, 3-9
Triadic Register Addressing, 3-3, 3-16
26-Bit Branch Displacement Addressing,

3-21,3-22

Unsigned Arithmetic Instructions, 3-10
addu Ipstruction, 10-3
Allocate Load, 6-31, 6-34, 9-30, 11-4, 11-57
and Instruction, 10-4
Arbitration

Address Bus, 11-3, 11-33
Bus Arbitration Example Timing, 11-35, 11-37

Bus Parking, 11-36, 11-38 .,...'
Data Bus, 11-3, 11-34

MOTOROLA MC88110 USER'S MANUAL INDEX-1



•

Split Bus, 11-39, 11-40
Timing, 11-40
Write-back Arbitration, 1-11

Area Descriptors, 8-28, 8-29, 8.-31
Arithmetic Logic Execution Units, 1-9,9-6

ARTRY, 11-13
ATe Invalidation, 6-39
ATe Miss Exceptions, 7-23

-B
Back-to-Back Transfer Timing, 11-68
BATe Block Size, 6-36,6-40
bbO Instruction, 10-5
bb1 Instruction, 10-6
bend Instruction, 10-7
BEN Bit, 6-38
00,11-14

Bit Field
Bit-Field Instructions, 3-28
Bit-Field Unit, 1-9
Computational Instructions, 3-3
ext Instruction, 10-17
extu Instruction, 10-19
ffO Instruction, 10-32
If1 Instruction, 10-33
Integer/Bit-Field Unit Execution Timing, 9-24
mak Instruction, 10-53
mask Instruction, 10-55
Opcode Map, 10-98

Operand Types, 2-12
Register with 10-Bit Immediate Addressing,

3-8.3-9
rot Instruction, 10-72
Triadic Register Addressing, 3-16

Bit-Field Execution Unit, 1-9, 9-6

Block Address Translation Cache (BATC)'o1-13,
1-15, 8-4

ATC Probe Commands, 8-53, 8-54,8-55

BEN Bit. 6-38
Block Descriptor, 8-15
Block Size, 6-36,6-40,8-19
CEN Bit, 6-38
CI Bit(s), 6-10, 6-12
DID Bit, 6-37

FRZO Bit, 6-37
FRZ1 Bit. 6-37
G Bit, 6-11

Loading BATC Entries. 8-20
Maintenance, 8-19

MEN Bit, 6-38
Organization, 8-13
PREN Bit, 6-37
Reading BATC Entries, 8-20
STEN Bit, 6-38

WT Bit,6-10
Block-Exclusive Translation Mode,8-6
BPE, 11-16
BPENO Bit, 6-41

BPEN1 Bit, 6-41
BR, 11-14, 11-34,11-84
br Instruction, 10-9
Branch Prediction, 1-19

Branch Reservatipn Station, 1-19
History Buffer, 9-52 ,
Misprediction, 9-62

Branch Reservation Station, 1-19
bsr Instruction, 10-1 0

Bubble, 9-8
Burst Read Transaction, 11-63. 11-64
Burst Transactions, 1-16,11-4,11-58,11-59,

11 -60, 11-61, 11 -62
Burst Write Transactions. 11-66,11-67
Bus Arbitration Signals, 11-14
Bus Operation

Burst Transactions, 1-16
Bus Error, 6-17

Invalidation Bus Transaction, 6-25
Single-Beat Transactions, 1-16

,Snooping, 1-16

Split Bus Transactions, 1-16

Buses
Address Bus, 11-9

Arbitration, 11-33, 11-34
Bus Parking, 11-36,11-38
Byte Parity, 11-9

Data Bus, 11-8
Destination, 1-8
Positioning of Valid Bytes on the Data Bus,

11-43
Source 1, 1-8
Source 2, 1-8

Byte Lanes, 11-8

Byte Ordering. 2-9, 2-16
Byte Parity, 11-9

INDEX-2 MC88110USER'S MANUAL MOTOROLA



-c-
Cache Coherency

Bus Snooping, 6-4
Coherency, 6-4
Collision, 11-81
Data Cache Coherency, 6-4, 6-5
DEN Bit, 6-41
Exclusive Modified, 6-18
Exclusive Unmodified, 6-18
Four State Model, 6-18, 11-30
Global Data, 6-5
Instruction Cache Coherency, 6-3
Invalid,6-18
Local Data, 6-5
SEN Bit, 6-42
Shared Unmodified, 6-18
Snoop Control Signals, 11-13, 11-81
Snoop Hit, 11-21
Snoop Retry, 11-21
Snooping, 1-16, 6-11, 11-21

State Bits, 6-18
Three State Model, 11-32

Cache Control
Allocate Load, 6-31,6-34
BATC Block Size, 6-40
Cache Control Features, 6-35
Cache Control Instructions, 6-31
Cache Control Registers, 6-35
Cache Freeze Feature, 6-44
CEN Bit, 6-42
Data Cache, 6-39
Data Cache Flushing, 6-39
DCMD, 6-35,6-39,6-43
DCTL,6-35
DSAR, 6-35, 6-42

Flush Load, 6-31, 6-34
Flush Operation, 6-43
Flush with Invalidate Command, 6-43
FRZO Bit, 6-44

FRZ1 Bit, 6-44
ICMD, 6-35,6-43
ICTL, 6-35, 6-36
Instruction CacheI 6-35
Instruction Cache Flushing, 6-35

ISAR,6-35
Invalidate Command, 6-3, 6-45
Invalidate Data Cache Line Command, 6-43

Invalidate Instruction Cache Line, 6-43
Invalidation Operation, 6-43
Line Invalidate Operation, 6-38
Store-Through, 6-31
Touch Load, 6-31, 6-33

Cache Freeze Feature, 6-44
Cache Inhibited Read Hit, 6-21, 6-23
Cache Inhibited Write Hit, 6-25, 6-30
Cache Line Fill, 11-64
Cache Lookup Operation, 6-12, 6-23
Cache Miss, 6-13
Carry Flag, 9-15
CEN Bit, 6-38
CI,11-10
CI Bit(s), 6-10, 6-12
CLINE, 11-12
CLK, 11-17
clr Instruction, 10-11
cmp Instruction, 10-13
Code Optimization, 9-75
Collision, 11-81
Compositing, 5-2, 5-23,5-24
Computational Instruction Addressing

Bit-Field Instructions, 3-3, 3-8
Control Register Addressing, 3-11,3-12
Floating-Point, 3-4, 3-5
Graphics, 3-6, 3-7
Immediate Addressing Modes, 3-7
Integer Arithmetic, 3-3
Logical Instructions, 3-3
Register with 16-bit Unsigned Immediate

Addressing, 3-10
Signed Arithm·etic Instructions, 3-9
Triadic Register Addressing, 3-3

Computational Instructions, 3-1, 3-3

ATC Invalidation, 6-39
Context Switch, 6-3
Control Registers

BATe Block Size, 6-40
Control Register Addressing, 3-11,3-12
DSP, 8-69
DCMD, 6-35, 6-39, 6-43,8-64
DCTL, 6-11 , 8-65
DEN Bit, 6-17
DIR, 8-69
DLAR, 8-73
DMMU, 8-11 II

MOTOROLA MC88110 USER'S MANUAL INDEX-3



II

DPAR, 8-73

DPPL, 8-70
DPPU, 8-70
DSAP, 8-68
DSAR, 6-35, 6-42, 8-68

DSR, 8-70
DUAP, 8-68
FPCR, 4-14
FPECR, 4-12
FPSR, 4-16
FPU Control Registers, 1-9
General Control Registers, 1-11, 2-6
IBP, 8-61
ICMD, 6-35, 6-43, 8-56
ICTL, 6-35, 6-36, 8-57
UR,8-60
ILAR, 8-63

IMMU, 8-10
Instruction Cache, 6-35
Instruction Cache Flushing, 6-35
IPAR, 8-63
IPPL, 8-61
IPPU, 8-61

ISAP, 8-60
ISAR, 6-35, 6-38, 8-59
ISR, 8-62

IUAP, 8-60
PID, 2-8
PSR, 2-9

Supervisor Storage Registers (cr16-cr20),
2-11,7-9

XMEM Bit, 6-31

Coordinate Comparison, 5-19
Copyback, 6-5, 6-19

Flush Copyback, 11-5, 11-68

Load Miss, 9-29, 9-34
Replacement Copyback, 11-5, 11-67
Snoop Copyback, 11-5, 11-67, 11-96

Critical Word First, 6-28, 11-58

-0-
Data Access Exception, 6-23, 6-28, 7-17
Data Breakpoint

Algorithm, 8-47

Data Breakpoint Descriptor, 8-49
Data Breakpoint Registers, 8-47
Loading, 8-50

Data Bus, 11-8, 11-43

Data Cache, 6-39
Cache Freeze Feature, 6-44
Cache Hit, 6-13, 6-21
Cache Inhibited Read Hit, 6-21

Cache Inhibited Write Hit, 6-25
Cache Tags, 6-3
CEN Bit, 6-42
Coherency, 1-15,6-4,6-5, 11-21
Critical-Word-First Operation, 11-58
Data Cache Flushing, 6-39

Data Cache Miss, 6-16
Data Cache Organization, 6-2
Data Cache Read Miss, 6-21, 6-22
Decoupling, 1-15,6-17,6-18,6-21,6-22,

6-25, 6-28, 6-30, 9-27, 11-72
DEN Bit, 6-41

Exclusive Modified, 6-18
Exclusive Unmodified, 6-18
Flush Operation, 6-43
Four State Model, 11-29
FRZO Bit, 6-41,6-44
FRZ1 Bit, 6-41,6-44

Invalid,6-18
Invalidate Data Cache Line Command, 6-43
Invalidate Instruction Cache Line, 6-43
Invalidation Operation, 6-43
Line States, 11-18
Load Timing, 9-31, 9-32

Physical Address Tags, 6-3
Pseudorandom Replacement Algorithm,

6-2, 6-14

Shared Unmodified, 6-18
State Bits, 6-18
Status Bits, 6-2

Three State Model, 11-29
Write Hit, 6-24

Data Dependency, 1-19,9-12

Data Memory Access
Cache Inhibited, 9-68
1/0 Serialization, 9-39

Load Miss, 9-34, 9-35
Load Timing, 9-31, 9-32
Load/Store with Extended Operands, 9-38
Streaming, 9-35

Trap Instructions, 9-39
Write-Back, 9-67

INDEX-4 MC88110 USER'S MANUAL MOTOROLA



Write-Through Mode, 9-67
Data MMU Probing, 6-39
Data MMU/Cache Command Register (DeMO),

6-35, 6-39, 6-43
Data MMU/Cache Control Register (DCTL), 6-11,

6-35,6-40
Data Organization

Data Alignment, 9-36
Double-Extended-Precision, 9-41
Double-Precision, 9-41
Double-Word Alignment, 2-13
GRF, 2-12
Memory, 2-15
Single-Precision, 9-41
XRF, 2-14

Data System Address Register (DSAR), 6-35,
6-42

Data Unit, 1-14, 1-20
Data Unit Execution Timing, 9-26
Decoupled Cache Accesses, 9-27
History Buffer, 6-33
Load Buffer, 1-14,9-18,9-21
Scoreboard, 9-12, 9-18
Store Reservation, 1-14, 9-21
Store Reservation Station, 9-18

DBB, 11-14
DBG, 11-14
DBUG, 11-17
Debugging

Breakpoint Registers, 1-17
Data Breakpoint Registers, 8-47
DBUG, 1-17, 11-17
Serial Mode, 2-9

Decode, 9-4
Decoupled, 6-22
Decoupled Cache Accesses, 1-15, 6-17,6-18,

6-21, 6-25, 6-28, 6-30,9-40, 11-72
DEN Bit, 6-17, 6-41
Delay S.lot, 9-46
Delayed Branching, 9-44, 9-46, 9-48
Denormalized Numbers, 4-5

Descriptors
Area Descriptors, 8-28, 8-29, 8-31
Block Descriptor, 8-15
Data Breakpoint Descriptor, 8-49
Indirection Descriptors, 8-29, 8-37
Invalid Descriptors, 8-29

Page Address Descriptors, 8-4
Page Descriptor Tables, 8-27
Page Descriptors, 8-23, 8-28, 8-29, 8-34
Segment Descriptors, 8-28, 8-29, 8-32

Destination Register Considerations, 9-14
DID Bit, 6-37
Dithered Color Pixels, 5-7
Divide Execution Unit, 1-9, 1-20,9-6,9-41
dlvs Instruction, 10-15
dlvu Instruction, 10-16
DLAR, 7-17
DMU, 8-2
Double-Word Alignment, 2-13
DPAR, 7-17
DSR, 7-18

-E-
ENIP, 7-7, 7-8, 7-10
EPSR, 7-7, 7-8, 7-10
Error Exception, 7-22
Error Termination, 11-78, 11-79, 11-80
Exception Arbitration, 1-11
Exception Recognition, 7-5

History BUffer, 7-6
Interrupt, 7-6, 7-7
Priority, 7-7

Exception Time Instruction Pointers
ENIP, 7-7, 7-8, 7-10
EPSR, 7-7, 7-8, 7-10
EXIP, 7-7, 7-8, 7-10

Exception Vectors, 7-3
Exceptions

ATC Miss Exceptions, 7-23
Data Access Exception, 6-23, 6-28, 7-17
Error Exception, 7-22
Exception Handling, 7-1, 7-5
Exception Model, 7-1, 7-2
Exception Processing, 7-5
Exception Recognition, 7-5
Exception State, 2-1
Exception Vectors, 7-3
Execution Context, 7-1
Floating-Point Instructions, 7-19
Graphics Unit Exceptions, 7-22
History Buffer, 1-11, 1-21, 7-2, 7-6
Instruction Access Exception,6-17
Instruction Unit Exceptions, 7-14 •

MOTOROLA MC88110 USER'S MANUAL INDEX-5



•

Latencies, 7-11
Memory Access Exceptions, 7-15
Misaligned Access Exception, 2-16
MMU, 8-8
Priority, 7-7
Reset Exception, 7-22
Return from Exception, 7-5
VBR, 1-11
Vector Table, 7-2

Exclusive Modified, 6-18
Exclusive Unmodified, 6-18
Execution Units, 9-6

Arithmetic Logic Execution Units, 1-9,9-6
Bit-Field Execution Unit, 1-9,9-6
Data Unit, 1-20
Divide Execution Unit, 1-9, 1-20, 9-6
Floating-Point Add Execution Unit , 1-9, 9-6
Graphics Execution Units, 9-6
Instruction Unit, 1-10,9-6
Integer, 1-9
Load Buffer, 9-6
Multiply Execution Unit, 1-9, 9-6
Store Reservation Station, 9-6
Pixel Add Execution Unit, 1-10
Pixel Pack Execution Unit, 1-10

EXIP, 7-7, 7-8, 7-10
ext Instruction, 10-17
Extended Register File (XRF), 1-8, 1-18,2-5
External Bus

Table Search Bus Error, 8-38
extu Instruction, 10-19

-F
fadd Instruction, 10-21
Faults

Bus Error, 8-53
Copyback Error, 8-53
Data Breakpoint, 8-51
Page Descriptor Invalid, 8-39
Segment Descriptor, 8-39
Supervisor Protection Violation, 8-39
Table Search, 8-38
Write Protection Violation, 8-39
Write-Allocate, 8-53

femp Instruction, 10-23
fempu Instruction, 10-26
'fevt Instruction, 10-29

fdiv Instruction, 10-30
Feed Forwarding, 1-12,9-6,9-12,9-13
ffO Instruction, 10-32
ff1 Instruction, 10-33
Fixed-Point Number, 5-4
flder Instruction, 10-34
Floating-Point

ANSI/IEEE Standard 754-1985, 4-1
bb1 Instruction, 10-6
Control Register Addressing, 3-11, 3-12
Control Registers, 1-9, 2-11
Data Formats, 4-2
Denormalized Numbers, 4-5
Divide Unit, 1-9, 9-41
Exponent Field, 4-2
fadd Instruction, 10-21
femp Instruction, 10-23
fempu Instruction, 10-26
fevt Instruction, 10-29
fdlv Instruction, 10-31
flder Instruction, 10-34
Floating-Point Add Execution Unit, 1-9,9-41
fit Instruction, 10-35
fmul Instruction, 10-36
FPCR, 4-14
FPEeR, 4-12
FPSR, 4-16
FPU, 1-9
fsqrt Instruction, 10-38
fsler Instruction, 10-39
fsub Instruction, 10-40
fxer Instruction, 10-42
Guard Bit, 4-8
Instructions, 3-28
Int Instruction, 10-44
Leading Bit, 4-2
Mantissa, 4-2
mav Instruction, 10-56
Multiply Unit, 1-9, 9-41
NaNs, 4-7
nint Instruction, 10-60

Normalized Number Formats, 4-4
Opcode Map, 10-96
Operand Types, 2-12
Operands, 1-9
Round Bit, 4-8
Rounding Modes, 4-7

INDEX-6 MC88110 USER'S MANUAL MOTOROLA



Sign Field, 4-2
Software Envelope, 4-1, 4-10
Sticky Bit, 4-8
TCFP Mode, 4-11, 4-25
Triadic Register Addressing, 3-4, 3-5
trnc Instruction, 10-88
Unnormalized Numbers, 4-6
XRF, 1-8, 1-9,2-5

Floating-Point Add Execution Unit, 1-9, 9-6, 9-41
Floating-Point Control Registers, 2-11
Floating-Point Exceptions, 4-9, 7-19

EFINX, 4-24
FDVZ, 4-24
FIOV, 4-19
Floating-Point Overflow Exception, 4-20
Floating-Point Underflow Exception, 4-22

FPCR, 4-14
FPECR, 4-12
FPRV, 4-19
FPSR, 4-16
FROP, 4-20
FUNIMP, 4-18
IEEE Conformance, 4-18
IEEE Exception Conditions, 4-9, 4-10
SFU1 Exception, 4-9
Software Envelope, 4-1, 4-10
TCFP Mode, 4-11,4-25

Flow, 1-10
Flow Control

bbO Instruction, 10-5
bend Instruction, 10-7
br Instruction, 10-9
bsr Instruction, 10-10
illop Instructions, 10-43
Instructions, 3-31
jmp Instruction, 10-45
jsr Instruction, 10-46
9-Bit Vector Table Index Addressing, 3-19
Opcode Map, 10-100
Register with 9-Bit Vector Table Index

Addressing, 3-18
Register with 16-Bit Displacement/Immediate

Addressing, 3-19
rte Instruction Addressing, 3-22

rte Instruction, 10-73
Scoreboard, 9-12
set Instruction, 10-74

tbO Instruction, 10-83
tb1 Instruction, 10-84
26-Bit Branch Displacement Addressing,

3-21, 3-22
Flowcharts

Burst Read Transaction, 11-64
Burst Write Transaction, 11-66
Cache Snoop Operation Flow, 11-22
Floating-Point Overflow Exception, 4-20
Floating-Point Underflow Exception, 4-22
Single-Beat Read Transaction, 11-49
Single-Beat Write Transactions, 11-51

fit Instruction, 10-35
Flush Copyback, 11-5, 11-68
Flush Load, 6-31, 6-34, 6-43, 9-29, 11-5, 11-68
Flush with Invalidate Command, 6-43
fmul Instruction, 10-36
Formats, 1-4
FRZO Bit, 6-37,6-41
FRZ1 Bit, 6-37,6-41,6-44
fsqrt Instruction, 10-38
fstcr Instruction, 10-39
fsub Instruction, 10-40
FWT Bit, 6-11,6-41
fxer Instruction, 10-42

-G-
G Bit, 6-11
,GBl11-12

General Control Registers, 1-11, 2-6
Control Register Addressing, 3-11 , 3-12
PID, 2-8
PSR, 2-9
Supervisor Storage Registers, 2-11

General Register File (GRF), 1-8,1-18,2-5

Global Data, 6-5
Gouraud Shading, 5-20, 5-21

., . Graphics
Compositing, 5-2, 5-23, 5-24
Coordinate Comparison, 5-19
Data Types, 5-3, 5-5
Dithered Color Pixels, 5-7
Fixed-Point Number, 5-4
Gouraud Shading, 5-20, 5-21
Graphics Instructions, 3-30
Graphics Unit Exceptions, 7-22
Hidden-Surface, 5-22 II

MOTOROLA MC88110 USER'S MANUAL INDEX-7



•

iliOp Instructions, 10-43
Intensity SCaling, 5-18
Intensity Summing, 5-13
Interpolation, 5-13
Modulo Arithmetic, 5-7
Multiply Unit, 1-9
Opcode Map, 10-97
Operand Types, 2-12

Operands, 1-10
Packing Pixels, 5-14
padd Instruction, 10-62
padds Instruction, 10-63
pcmp Instruction, 10-64
Pixel Add Execution Unit, 1-10, 9-63
Pixel Add/Subtract Instructions, 5-7
Pixel Block Transfer, 5-23
Pixel Pack Execution Unit, 1-10,9-63
Pixel Pack/Unpack Instructions, 5-10
pmul Instruction, 5-12, 10-65
ppack Instruction, 10-66
prot Instruction, 10-68
Pseudocolor Pixels, 5-6
psub Instruction, 10-69
psubs Instruction, 10-70
punpk Instruction, 10-71
Register with 6-Bit Immediate Addressing,
3-7,3-8

Saturation Arithmetic, 5-7,5-8
Triadic Register Addressing, 3-7

True Color Pixels, 5-6
Unpacking Pixels, 5-16
User-Defined Saturation Limits, 5-10

Graphics Execution Units, 9-6

-H
Hardware Cache Coherency, 6-1
Hardware Table Search Operations, 8-5, 8-39,

11-99,11-100,11-101,11-102,11-103
History Buffer, 1-11, 6-33, 7-2, 7-6,9-17,9-36,

9-52

-1
Identity Translation Mode, 8-6
ILAR, 7-16
IMU, 8-2

Immediate Addressing Modes, 3-7

Register Indirect with Extended Immediate
Index Addressing, 3-13

Register Indirect with Immediate Inpax
Addressing, 3-12

Register with 6-Bit Immediate Addressing,
3-7,3-8

Register with 10-Bit Immediate Addressing,
3-8,3-9

Register with 16-Bit Displacement/Immediate
Addressing, 3-19

Register with 16-8it Signed Immediate

Addressing, 3-9,3-10
Register with 16-Bit Unsigned Immediate

Addressing, 3-10, 3-11
26-Bit Branch Displacement Addressing,

3-21, 3-22
Indirection Descriptors, 8-29, 8-37
Instruction Access Exception, 7-15
Instruction ATC Probe, 6-38
Instruction Cache(s), 6-1

ATe Invalidation, 6-35
Freeze Feature, 6-44
FRZO Bit, 6-44

FRZ1 Bit, 6-44
Hit, 6-13, 9-8
Instruction MMU Probing, 6-35
Invalidation Operation, 6-43
Line Fill, 6-16
Line Invalidate Operation, 6-38

Miss, 6-16,9-9,9-10
Organization, 6-3
Physical Address Tags, 6-3

Pseudo-Random Selection Algorithm, 6-14
Pseudorandom Replacement Algorithm, 6-3
Read, 6-15,6-16

Source Data Considerations, 9-12
Stalled, 9-12

Instruction Cache Hit, 9-8
Instruction Cache Miss, 6-16, 9-9, 9-10
Instruction Cache Read, 6-15, 6-16
Instruction Cache Timing, 9-7

Instruction Issue Timing, 9-6
Instruction MMU, 1-13
Instruction MMU/CacheITIC Command Register

(ICMD), 6-35, 6-43

Instruction MMU/CachelTlC Control Register
(ICTL), 6-35, 6-36

INDEX-8 MC88110 USER'S MANUAL MOTOROLA



Instruction Pointers
ENIP, 7-7, 7-8, 7-10
EPSR, 7-7, 7-8,7-10
EXIP, 7-7, 7-8, 7-10

Instruction Set, 1-22
add Instruction, 10-2
addu Instruction, 10-3
and Instruction, 10-4
Base Instruction, Set, 1-5
bbO Instruction, 10-5
bb1 Instruction, 10-6
bend Instruction, 10-7
br Instruction, 10-9
bsr Instruction, 10-10
elr Instruction, 10-11
emp Instruction, 10-13
dlvs Instruction, 10-15
dlvu Instruction, 10-16
ext Instruction, 10-17
extu Instruction, 10-19
fadd Instruction, 10-21
femp Instruction, 10-23
fempu Instruction, 10-26
fcvt Instruction, 10-29
fdlv Instruction, 10-31
ffO Instruction, 10-32
ff1 Instr,uction, 10-33
flder Instruction, 10-34
Floating-Point Instruction Set, 1-5
fit Instruction, 10-35
fmul Instruction, 10-36

fsqrt Instruction, 10-38 " '
fster Instruction, 10-39
fsub Instruction, 10-40
fxcr Instruction, 10-42
Graphics Instruction Set, 1-5
IIlop Instruction, 10-43
Int Instruction, 10-44
jmp Instruction, 10-45
jsr Instruction, 10-46
Id Instruction, 1O-~7
Ida Instruction, 10-50
Idcr Instruction, 10-52
mak Instruction, 10-53
mask Instruction, 10-55
mov Instruction, 10-56
muls Instruction, 10-58

mulu Instruction, 10-59
nlnt Instruction, 10-60
Opcode Map, 10-101
or Instruction, 10-61
padd Instruction, 10-62
padds Instruction, 10-63
pemp Instruction, 10-64
pmul Instruction, 10-65
ppack Instruction, 10-66
prot Instruction, 10-68
psub Instruction, 10-69
psubs Instruction, 10-70
punpk Instruction, 10-71
rot Instruction, 10-72
rte Instruction, 7-10, 10-73
set Instruction, 10-74
st Instruction, 10-77
stcr Instruction, 10-79
sub Instruction, 10-80
subu Instruction, 10-82
tbO Instruction, 10-83
tb1 Instruction, 10-84
tbnd Instruction, 10-85
tend Instruction, 10-86
trne Instruction, 10-88
xcr Instruction, 10-89
xmem Instruction, 10-90, 11-24, 11-53,

11-54,11-55,11-56
xor Instruction, 10-92

Instruction Streaming, 9-10
Instruction System Address Register (ISAR),

6-35, 6-38
Instruction Timing, 9-24

Allocate Load, 9-30
Bubble, 9-8
Cache Inhibited, 9-68
Delay Slot, 9-46
Delayed Branching, 9-44, 9-46, 9-48
Destination Buses, 9-37
Destination Register Considerations, 9-14
Divide, 9-43
Divider, 9-41
Double-Extended-Precision, 9-41
Double-Pr~cision, 9-41
Execution Unit Considerations, 9-15
Feed Forwarding, 9-6, 9-12, 9-13
Floating-Point Add, 9-42 •

MOTOROLA MC88110 USER'S MANUAL INDEX-9



•

Floating-Point Adder, 9-41
Flush Load, 9-29
Grouping of Like Instructions, 9-71
History Buffer, 9-17,9-36,9-52
I/O Serialization, 9-39
Instruction Cache Hit, 9-8
Instruction Cache Miss, 9-9, 9-10
Instruction Cache Timing, 9-7
Instruction Issue Timing, 9-6
Instruction Streaming, 9-10
Integer/Bit-Field Unit Execution Timing, 9-24
Interdependency Resolution Hardware, 9-12,
9-73,9-74

Issue Timing, 1-18
Latency, 9-1, 9-2, 9-70
Id Instruction, 9-71
Load Buffer, 9-18, 9-21
Load Miss, 9-34, 9-35
Load Timing, 9-31, 9-32
Load/Store Reordering, 9-23
Load/Store with Extended Operands, 9-38
Loop Unrolling, 9-76
Memory Performance Considerations, 9-66
Misprediction, 9-51, 9-62
Multiplier, 9-41
Multiply, 9-42
Nondelayed Branching Example, 9-49
Pixel Adder, 9-63
Pixel Packing/Unpacking Unit, 9-63
Predicted Branch, 9-51, 9-58, 9-60, 9-61
Prefetch, 9-4
Register Scoreboard, 9-5, 9-12, 9-14, 9-18,
9-73

Serial Mode Bit, 9-15
Single-Precision, 9-41
Stalls, 9-7,9-17
Static Branch Prediction, 9-44,9-50
Store, 9-36
Store Reservation Station, 9-18, 9-21
Store-Through, 9-28
Streaming, 9-35
Superscalar Optimization Techniques, 9-68
Symmetric Superscalar, 9-5
TIC, 9-44,9-47,9-48,9-49
Touch Load, 9-29, 9-40
Trap Instructions, 9-39
Unpredicted, 9-52

Unpredicted Branch, 9-53, 9-54,9-56
Unpredicted Delayed Branch, 9-55, 9-57
Write-Back, 9-4, 9-37
Write-Back Contentions, 9-69
Write-Back Mode, 9-67
Write-Back Priorities, 9-14
Write-Through Mode, 9-67
xmem, 9-26

Instruction Timing Overview, 9-1
Instruction Unit, 1-10,9-6
Instruction Unit Exceptions, 7-14

Instruction Access Exception, 6-17
Integer Overflow Exception, 7-15
Misaligned Access Exceptions, 7-14
Privilege Violations, 7-15
Trap Instructions, 7-15
UnimplementedOpcode Exceptions, 7-14

Instruction Unit/Sequencer
Delayed Branching, 9-44, 9-46
General Control Registers, 1-11
History Buffer, 1-11
Nondelayed Branching Example, 9-49
Program Flow, 1-10
Register Scoreboard, 1-11
Static Branch Prediction, 9-44, 9-50
Streamed, 6-22
Streaming, 6-17
TIC, 9-44, 9-47
VBR, 1-11

Carry Flag, 9-15
Code Optimization, 9-75
Data Alignment, 9-36
Data Dependency, 9-12
Data Unit Execution Timing, 9-26
Decode, 9-4

Decoupled Cache Accesses, 9-27,9-40
int Instruction, 10-44
Integer Arithmetic

add Instruction, 10-2
addu Instruction, 10-3
ALU, 1-9
cmp Instruction, 10-13
Divide Unit, 1-9,9-41
divs Instruction, 10-15
divu Instruction, 10-16
Integer Arithmetic Instructions, 3-27
Integer/Bit-Field Execution Timing, 9-24

INDEX-10 MC88110 USER'S MANUAL MOTOROLA



muls Instruction, 10-58
mulu Instruction, 10-59
Multiply Unit, 1-9, 9-41
Opcode Map, 10-94
Operand Types, 2-12
Register with 16-Bit Signed Immediate

Addressing, 3-9,3-10
Register with 16-Bit Unsigned Immediate
I~ddressing, 3-10, 3-11

sub Instruction, 10-80
subu Instruction, 10-82
tbnd Instruction, 10-85
tend Instruction, 10-86
Triadic Register Addressing, 3-3

Integer Overflow Exception, 7-15
Intensity Scaling, 5-18
Intensity Summing, 5-13
Interdependency Resolution Hardware, 9-12,

9-74
Interpolation, 5-13
INT, 11-15
Interrupt Signals, 11-15
Interrupt (INT), 6-34, 7-1,7-6,7-7,7-13

INIT, 7-1
Interrupt Disable, 2-11
Interrupt Latency, 7-13
NMI, 7-1, 7-13

INV, 6-25, 6-30, 11-11
Invalid, 6-18
Invalidate Command, 6-3,6-45
Invalidate Data Cache Line Command, 6-43
Invalidate Instruction Cache Line, 6-43
Invalidate Transactions, 11-52
Invalidation Bus Transaction, 6-25
Invalidation Operation, 6-43
IPAR, 7-16
ISR, 7-16

-J
jmp Instruction, 10-45
jsr Instruction, 10-46

JTAG, 11-106
-L-

Latency, 9-1, 9-2
Exceptions Other Than Interrupts, 7-11
Interrupt Latency, 7-13

Id Instruction, 10-47

Ida Instruction, 10-50
Idcr Instruction, 10-52
Levels of Privilege

Changing Levels of Privilege, 2-3
Supervisor Mode, 1-4, 1-17,2-2
User Mode, 1-4, 1-17, 2-3

LK,11-10
Load Buffer, 1-14, 9-6, 9-18, 9-21
Load/Store/Exchange, 9-27

Addressing Modes, 3-12
Allocate Load, 9-30
Data Alignment, 9-36
Flush Load, 9-29
History Buffer, 9-36
Id Instruction, 10-47
Ida Instruction, 10-50
Ider Instruction, 10-52
Load Miss, 9-34, 9-35
Load Timing, 9-31, 9-32
Instructions, 3-31
Opcode Map, 10-99
Register Indirect with Extended Immediate

Index Addressing, 3-13
Register Indirect with Immediate Index

Addressing, 3-12
Register Indirect with Index Addressing, 3-13,

3-14
Register Indirect with Scaled Index

Addressing, 3-14, 3-15
st Instruction, 9-36, 10-77
stcr Instruction, 10-79
Store-Through, 9-28
Streaming, 9-35
Touch Load, 9-29, 9-4C
Trap Instructions, 9-39
xcr Instruction, 10-89
XMEM Bit, 6-40
xmem Instruction, 6-10, 6-12,6-16,6-18,

6-31, 9-26, 10-90
Local Data, 6-5
Logical

Addressing Modes, 3-3
ALU, 1-9
and Instruction, 10-4
clr Instruction, 10-11

Logical Instructions, 3-26 .""",,,.
Logical OR, 10-61 •

MOTOROLA MC88110 USER'S MANUAL INDEX-11



•

Opcode Map, 10-93
Register with 16-Bit Unsigned Immediate

Addressing, 3-10, 3-11
xor Instruction, 10-92

Logical OR, 10-61
Line Invalidate Operation, 6-38

-M-
M6-MO Bits, 6-40
mak Instruction, 10-53
mask Instruction, 10-55
Me, 11-11
Memory Access Exceptions, 7-15

BPENO Bit, 6-41
BPEN1 Bit, 6-41
Data Access Exception, 7-17
Instruction Access Exception, 7-15

Memory Management Units (MMUs)
Address Translation, 8-4
Area Descriptors, 8-28, 8-29, 8-31
ATe Probe Commands, 8-53, 8-55
BATC, 1-1-3, 1-15,8-4,8-54
Block Address Translations, 8-15
Block· Descriptor, 8-15
Block Size, 8-19
Block-Exclusive Translation Mode, 8-6,8-13
Combined Block/Page Translation Mode, 8-6,

8-13
Data ATC Probe, 6-42
Data Breakpoint Descriptor, 8-49
Data Breakpoint Registers, 8-47
Data MMU, 1-15
DMU, 8-2
Exceptions, 8-8
Fault, 8-9
Hardware Table Search Operations, 8-5, 8-39
Identity Translation Mode, 8-6,8-13
IMU, 8-2
Indirection Descriptors, 8-29, 8-37
Instruction MMU, 1-13
Invalidating PATC Entries, 8-27

Loading BATC Entries, 8-20
Loading PATC Entries, 8-26
M6-MO Bits, 6-40
MEN Bit, 6-42
Organization, 8-2
Overview, 8-1

Page Address Descriptors, 8-4
Page Address Translations. 8-21
Page Descriptor, 8-23, 8-28,8-29,8-34
Page Descriptor Tables, 8-27
Page-Exclusive Translation Mode, 8-6, 8-13
PATe, 1-13, 1-15,8-4
Reading BATC Entries, 8-20
Reading PATC Entries, 8-26
Segment Descriptors, 8-28, 8-29, 8-32
Sharing Blocks Between Programs, 8-18
Software Maintenance of PATe Entries, 8-25
Software Table Search Operations, 8-5, 8-25
STEN Bit, 6-42

Memory Update Modes, 6-10
Memory Update Policies

Cache Inhibited, 6-3,6-10,6-12,11-20
CI Bit(s), 6-10, 6-12
Data MMU Probing, 6-39
Default, 6-10
FWTBit,6-41
G Bit, 6-11
Reset State, 2-1
Selection, 11-19
Store-Through Access, 6-10, 6-11
Write-Back, 6-3, 6-10
Write-Back Mode, 6-11, 11-20
Write-Through, 6-3, 6-10, 11-20
Write-Through Mode, 6-11
WT Bit, 6-10

MEN Bit, 6-38
Misaligned Access Exceptions, 7-14
Mispredicted, 9-51
Missing the Stride of Arriving Information, 9-10,

9-11
Modulo Arithmetic, 5-7
moy Instruction, 10-56
muls Instruction, 10-58
Multiply Execution Unit, 9-6, 9-41, 1-9
mulu Instruction, 10-59

-N-
NaNs,4-7
9-Bit Vector Table Index Addressing, 3-19
nlnt Instruction, 10-60
NMI, 7-1, 7-13, 11-15

Nondelayed Branching Example, 9-49
Normal Reset, 11-105

INDEX-12 MC88110 USER'S MANUAL MOTOROLA



Normal Termination, 11-70, 11-74, 11-75
Nonnalized Number Formats, 4-4

-0-
Operands

Floating-Point, 1-9

Graphics, 1-10

-p-
Packing Pixels, 5-14

padd Instruction, 10-62

padds Instruction, 10-63
Page Address Translation Cache (PATC), 1-13,

1-15,8-4

ATC Probe Commands, 8-53, 8-54, 8-55
CI Bit(s), 6-10, 6-12

G Bit, 6-11

Invalidating PATC Entries, 8-27

Loading PATC Entries, 8-26

Organization, 8-21

Page Address Descriptors, 8-4

Page Descriptor Tables, 8-27
Page Descriptor, 8-23

Reading PATe Entries, 8-26
Software Maintenance of PATC Entries, 8-25
WT Bit, 6-10

Page Descriptor, 8-28, 8~29, 8-34

Page Descriptor Tables
Data Breakpoint Fault, 8-51

Hardware Table Search Operations, 8-39

Hierarchy, 8-27, 8-28, 8-29

Maintaining Modified Status, 8-45

Maintaining Used Status, 8-44
Paging of Page Tables, 8-47

Reading, 8-51

Sharing Pages, 8-45, 8-46

Table Search, 8-38

pcmp Instruction, 10-64

PID, 2-8

Pipelines, 9-3

Bus, 1-17

Data, Unit 1-14

Floating-Point Add Execution Unit, 1-9

Multiply Unit, 1-9

Pixel Add Execution Unit, 1-10

Pixel Add/Subtract Instructions, 5-7

Pixel Block Transfer, 5-23

Pixel Pack Execution Unit, 1-10
Pixel Pack/Unpack Instructions, 5-10

pmul Instruction, 10-65
ppack Instruction, 10-66

Predicted Branch, 9-51

Prefetch, 9-4

PREN Bit, 6-37

Privilege Violations, 7-15

Processor States
Exception State, 2-1

Normal Instruction Execution, 2-2

Processor Status Register (PSR), 2-9
Byte Ordering, 2-9

Carry Bit, 2-9

Exceptions Freeze, 2-11
Interrupt Disable, 2-11

Misaligned Access Exception Mask, 2-10
Mode Bit, 2-9

Serial Mode, 2-9

Serialize Memory, 2-10

Signed Immediate Mode, 2-10

Special Function Unit Disable, 2-10
Programming Model

Supervisor Programming Model, 2-3
User Programming Model, 2-3

prot Instruction, 10-68

Pseudocolor Pixels, 5-6
Pseudorandom Selection Algorithm, 6-14
PSTAT2-PSTATO, 11-15, 11-16, 11-104

psub Instruction, 10-69

psubs Instruction, 10-70

PTA Signal, 6-18,11-12, 11-72

punpk Instruction, 10-71

-R-
RIW,11-10
Read Miss Line Fill, 11-5

Read-with-Intent-to-Modify Cycle, 6-28, 11-5,

1"1-65

Register Files, 6-33

Register Indirect with Extended Immediate Index

Addressing, 3-13

Register Indirect with Immediate Index

Addressing, 3-12

Register Indirect with Index Addressing, 3-13,
3-14

•MOTOROLA MC88110 USER'S MANUAL INDEX-13



•

Register Indirect with Scaled Index Addressing,
3-14, 3-15

Register SCoreboard, 1-11,9-5,9-12
Register with 6-Bit Immediate Addressing, 3-7,

3-8
Register with 9-Bit Vector Table Index

Addressing, 3-18
Register with 10-Bit Immediate Addressing, 3-8,
3-9

Register with 16-Bit Displacement/Immediate
Addressing, 3-19

Register with 16-Bit Signed Immediate
Addressing, 3-9, 3-10

Register with 16-Bit Unsigned Immediate
Addressing, 3-10, 3-11

Registers
Control Registers, 1-18
Extended Registers, 1-18
FPU Control Registers, 1-9
General Control Registers, 1-11
General Registers, 1-18
GRF, 1-8,2-5
Register Files, 6-33
Register Scoreboard, 1-11, 9-5
XRF, 1-8, 1-9,2-5

Replacement Copyback, 11-5, 11-67
RES2-RES1, 11-17
Reset (RST), 7-22

Normal Reset, 11-105
Power-On Reset, 11-105
PSTAT2-PSTATO, 11-104
Reset State, 2-1

Reset Exception, 7-22
rot Instruction, 10-72
Rounding Modes, 4-7
RST, 11-16, 11-104
ne Instruction Addressing, 3-22
ne Instruction, 7-10, 10-73

-S
Saturation Arithmetic, 5-7,5-8
Scoreboard, 9-12, 9-14
Secondary Cache, 6-11
Secondary Cache Support, 6-1, 11-32
Segment Descriptor, 8-28, 8-29, 8-32
SEN Bit, 6-42
Serial Mode Bit, 9-15

set Instruction, 10-74
Shared Unmodified, 6-18
SHO, 6-23, 11-13
Single-Beat Read Transactions, 11-49
Single-Beat Transactions, 1-16, 11-4, 11-46,

11-48
Single-Beat Write Transaction, 11-50, 11-51,

11-53
Signals

A31-AO, 11-9
AACK, 11-13
ABB, 11-14
ARTRY, 6-23, 6-28,11-13
BG, 11-14
BP7-BPO, 11-9
BPE, 11-16
BA, 11-14, 11-34, 11-84
Bus Arbitration Signals, 11-14
a,11-10
CLINE, 11-12
eLK, 11-17
063-00,11-8
088,11-14
OBG,11-14
DBUG,11-17
GBl, 11-12
INT, 11-15
INV, 6-25, 11-11
LK,11-10
Me, 11-11
NMI, 11-15
PSTAT2-PSTATO, 11-15, 11-16, 11-1 04
PTA, 6-18, 11-12, 11-72
RIW, 11-10
RES2-RES1, 11-17
RST, 11-104
SHO, 6-23, 11-13
Signal Summary, 11-8
SR, 11-13---
SSTAT1-SSTATO, 11-13,11-82
TA,11-12
TBST, 11-10
TC3-Teo, 6-31, 11-11
TCK, 11-17
TDI, 11-17
TDO, 11-17
TEA, 11-12

INDEX-14 MC88110 USER'S MANUAL MOTOROLA



TMS.11-17
TRST.11-17
TRTRY.11-13
TS.11-12
TSIZ1--TSIZO, 11-10
----
UPA1, UPAO, 11-10
WT, 11-10

Snoop Collision, 11-87, 11-94, 11-95
Snoop Control Signals, 11-13, 11-81
Snoop Copyback, 11-5, 11-67, 11-96
Snoop Hit, 11-85, 11-86, 11-87, 11-88, 11-89,

11-90, 11-91, 11-92, 11-93
Snoop Miss Timing, 11-85
Snooping, 1-16

Address Retry, 11-83
Cache Snoop Operation Flow, 11-22
Collision, 11-81, 11-87, 11-94, 11-95
Example, 11-24
Global Burst Write, 11-23
Global Read Transaction, 11-23
Global Read-with-Intent-to-Modify, 11-23
Global Single-Beat Write, 11-23
Hardware Table Search, 11-99, 11-102,

11-103
Snoop Control Signals, 11-81
Snoop Copyback, 11-96
Snoop Hit, 11-21, 11-85, 1t-86, 11-87,

11-88, 11-89, 11-90, 11-91, 11-92, 11-93
Snoop Miss, 11-85
Snoop Miss Timing, 11-85
Snoop Retry, 11-21

Software Envelope, 4..;1,4-10

Software Table Search Operations, 8-5, 8-25
Special Function Units, 1-4

Floating-Point Unit, 1-4

Graphics Processing Unit, 1-4
Opcode Map, 10-95
Special Function Unit Disable, 2-10

Split Bus Transactions, 1-16
SA, 11-13---
SSTAT1....;SSTATO, 11-13, 11-82

st Instruction, 10-76
Stall, 9-7, 9-12
State Bits, 6-18
Static Branch Prediction, 9-44, 9-50
ster Instruction, 10-79
STEN Bit, 6-38

Store Reservation Station, 1-14, 9-6, 9-18, 9-21
Store-Through, 6-31, 9-28, 11-57
Store-Through Access, 6-11, 6-30
Streaming, 6-17, 6-22
sub Instruction, 10-80
subu Instruction, 10-82
Superscalar, 9-5
Supervisor Mode, 1-4, 2-2
Supervisor Programming Model, 2-3
Supervisor Storage Registers (er16-er20),

2-11, 7-9
Symmetric Superscalar, 1-18,9-5,9-15

-T-
TA,11-12
Table Search Operation, 8-5, 11-57, 11-96,

11-97, 11-98
Target Instruction Cache (TIC), 1-13,6-4,9-44,

9-47, 9-48, 9-49
tbO Instruction, 10-83
tb1 Instruction, 10-84
tbnd Instruction, 10-85
TBST, 11-10

TC3-TCO, 11-11
TCK, 11-17
tend Instruction, 10-86
TDI, 11-17
TOO, 11-17
TEA, 11-12

Termination, 11-69
Address Retry, 11-83
Error Termination, 11-78, 11-79, 11-80
Normal Termination, 11-74, 11-75
Normal Transaction Terminations, 11-70
Superscalar, 9-5
Transfer Retry Termination, 11-75, 11-76,

11-77, 11-78

Test Access Port
Block Diagram, 11-107
BYPASS, 11-112
Capabilities, 11 ..106
CLAMP, 11-113
EXTEST, 11-109
EXTEST_PULLUP, 11-113
HI-Z,11-113
SAMPLE/PRELOAD, 11-112

Signals, 11-17, 11-107 •

MOTOROLA MC88110 USER'S MANUAL INDEX-15



•

Three-Bit Instruction Register, 11-108

Test Signals, 11-17
Time-Critical Floating-Point (TCFP) Mode, 4-11,

4-25
Timing Diagrams

Burst Transactions, 11-59, 11-61, 11-62
Bus Arbitration, 11-35
Bus Parking, 11-38
Error Termination, 11-79, 11-80
Hardware Table Search, 11-100,11-101,

11-102, 11-103
Normal Reset, 11-105
Normal Termination, 11-74, 11-75
Normal Transaction Terminations, 11-70
Power-On Reset, 11-105
Single-Beat Read Transactions, 11-49
Single-Beat Write Transaction, 11-53
Snoop Collision, 11-94, 11-95
Snoop Hit, 11-88, 11-89, 11-90, 11-91,

11-92, 11-93
Snoop Miss, 11-85
Split Bus, 11-40
SSTAT1-SSTATO, 11-82
Transfer Retry Termination, 11-76, 11-77,

11-78
xmem Transaction Timing-Parked Case,

11-56
xmem Transaction Timing-Unparked Case,

11-55
TMS, 11-17
Touch Load, 6-18, 6-31,6-33,9-29,9-40, 11-5,

11-65
Transactions

Allocate Load, 11-4, 11-57
Burst Read Transaction, 11-63, 11-64

Burst Transactions, 1-16, 11-4,11-58,11-59,
11-60, 11-61, 11-62

Burst Write Transactions, 11-66, 11-67
Cache Line Fill, 11-64
Flush Copyback, 11-5,11-68
Flush Load, 11-5, 11-68
Hardware Table Search, 11-99, 11-100,

11-101,11-102,11-103
Invalidate Transactions, 11-4, 11-52
One-Level Split Bus Transaction, 11-41
Positioning of Valid Bytes on the Data Bus,

11-43

Read Miss Line Fill, 11-5
Read-with-Intent-to-Modify, 11-5, 11-65
Replacement Copyback, 11-5, 11-67
Single-Beat Read Transactions, 11-49
Single-Beat Transactions, 1-16, 11-4, 11-46,

11-48
Single-Beat Write Transactions" 11-50,

11-51, 11-53
Snoop Copyback, 11-5, 11-67, 11-96
Split Bus Transactions, 1-16
Store-Through, 11-57
Table Search Operation, 11-4, 11-57, 11-96,

11-97, 11-98
Touch Load, 11-5, 11-65
xmem, 11-4, 11-53, 11-54
xmem Transaction Timing-Parked Case,

11-56

xmem Transaction Timing-Unparked Case,
11-55

Transfer Attribute Signal States, 11-63
Transfer Attribute Signals, 11-9, 11-42, 11-48
Transfer Code (TC3-TCO) Pins, 6-31
Transfer Control Signals, 11-12

Transfer Retry Termination, 11-75, 11-76, 11-77,
11-78

Trap Instructions, 7-15
Triadic Register Addressing, 3-16

Bit-Field Instructions, 3-3
Computational Instruetions, 3-3
Flow-Control, 3-16
Integer Arithmetic, 3-3

Logical Instructions, 3-3
trnc Instruction, 10-88
TRST, 11-17
TRTRY, 11-13

True Color Pixels, 5-6
TS,11-12
TSIZ1-TSIZO, 11-10
26-Bit Branch Displacement Addressing, 3-21 ,

3-22

-u
Unimplemented Opcode Exceptions, 7-14
Unnormalized Numbers, 4-6
Unpacking Pixels, 5-16
Unpredicted, 9-52
UPA1, UPAO, 11-10

INDEX-16 MC88110 USER'S MANUAL MOTOROLA



User Mode, 1-4,2-3
User-Mode Cache Control, ·6-10

Allocate Load, 6-31, 6-34, 11-4, 11-57
Cache Control Instructions, 6-31

Flush, 6-10

Flush Load, 6-31, 6-34, 11-5, 11-68

Invalidate, 6-10

Store-Through, 6-31

Touch Load, 6-18, 6-31, 6-33, 11-5, 11-65
User Programming Model, 2-3

-v-
Vector Base Register (VBR), 1-11,7-3,7-7

Vector Table, 7-2

-w-
Write Hit, 6-24

Write-Back, 6-10,9-4,9-37

Write-Back Arbitration, 1-11
Write-Back Mode, 6-10, 11-20

Write-Back Priorities, 9-14
Write-Through, 6-10

Write-Through Mode, 6-11, 11-20

WT,11-10

WT Bit, 6-10

-x
xcr Instruction, 10-89

XMEM Bit, 6-31,6-40

xmem Instruction, 6-18,6-31,10-90,11-4,
11-24, 11-53, 11-54

xmem Transaction Timing-Parked Case, 11-56

xmem Transaction Timing-Unparked Case,
11-55

xor Instruction, 10-92

•
MOTOROLA MC88110 USER'S MANUAL INDEX-17



Overview

Instruction Set

Exceptions

Programming Model

A30341-o PRINTED IN USA 12/91 GTE DIRECTORIES #14142 #25.000 MPU YGABAA

Memory Management Units

Instruction and Data Caches

Floating-Point Implementation

Addressing Modes and Instruction Set Summary

Appendix A

Instruction Timing and Code
Scheduling Considerations

Graphics Unit Implementation

System Hardware Design

Index

II
II
II

•..
II

•
•
•
II

•
II

•




	00001
	00003
	00004
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	08-52
	08-53
	08-54
	08-55
	08-56
	08-57
	08-58
	08-59
	08-60
	08-61
	08-62
	08-63
	08-64
	08-65
	08-66
	08-67
	08-68
	08-69
	08-70
	08-71
	08-72
	08-73
	08-74
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	09-63
	09-64
	09-65
	09-66
	09-67
	09-68
	09-69
	09-70
	09-71
	09-72
	09-73
	09-74
	09-75
	09-76
	09-77
	09-78
	10-001
	10-002
	10-003
	10-004
	10-005
	10-006
	10-007
	10-008
	10-009
	10-010
	10-011
	10-012
	10-013
	10-014
	10-015
	10-016
	10-017
	10-018
	10-019
	10-020
	10-021
	10-022
	10-023
	10-024
	10-025
	10-026
	10-027
	10-028
	10-029
	10-030
	10-031
	10-032
	10-033
	10-034
	10-035
	10-036
	10-037
	10-038
	10-039
	10-040
	10-041
	10-042
	10-043
	10-044
	10-045
	10-046
	10-047
	10-048
	10-049
	10-050
	10-051
	10-052
	10-053
	10-054
	10-055
	10-056
	10-057
	10-058
	10-059
	10-060
	10-061
	10-062
	10-063
	10-064
	10-065
	10-066
	10-067
	10-068
	10-069
	10-070
	10-071
	10-072
	10-073
	10-074
	10-075
	10-076
	10-077
	10-078
	10-079
	10-080
	10-081
	10-082
	10-083
	10-084
	10-085
	10-086
	10-087
	10-088
	10-089
	10-090
	10-091
	10-092
	10-093
	10-094
	10-095
	10-096
	10-097
	10-098
	10-099
	10-100
	10-101
	10-102
	10-103
	10-104
	11-001
	11-002
	11-003
	11-004
	11-005
	11-006
	11-007
	11-008
	11-009
	11-010
	11-011
	11-012
	11-013
	11-014
	11-015
	11-016
	11-017
	11-018
	11-019
	11-020
	11-021
	11-022
	11-023
	11-024
	11-025
	11-026
	11-027
	11-028
	11-029
	11-030
	11-031
	11-032
	11-033
	11-034
	11-035
	11-036
	11-037
	11-038
	11-039
	11-040
	11-041
	11-042
	11-043
	11-044
	11-045
	11-046
	11-047
	11-048
	11-049
	11-050
	11-051
	11-052
	11-053
	11-054
	11-055
	11-056
	11-057
	11-058
	11-059
	11-060
	11-061
	11-062
	11-063
	11-064
	11-065
	11-066
	11-067
	11-068
	11-069
	11-070
	11-071
	11-072
	11-073
	11-074
	11-075
	11-076
	11-077
	11-078
	11-079
	11-080
	11-081
	11-082
	11-083
	11-084
	11-085
	11-086
	11-087
	11-088
	11-089
	11-090
	11-091
	11-092
	11-093
	11-094
	11-095
	11-096
	11-097
	11-098
	11-099
	11-100
	11-101
	11-102
	11-103
	11-104
	11-105
	11-106
	11-107
	11-108
	11-109
	11-110
	11-111
	11-112
	11-113
	11-114
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	xBack

