e
~

Freescale Semiconductor, Inc.

MOTOROLA Ord T e
B SEMICONDUCTO IR /S
ENGINEERING BULLETIN
EB164

Interrupt Latency in the MC88110

This document addresses the interrupt jatency in the MC88110. It provides a brief description of how
interrupts are handled in the MC88110. It also includes examples of short and long interrupt latency cases.
This document is intended for these hardware system designers who have read and are familiar with the
MC88110 Second Generation RISC Microprocessar User's Manual.

NOTE

This document does not use the terms "exception® and ‘“interrupt"
interchangeably. The term exception is used to describe any event, other than
a branch or jump, that changes the normal flow of instruction execution. The
term interrupt is used to define any external exception signaled on the INT or
NMI pins of the MC88110 and is the focus of this document.

Interrupts in the MC88110

Interrupts in the MC88110 are a specific type of external exception and are present in two forms: maskable
and nonmaskable. The maskable interrupt is generated when the INT input signal is asserted. The
nonmaskable interrupt is generated when the NMI input signal is asserted.

The NMI signal is transiti >r rorsitve e lhiag odae! 1o st ia bl eeser e until it is acknowledged by the
interrupt handler. Once an NMI signal is recoanized bv the MC88110, NMI must be negated and reasserted
before another nonmaskable interrupt cet, b2 racognizaed,

The INT signal is level sensitive, so the external hardware must keep the signal asserted until the interrupt is
recognized. This recognition is normally generated by an interrupt handler.

If the interrupt disable (IND) bit in the processor status register (PSR} is set, all external maskable interrupts
(signaled by INT) are disabled. If the exceptions freeze (EFRZ) bit in the PSR is set, then exception-time
registers are frozen and both types of interrupts are disabled. When the EFRZ bit is set, any recognized
exception (except interrupts) will be directed to the error exception handler. A maskable or nonmaskable
interrupt will never be directed to the error exception handler since the EFRZ bit also disables INT and NMI.

Table 1 illustrates whether an interrupt or exception will be recognized or masked according to which bits

{IND, EFRZ) are cleared. The column labeled Other Exceptions describes what happens if a bus or internal
exception occurs.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

@ MOTOROLA W

© MOTOROLA INC., 1992 992

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

IND EFRZ INT NMI Other
Exceptions
0 1 Disabled Disabled Error exception
handler
1 1 Disabled Disabled Error exception
handier
1 0 Disabled Goes to its Goes to its
exception handler | exception handler
o] 0 goes to its Goes to its Goes to its
exception handler | exception handler | exception handler

Table 1. Interrupt Masking

Interrupt Latency

Interrupt latency is affected by two primary factors—the time from when the INT signal asserts until it is
recognized by the processor (exception recognition); and the time from when the processor recognizes the
interrupt until the interrupt handler begins execution (exception processing). These measurements of time
are dependent on the state of the processor when the interrupt occurs. Examples of these dependencies
are given in the foliowing sections.

The MC88110 maintains a precise exception model. When an interrupt signal asserts, the precise address
of the faulting instruction is provided to the exception handler and the MC88110 s restored to a state such
that neither the faulting instruction or any instructions that follow appear to have executed. This restoration
process is facilitated by the history buffer that keeps track of the order of issuance of each instruction.

EXCEPTION RECOGNITION

The time from when an interrupt signal asserts to when the processor recognizes it is dependent upon three
factors:

sThe number of instructions that are in the history buffer at the time of the interrupt,

*Whether a memory access instruction such as a load, store or xmem in the history buffer had already
accessed the cache or bus when the interrupt signal was asserted,

sLatency of the instruction at the top of the history buffer. The MC88110 is designed so that the interrupt
receives recognition as quickly as possible.

Typically, the MC88110 initiates recognition of an interrupt as soon as an interrupt is detected. In the
MGCB8110, the NMI is detected by the processor three cycles after it asserts, and the INT is detected two
cycles after it asserts.

The MC88110 initiates the process of interrupt recognition by first stalling instruction issue, disabling the
Id/st unit, and marking any pending loads or stores in the kd/st unit that have not touched the cache or the
bus, as causing an exception. Additionally, any instruction in the history buffer that finishes execution and
performs a register write-back is also tagged with an exception. The only instructions that do not write-back
are branches {except bsr) and stores. If the history buffer is empty, the first instruction, that enters the
buffer after the interrupt is detected, is marked as causing an unimplemented opcode exception. The
external interrupt is recognized when the first instruction that is tagged with an exception reaches the top of
the history buffer. If the instruction already at the top of the buffer has not yet performed a write-back when

2 MC88110 ENGINEERING BULLETIN MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

the interrupt is detected, it is allowed to finish executing and the interrupt is recognized the cycle after the
instruction completes write-back.

It will take longer to recognize an interrupt if a load, store or xmem has already accessed the bus or cache at
the time the interrupt signal is detected. Memory access instructions that have accessed the bus or cache
are allowed to finish execution before the process of interrupt recognition is allowed to start. Execution time
of load and store operations wil depend on whether the data is available in the cache or an access to
external memory is necessary. The memory access latency will determine how quickly the load or store will
complete in the case of a cache miss.

If a memory instruction such as a load has accessed the cache or bus, and an interrupt is detected, the
MC88110 waits until the lcad writes back, before initiating the process leading to interrupt recognition. After
the load writes back, the MC88110 proceeds with the process of interrupt recognition as described in the
previous paragraphs.

Incorrectly predicted branches that are conditional upon immediately preceding loads may further delay an
interrupt from being recognized. If the branch reaches the head of the buffer after the load writes back and
the processor determines that it incorrectly predicted the branch, not only wil the processor need to back
out of all of the speculatively issued instructions in the buffer, but it will also have to fetch the first instruction
from the correct branch target. This may take many clocks depending on the instruction memory access
time. Once the first instruction in the correct branch path is fetched, it is tagged with an unimplemented
opcode exception. The interrupt is recognized when this instruction reaches the top of the history buffer.

EXCEPTION PROCESSING

Execution of the interrupt handler begins with the execution of the first instruction in the exception vector.
Before the interrupt handler can begin, the MCB8110 needs to attain a precise machine state, consistent
with a sequential order of program flow. When the processor recognizes the interrupt, it restores the
processor to the machine state that existed at the time the excepting instruction (that is, the instruction at
the top of the buffer when the interrupt is recognized) was issued. The number of instructions occupying
the history butfer when the interrupt is recognized affects the time it takes the processor to restore the
correct machine state. The MC88110 restores at two instructions per clock cycle and takes a maximum of six
clocks to restore the processor to its inftial machine state, since a maximum of 11 additional instructions
could have been issued when the interrupt was asserted.

Once the processor has been restored to its correct machine state, the MC88110 performs all the actions
necessary to transfer control to the exception handler. This process takes three clocks plus whatever
amount of time is required to fetch the first handler instruction from cache or memory, as appropriate.

Interrupt Latency Formula

All of the factors listed previously make up the interrupt latency for the MCB8110. For this section, interrupt
latency is defined as the time from when the interrupt signal asserts untii the instruction that returns the
processor to normal execution has been issued. Therefore, the following interrupt latency egquation
includes all four factors listed previously. In addition, the time for detection is also included. Detection is the
time from when the interrupt asserts to when it is detected by the MC88110.

interrupt latency formula = detection + recognition + processing + handling + return time

detection = 2 cycles for INT or 3 cycles for NMI
recognition = dependent on the sequence of instructions in the history buffer
processing =instruct + 3 + mwait

MOTOROLA MC88110 ENGINEERING BULLETIN 3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

where:
instruct = [#/2] where # = the number of instructions in the history buffer when the
interrupt is recognized
mwait = the number of cycles needed to fetch an instruction from memory.

The recognition time is completely dependent on the sequence of instructions in the history buffer at the
time the interrupt is signaled. No formula is given for this portion of the interrupt latency time, instead, the
next section discusses some scenarios that result in short and long interrupt latencies.

SHORT INTERRUPT RECOGNITION LATENCY

Often, an interrupt can be detected and reccgnized one clock cycle after it is received. f no memory
instructions are in the history buffer, the MCB88110 will detect the interrupt as soon as it is received. The
interrupt will be recognized when the first instruction that has completed a write-back, after detection,
reaches the top of the history buffer.

Example 1: The first case, illustrated in Figure 1, is an example of an interrupt latency of one cycle.

HEAD OF HISTORY

H - jl—
HEAD OF HISTORY add r1, 9, 17 ©add.r1, 9,17 BUFFER
INT SIGNAL ASSERTS rr——
add HAS FINISHED and 5, 15, 16 and 15, 15, 16
INTERRUPT RECOGNIZED ———
ALL INSTRUCTIONS
S . "UNDONE"
. .
e °
TAIL OF HISTORY — TAIL OF HISTORY
BUFFER —- i BOFFER
case.. @) ()

Figure 1. Interrupt Latency of One Cycle

In Figure 1 (a), the two single-cycle instructions are issued 1o their respective execution units and placed in
the history buffer. During this same clock cycle, an external interrupt is received. Since there are no memory
operations in progress, the interrupt is immediately detected and is subseguently recognized when the add
instruction writes back. In this case, the interrupt is recognized one clock cycle after being received by the
MC88110. In Figure 1 (b), the register file set is restored.

Example 2: The second case, as shown in Figure 2, depicts another short latency example.

HEAD OF HISTORY

HEAD OF HISTORY — BUFFER
BUFFER fadd r1, fg, r7 fadd f,, r9, 7
INT SIGNAL ASSERTS i
fadd HAS FINISHED and 15,13, 6 _And 5516
INTERRUPT RECOGNIZED| R o ALL INSTRUCTIONS
. P "UNDONE"
) ®
° .
TAIL OF HISTORY : — TAIL OF HISTORY
BUFFER S | BUFFER
(a) (b)
Figure 2. Short Latency Case
4 MC88110 ENGINEERING BULLETIN MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

In Figure 2 (a), a three-cycle fadd instruction and a single-cycle instruction are issued to their respective
execution units and placed in the history buffer. During this same clock cycle, an external interrupt is
received. As in the previous example, since there are no memory operations in progress, the interrupt is
immediately detected and is subsequently recognized three clock cycles later when the fadd instruction
writes back. In this case, the interrupt is recognized three clock cycles after being received by the
MC88110. In Figure 2 (b), the register file set is restored.

LONG INTERRUPT RECOGNITION LATENCY

There are several cases that result in long latencies for exception recognition. In this section, we present
three examples of such cases. All three cases involve memory instructions (such as Id, st, or xmem)
accessing either the cache (and has a cache miss) or the bus when an interrupt is detected. In the following
paragraphs, we use the Id to illustrate these three long latency examples. In these examples, the id
instruction could easily have been a st or an xmem. Typically the xmem instruction provides the longest
latency since it consists of both a load and a store. In the following examples described, the term mw is used
in the latency expressions and represents the number of wait states of the computer's memory system. Itis
assumed that the MC88110 is parked and does not have to arbitrate for any bus.

Example 1: The first case (see Figure 3} involves a load instruction followed by a multi-cycle instruction that
uses the destination register of the load instruction. We illustrate this by using the longest latency multi-
cycle instruction—the floating-point divide (fdiv). If the load instruction is at the top of the butfer, and has
already accessed the bus or cache when the interrupt is received, the load is allowed to complete before the
process on interrupt recognition begins (illustrated in Figure 3 (g)). The MCB88110 will initiate the interrupt
recognition process one cycle after the load writes back. Since the fdiv has a dependency on the load, it
will not issue until the load has completed execution. Once this data is available, the load writes back to the
register file and is retired out of the history buffer. During the same clock cycle, the data is forwarded to the
fdiv operation which is inserted into the history buffer (illustrated in Figure 3 (b)}. One cycle after the load
writes back, instruction issue is stalled. Note however that the fdiv has already been inserted into the
history buffer and begun execution. When the fdiv attempts to write-back, the processor recognizes the
interrupt, restores the processor state to the state before the fdiv was issued, and then fetches instructions
from the interrupt handler.

MOTOROLA MC88110 ENGINEERING BULLETIN 5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

. . 14 RETIRED FROM
HEAD OF HISTORY] 1 110,15, 16 tdiv r4, r10, 15 HISTORY BUFFER

fdiv EXECUTING

INT SIGNAL ASSERTS
Id IS ACCESSING BUS

M .
) .
) .
r 4 4
TAIL OF HISTORY ..i
BUFFER |. I],
(a) (b)
fdiv WRITES BACK ~ —mt

INTERRUPT RECOGNIZED ftd T 110,15

()
Figure 3. Id Followed by fdiv Instruction

in the example depicted in Figure 3, it takes 5 + mw clocks for the load to complete and feed-forward the
data to the divide unit. The Id takes 3 + mw cycles to complete after it touches the cache. The floating-
point divide instruction takes 23 cycles to complete. Thus, if the interrupt is detected by the MC88110
when the Id is accessing the cache, the interrupt would be recognized [3 + mw] + 23 cycles after it is
detected.

Example 2: The second long latency case (shown in Figure 4) invclves a load that is immediately followed
by an incorrectly predicted branch and ten instructions issued conditionally. A long latency occurs if the
interrupt is detected while the load is accessing the bus. This situation is iflustrated in Figure 4 (a). The
process of interrupt recognition is initiated when the load operation completes and both the load operation
and the branch are retired from the history buffer {as shown in Figure 4 (b)). Since the branch prediction was
incorrect, the processor first has to back out of the instructions that were speculatively executed before the
interrupt can be recognized. This is illustrated in Figure 4 (¢}). The MC88110 reverses program state at a rate
of two instructions per clock cycle, resulting in five clock cycles of "back out" time. To recognize the
interrupt, the first instruction that is fetched from the correct target of the branch (Figure 4 part (d)) is tagged
as causing an unimplemented opcode exception. The MCB88110 notices the exception tag and then
recognizes the external interrupt. Note that the unsigned floating-point add (fadd) is the last instruction in
Figure 4 {a), (b), and (c). Once the interrupt is detected and a load is already touching the bus, the processor
will normally continue issuing instructions until the load completes its write-back. However, in this example,
instruction issue stalls immediately because the history buffer is full.

As in the previous example, the latency of the load instruction will be 3 + mw. Five clocks are required to
back out the 10 incorrectly issued instructions following the branch. 5 + mw cycles are required to fetch the
instruction from the correct branch target {assuming a cache miss). This instruction is marked as causing the
exception and the interrupt is recognized. So fotal latency for recognition is [3 + mw] + 5 + [5 + mw]
cycles.

6 MC88110 ENGINEERING BULLETIN MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HEAD OF HISTORY

HEAD OF HISTORY_m| _ ' BUFFER
BUFFER td r10, r11, r10 and r5,r5,r6 INCORRECTLY PREDICTED
INT SIGNAL ASSERTS —0
Id IS EXECUTING bend eqo, r10, 5 SUb TS, 3, ¥
and r5, 5, ré
[]
: .
®
° faddu x3, x11, x12
[]
TAIL OF HISTORY
TAIL OF HISTORY
BUFFER —= taddu x3, x11, x12 BUFFER

@) (b)

HEAD OF HISTORY
BUFFER
INTERRUPT RECOGNIZED

HEAD OF HISTORY -

BUFFER fdiv r4, r6, 18 ™

ALL INSTRUCTIONS

BACK TRACKED
®
[
" fadldu x3;x11, x12
TAIL OF HISTORY AT TAIL OF HISTORY
BUFFER i BUFFER
(c) (d)

**This instruction is tagged with an unimplemented opcode exception.

Figure 4. Incorrectly Predicted Branch

Example 3: The third long latency scenario involves a Id that has accessed the bus, followed by
instructions that fill up the two write-back slots of the MC88110. Since Id instructions have lowest pricrity for
the write-back slots, the other instructions are allowed to write back befere the load. In this case, interrupt
recognition is delayed because the MC88110 will not initiate the process of interrupt recognition until the Id
writes back. A long latency will occur if the history buffer contains a Id followed by a multi-cycle instruction
that writes back the cycle before the locad wants to perform its write-back. The multi-cycle instruction in turn is
followed by several single-cycle instructions that write back, so that they prevent the Id from writing back.
Under these circumstances, the interrupt cannot be recognized until all those instructions finish executing.
Such a scenario is depicted in Figure 5. In this example, the Id is followed by an fdiv instruction, followed
by eight single-cycle add instructions, the first of which has a dependency on the fdiv.

Figure 5(a)—(e) shows the contents of the history buffer. Instructions that have completed execution and
are writing or have written back to the register file are shaded in the diagram. In Figure 5(a), the 1d and the
fdiv are the only executing instructions in the history buffer. The interrupt is signaled and detected by the
MC88110 while the Id is accessing the bus. Instruction issue does not stop, however, until the Id
completes and writes back to the register file. The first add instruction uses the destination register of the
fdiv instruction, and thus cannot be issued until the fdiv finishes and is writing back. In Figure 5(b), the
fdiv has finished execution and is writing back to the register file. In this cycle, the data for register r4 is
feed-forwarded to the add which then issues along with a second add. The Id also finishes execution and

MOTOROLA MC88110 ENGINEERING BULLETIN 7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

prepares to write-back in the next cycle. Note that the fdiv cannot be retired from the history buffer until the
Id has written back. In the next cycle shown in Figure 5(c}, the add instructions that have finished execution
write back their results to the register file. The Id cannot write-back because the two add instructions have
higher write-back priority and use up the available write-back slots in the MC88110.

During the cycle in which the Id write-back is stalled, two additional add instructions are issued. These new
add instructions write back the following cycle, again preventing the Id from writing back. More single-cycle
add instructions are issued, further delaying the 1d from writing back. This process continues until the
history buffer is full, as shown in Figure 5(d). The last two instructions in the buffer are an add and an fdiv.
Since the fdiv takes 23 cycles to execute, it will not write back at the same time as the add instruction, so
the Id can utilize the free write-back slot and write back at the same time as the last add instruction. After
writing back, the Id is retired from the history buffer along with the first fdiv and the nine consecutive add
instructions, see Figure 5(e). Instruction issue is halted and the interrupt is recognized when the last fdiv
writes back.

8 MC88110 ENGINEERING BULLETIN MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HEAD OF
HISTORY—™ Id r10,r11, 1
BUFFER
fdiv r4,r6, 15
[
L
o
e
(@
HFSAI%S‘!:—"' Id r10, 11, 1
BUFFER
L J
L
L
TAIL OF
HISTORY
BUFFER
()
HEAD OF .
HISTORY—=T" tdiv 19, ¢5, 11
®
®
®
TAIL OF
HISTORY
BUFFER

{e)

Id ACCESSING HEAD OF
BUS WHEN INT HISTORY Id r10, r11, 1
ASSERTS BUFFER ‘
add r5, rd, r2
addr1, r2, 3
[]
.
*
TAIL OF
HISTOF{Y——l]
BUFFER
{b)
Id 1S HEAD OF
WAITING TO HISTORY
—»l1d r10, r11, 1
WRITE BACK BUFFER dr1d, rit, r
fdiv rd,r6, r5
add INSTRUGTIONS
COMPLETE AND add r5, rd, r2
USE THE TWO
WRITE-BACK SLOTS add r1,r2,r3
TWO MORE add
]_ INSTRUCTIONS add r3,r2,r4
ISSUED
]
LA"_ OF] add r6, r1, r2
ISTORY. "
BUFFER —w1 fdiv r9, r5, 11

ALL INSTRUCTIONS
PRECEDING fdiv RETIRED
INTERRUPT RECOGNIZED
WHEN fdiv WRITES BACK

Figure 5. Id Waiting on Write-Back

fdiv COMPLETES

TWO add INSTRUCTIONS
ISSUED.

FIRST add HAS DEPENDENCY
ON fdiv

L
@-<+— FOUR MORE adds

The recognition latency for this case is lengest if the Id finishes one cycle after the first fdiv. This will be the
case if the Id takes 24 cycles to complete. Thus the recognition latency will include the time to complete the
Id after it accesses the cache (22 cycles), the time delay before the Id can write back (4 cycles), and the time
to complete the fdiv (22 cycles). Note that the fdiv is 22, not 23, cycles because one cycle of the fdiv's
execution overlaps with the four cycles of Id write-back delay. Therefore, the total latency in this case is

22 + 4 + 23 = 49 cycles.

MOTOROLA

MC88110 ENGINEERING BULLETIN

For More Information On This Product,
Go to: www.freescale.com

